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Abstract—Specifications play an important role in many
software engineering activities. Despite their usefulness, formal
specifications are often unavailable in practice. Specification
mining techniques try to automatically recover specifications from
existing programs. Unfortunately, mined specifications are often
overly general, which hampers their applications in the down-
stream analysis and testing. Nowadays, programmers develop
software systems by utilizing existing components that usually
have some available specifications. However, benefits of these
available specifications are not explored by current specification
miners. In this paper, we propose an approach to leverage
available specifications of subcomponents to improve the precision
of specifications of the composite component mined by state-
based mining techniques. We monitor subcomponents against
their specifications during the mining process and use states
that are reached to construct abstract states of the composite
component. Our approach makes subcomponents’ states encoded
within their specifications visible to their composite component,
and improves the precision of mined specifications by effectively
increasing the number of their states. The empirical evaluation
shows that our approach can significantly improve the precision
of mined specifications by removing erroneous behavior without
noticeable loss of recall.

I. INTRODUCTION

In contemporary software development practice, program-
mers reuse components by invoking their APIs to construct
large systems. These APIs often include constraints on the
temporal order of method invocations. Take an example of
the file usage. A programmer should first open a file, then
read and/or write its content, and at last close it. Trying
to read or write a closed file will cause exceptions to be
thrown. Such constraints are often represented as FSMs (finite-
state machines) that encode the valid usage of APIs. API
specifications are very useful in many software engineering
activities. They can aid the generation of test cases [1].
Program verification tools can use them as input to prove the
absence of specification violations [2], and program analysis
tools can use them to find certain errors [3][4][7].

Ideally, specifications should have been clearly written
by software developers before programmers begin to write
the program. However, because writing API specification is
cumbersome and requires expert knowledge of corresponding
APIs, API specifications are often missing, incomplete or
out-of-date in practice despite their usefulness. Mainstream
object-oriented programming languages provide only informal
documentation to support API specifications. To address this
problem, specification mining techniques have been developed

to reversely mine API specifications from API client programs
[S1[6][7]1[8][9][10][11][12]. Unfortunately, FSM models! pro-
duced by existing mining techniques are often overly general
and include much spurious behavior. Specification miners pro-
duce imprecise models especially when these models are large
and complex [19]. Even for small, two-state FSMs, the false
positive rate of the mined results can be high (e.g., 90-99%
[7], and 63% when precision? and recall® are balanced [18]).
Overgeneralized models can hamper the effectiveness of the
downstream analysis, verification and validation techniques by
producing many false negatives and/or positives. To tackle this
problem, Gabel et al. [16] try to validate mined specifications
by transforming the training program to test the necessity of
a mined specification for this program’s correctness.

Nowadays, programmers develop complex software sys-
tems by utilizing existing components such as the Java system
library. In object-oriented programming, composition is one
of the most common ways to construct new classes from
existing ones. Because of their long-term usage and good
understanding, existing components usually have some speci-
fications that are either specified by their developers or mined
by specification miners, considering the fact that specification
mining techniques have made important progress after their
more than a decade’s development [15][20]. A composite
component commonly invokes methods of its subcomponents
to perform its functionality. To this end, it must obey speci-
fications of its subcomponents. However, existing techniques
mine specifications of components from scratch, ignoring
available specifications of their constituent subcomponents. We
observe that this is one important cause of the imprecision of
specifications mined by existing miners.

In this paper, we specifically focus on the state-based
mining of API specifications of object-oriented components
(i.e., classes). The state-based specification mining techniques
use values of variables to label the model’s states during the
mining process. To avoid producing too large and specific
models, abstract instead of concrete values are used to label
states. Unfortunately, choosing an appropriate state abstraction
function at the right abstraction level for specification mining
is a challenge [8][14]. State-of-the-art approaches adopt the
following state abstraction function abs to mine specifications
of classes: values of reference fields (objects and arrays)
are abstracted to null (=null) or not null (#null), values of

'In the paper, we use the terms “specification” and “model” interchangeably.
2Precision is the percentage of mined behavior that is correct.
3Recall is the percentage of correct behavior that has been mined.
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Fig. 1.  API specification of an object under the null-abstraction (a), and
specification of the OutputStreamn (b).

numerical fields are abstracted to larger than zero (>0), less
than zero (<0), or equal to zero (=0), and values of boolean
fields remain unchanged. Typical state-based miners include
Revolution [29], Crawljax [28], PACHIKA [14], ReAjax [27],
and ADABU [8]. Models mined by these tools have already
been used to support various testing, debugging and verifica-
tion techniques [13][14][27][28].

State-of-the-art state-based miners employ the null-
abstraction for subcomponents that views possibly many d-
ifferent states of a subcomponent as a single state null. This
abstraction is too coarse. It actually assumes that specifications
of all subcomponents are the simple two-state FSM of the form
presented in Figure 1% (a). Such a model specifies that the
invocations of instance methods should be made on a created
object, and nothing else. Obviously, many important properties
of subcomponents are missed from Figure 1 (a). The specifica-
tion of the composite component mined under this abstraction
has a small number of states and much nondeterminism, and
can violate the properties of its subcomponents. Figure 2° (a)
presents the specification for the Buf feredOutputStream
mined by the null-abstraction. This model is almost useless
and includes the erroneous behavior that the stream can be
written into after it has been closed. Ghezzi et al. claim that
specifications mined by such a state abstraction scheme are
too imprecise to be used as specifications [17].

In this paper, we argue that exploring existing specifications
is beneficial to mining better specifications, and propose to
leverage available specifications of subcomponents to mine
precise specifications of composite components by using the
state-based specification mining approach. Instead of the single
#null state of the null-abstraction, we distinguish different
states of subcomponent objects encoded in their specifications
and use them to construct abstract states of the composite
object. When available specifications are finite-state properties,
we monitor subcomponent objects against these properties, and
use the states that are reached to label states of composite
objects during the mining process. In this way, important states
of subcomponent objects encoded within their specifications
are visible to their composite object, and the number of

4Only interesting methods and fields are kept here for brevity. The short
arrow denotes that its pointed state is the initial state, and double circled states
denote final states. All classes in this paper are from the Java system library
and package names are omitted without confusion.

5The field our is the underlying output stream, the field buf is the buffer
array, and the field count is the number of valid bytes in the buffer. Methods
of the Buf feredOutputStream calls corresponding methods of the out
to perform its functionality.
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Fig. 2. Mined model for the BufferedOutputStream by state-
of-the-art state-based specification miners (a), and mined model for the
BufferedOutputStream by our approach (b).

states of mined specifications of the composite object can
be effectively increased. This results in more precise mined
specifications. For example, Figure 2 (b) presents the enhanced
model of the Buf feredOutput Stream mined by leverag-
ing the specification of the OutputStream presented in 1
(b). The close of the Buf feredOutputStream calls the
close of the OutputStream which transits the state of
the field out from the state open to the state closed in Figure
1 (b). In this way, the states open and closed in Figure 1
(b) of the field out are visible to the miner. This makes the
state I and the state 3 in Figure 2 (b) distinguishable and the
overgeneralization in Figure 2 (a) is removed.

We empirically validate our approach through comparing
specifications mined with and without specifications of sub-
components. We use benchmark programs from the DaCapo
benchmark suite [26] as training programs to mine specifi-
cations of classes in 17 packages of the Java system library.
The evaluation results show that our approach can significantly
improve the precision of mined specifications. There are 7
out of 10 overly general FSM models that are enhanced by
our approach. In average, 25.05% of the behavior of models
mined without considering specifications of subcomponents
is erroneous and removed from enhanced models mined by
our approach. Meanwhile, no recall is lost for the case of
our benchmark programs. Our miner is fast and the overhead
introduced by monitoring subcomponents is limited: the time
increases are around 10%.

This paper makes the following main contributions:

e  We propose an algorithm to explore available spec-
ifications of subcomponents to mine more precise
specifications of composite components for the state-
based specification mining techniques. This algorithm
traverses the input trace only once and is scalable.

e  We propose a mechanism to coordinate the expressive-
ness and complexity of mined specifications. Users
can provide specifications only for salient subcom-
ponents and our approach utilizes the coarse null-
abstraction for other subcomponents.

e  We developed a prototype tool and conducted experi-
ments on a large set of traces. The results show that
our approach can significantly improve the precision
of mined specifications.
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Fig. 3. The specification mining system.

The rest of this paper is organized as follows. Section
IT discusses our approach in detail. Section III presents the
implementation of a prototype tool. Section IV presents the
experimental evaluation. Section V discusses related work and
Section VI concludes.

II. APPROACH

In this section, we present our approach in detail. Figure 3
depicts the high-level overview of our approach. The input
includes traces of training programs and specifications of
subcomponents. Any finite state properties in the form of FSMs
can be fed into our approach. These input specifications can
be either some available, well-known properties of frequently
used libraries such as the resource specification in Figure 1 (b),
or mined specifications by existing specification miners. The
monitoring of subcomponents and the mining of specifications
of composite components proceed concurrently. Subcompo-
nents in the traces are monitored against their specifications
and the states that are reached are fed into the specification
miner as abstract states for the corresponding subcomponents.
The output is mined specifications of composite components.

A. Events and Traces

We distinguish two types of objects in the input traces.
The composite objects are objects whose specifications we
intend to mine, and the subcomponent objects are objects that
are assigned to fields of composite objects during runtime.
A trace T = (ey,...,e,) is a sequence of events, where an
event e is either a field assignment event fe or a method
invocation event me. A field assignment event is a tuple
fe={cn, f,cs,t), where a value cn is assigned to the field f
of a composite object cs in the thread ¢. cn is a subcomponent
object if f is of reference type. For primitive types (numerical
types and boolean types), their concrete values are recorded in
field assignment events. A method invocation event is a tuple
me = {(m,o0,me’,t) with me’ = (m',o’,me”,t), where the
method m of the object o (the callee) begins to execute, and
m is called by the method m/ of the object o’ (the caller) in the
thread ¢. We simply say that me is called by me’ for brevity.
If an event e appears in the trace T', we write e € T'. Because
we are only interested in objects, calls to static methods are
excluded from the trace. So, the receiver object of a method
invocation event always exists. We mine specifications of a
composite object from the viewpoint of the object’s user (caller
of the object’s public methods), and thus require that o # o’.

This trace definition is applicable to both single-threaded
and multiple-threaded applications. Events are recorded in
the order of their occurrence, that is, the order of events is
preserved globally. Such global ordering of events can be
implemented by a tracing agent based on JVMTI [12]. See

mey.  FileOutputSteam.<init>, FileOutputSteam:647, me, main

me,.  BufferedOutputSteam.<init>, BufferedOutputSteam:657, me, main
fer.  FileOutputSteam:647, out, BufferedOutputSteam:657, main

fer.  byte[]:658, buf, BufferedOutputSteam:657, main

mes.  BufferedOutputSteam.write, BufferedOutputSteam:657, me, main
fes. int:1, count, BufferedOutputSteam:657, main

mey.  BufferedOutputSteam.write, BufferedOutputSteam:657, me, main
mes.  FileOutputSteam.write, FileOutputSteam:647, mes, main

fes.  int:0, count, BufferedOutputSteam:657, main

fes. int:1, count, BufferedOutputSteam:657, main

meg.  BufferedOutputSteam.close, BufferedOutputSteam:657, me, main
me;.  FileOutputSteam.write, FileOutputSteam:647, meg, main

fes.  int:0, count, BufferedOutputSteam:657, main

meg.  FileOutputSteam.flush, FileOutputSteam:647, mes, main

mey.  FileOutputSteam.close, FileOutputSteam:647, meg, main

Fig. 4. Fragment of the trace used to mine the model in Figure 2 (b).

Section III for details. In this way, interactions between events
coming from different threads can be recognized. Figure 4
presents a trace fragment®. Each line corresponds to an event
and contains the identifier of the event at the beginning of the
line. The event fe, assigns the FileOutputStream object
647 to the field out of the Buf feredOutput St ream object
657. The close of the object 657 in meg calls the close
of the object 647 in meg to close the wrapped output stream
out.

There are no method return events in the trace, but we
need to determine when a method invocation exits in some
cases. The rule is straightforward: a method invocation exits
before its calling method exits; a method invocation exits
before a method that appears later in the trace exits if these two
methods are called by the same method. Formally, the method
invocation event me; = (my, 01, mej,t) exits: (1) just before
the first method invocation event mes is encountered after me;
in the trace such that mey = (mo, 02, mej, t); or (2) just before
me exits; or (3) when the end of the trace is reached. When
there are more than one method invocation events that exit at
the same position in the trace, the later the event appears, the
earlier it exits. For the example in Figure 4, me; exits before
meo because they are called by the same event me, and mes
exits before me, exits because it is called by mey4. In Section
II.C, we give an algorithm that utilizes the data structure of
stacks to determine the exit of method invocation events, with
the linear complexity to the length of the trace.

B. Monitoring Subcomponents

The specification of a subcomponent can be any FSM with
a subset of all public methods of the subcomponent as the
input alphabet. Given the specification of a subcomponent,
we should monitor its method invocations within a trace to
determine its states between method calls in the trace. We
create a monitor for each subcomponent in the trace with
input specifications. The monitor simulates the trace on the
specification FSM, starting from the initial state of the FSM,
advancing the FSM by one step when a method invocation
of this subcomponent is encountered in the trace. We call
the current state in the FSM that is reached as the state
of the monitor, and consider it as the abstract state of the
subcomponent at the current position in the trace. For example,

6We omit signatures of methods for space limit. All writes of the
BufferedOutputStream and all writes of the FileOutputStream
are the same method, respectively.



if we monitor the FileOutputStream object 647 in the
trace in Figure 4 against the specification in Figure 1 (b), we
will get the sequence of state transitions of the object 647 as
follows: start (meq) open (mes) open (mer) open (meg) open
(meyg) closed.

As FSM specifications are commonly nondeterministic,
more than one states may be simultaneously reached during
the monitoring. If the set of all states that have been reached
are used as the abstract state of the subcomponent object to
label states of the composite object, we need some criterion
to identify equivalent states of the composite object. One
naive criterion is that if two sets have at least one same
state, these two sets can be merged and the resultant abstract
state is the union of these two sets. Because it is difficult
to choose among various such criteria, we adopt a different
solution that is more straightforward. We require that the input
specification FSMs of subcomponents are deterministic since
deterministic and nondeterministic FSMs are equivalent. If
the input specification FSMs are nondeterministic, we first
transform them to equivalent deterministic FSMs. In this way,
there is a single state that is reached at any time during
the monitoring. This single state is used to label states of
the composite object. Two states of a subcomponent object
are equivalent if and only if they are the same state in the
deterministic specification FSM of the subcomponent object.

Although we expect that input specifications of subcompo-
nents are reliable, the requirement of full complete and precise
specifications is not practical and will limit the applicability
of our approach. In addition, the trace can include erroneous
behavior because there may be some events in the trace that
violate some subcomponent’s specifications but do not cause
the program execution to fail. These cases can manifest them-
selves as violations of input specifications during monitoring.
When the monitor encounters a specification violation, we set
the current state of the monitored subcomponent object as
Z#null from now on and stop its monitoring while the mining
proceeds. In addition, the monitored subcomponent object,
the violated specification and the violating trace are logged.
Such logs can be used to detect potential bugs in the training
program and/or enhance input specifications.

C. Mining Specifications of Composite Components

Mined specifications of our approach are FSM models,
each specifying the correct sequences of API invocations of
objects of a concrete class. A state of the model represents
abstract object states, and a transition represents a method
invocation. A state s is a vector (vq, ..., v,), where each v; is
the abstract state of one of the fields of the class. Two states are
equivalent if and only if the corresponding abstract states of
fields in their state vectors are equivalent, respectively. We use
the same state abstraction function abs as that of state-of-the-
art state-based specification miners [14][27][28] to compute
abstract states of fields. However, instead of the single #null
state, the abstract state of a subcomponent object is the state
of its monitor that is currently reached. If a field has the value
null or there are not specifications for the subcomponent, the
null-abstraction is used.

Methods of a subcomponent object may be called by a
caller that is not its composite object. In such cases, two

consecutive method calls of the composite object in the
trace may exit (the first method call) and enter (the second
method call) in different states of the subcomponent object.
This causes problems for labeling states of the composite
object. For example, we assume that another object has a
reference to the FileOutputStream object 647 in the
trace in Figure 4 and it calls the close of the object 647
between the <init> (mes) and the write (meg) calls of the
BufferedOutputStream object 657. In such case, there
will be an additional event me’ appears between fes and mes
in the trace in Figure 4. mey exits with the state of the field
out as open. However, me’ transits the state of the out from
open to closed, and thus meg enters with the state of the out
as closed.

A naive solution is as follows. We define the label of an
abstract state of a subcomponent object as a pair (1, l2), where
ly is the current abstract state of the subcomponent object
after a method call of the composite object, and Il is the
current abstract state of the subcomponent object before the
next method call of the composite object in the trace. Two
such labels are equivalent if and only if the first states and the
second states are equivalent, respectively. If the specification of
a subcomponent has #n different states, there can be n? different
labels. On one hand, under such a labelling scheme, the miner
can produce complex specifications with too many states. On
the other hand, we observe that accesses to a subcomponent
object from other objects than the composite object are out of
control of the composite object, and thus they can vary greatly
in different contexts. We adopt a different solution here. When
the miner encounters a method call of a subcomponent object
from a caller that is not its composite object, the state of this
subcomponent object is abstracted to #null and the monitoring
of this subcomponent object terminates. This labelling can
provide a balance between the complexity and expressiveness
of mined specifications.

In a field assignment event (cn, f, cs,t) with f of reference
type, the subcomponent object cn may be in any of its states.
To determine states of cn before and after method calls of the
composite object c¢s, we must begin to monitor cn when it
is created. A naive approach is to monitor all objects that are
bound to get assigned to a field of composite objects. To decide
the future field assignment of subcomponent objects when they
are created, we must traverse the trace once before the mining
begins and tag these subcomponent objects. Because traces
are usually very long and contain numerous events, traversing
traces is very time-consuming.

Our first solution to this problem is to monitor all subcom-
ponent objects that have input specifications when they are
created. However, because only some of them will be assigned
to fields of composite objects in common cases, this approach
will cause unnecessary monitoring overhead. Our second fast
solution is as follows. We tag every object as newly created on
its creation. If a method invocation event of a newly created
object is encountered, the tag of this object is removed. During
mining, when we encounter a field assignment event whose
subcomponent object is not null and has input specifications,
we create a monitor for the subcomponent object if it does not
have a monitor but has the tag, or abstract it to #null and do not
monitor it if it does not have a monitor and does not have a tag.
This fast solution may omit monitoring some subcomponent



objects but can avoid much unnecessary monitoring overhead.
These two approaches do not need a pre-traversal of traces.

The algorithm CompositeMiner shows the pseudo code
to mine specifications of composite components by leveraging
specifications of subcomponents. The input includes target
types of objects of which we intend to mine specifications, a
trace, and a set of specification FSMs of subcomponents. The
input of target types are optional. If they are not specified,
the miner infers specifications of all objects in the trace. The
output includes a set of FSMs, each for a target type of
composite objects, and possibly some logs of violations of
input specifications. In this algorithm, we use the notation
f-t to denote the type of the field f, abs to denote the state
abstraction function. For brevity, we write abs(o) to denote
the abstract state of the object o gained by applying the state
abstraction function abs on the concrete value of each of the
fields of o. The function ¢ : {objects} — {types} is to map an
object to its type. The initialization of variables is omitted
from the algorithm for space limit. The algorithm actually
initializes an empty FSM for each composite object when it is
first encountered and an empty stack for each thread when it is
first encountered. The first and last method invocation events
of a composite object in the input trace define the initial and
final states of the FSM model of the composite object. We
omit these details from the algorithm for brevity. The stack
stores pairs (e, fran), where e represents a method invocation
event and fran represents a transition in the FSM model for
this event.

The main loop of the algorithm traverses the trace T and
processes events one by one in their order. The fast approach to
determine subcomponent objects to be monitored is employed
in this algorithm. The algorithm can be adapted slightly to
incorporate the approach that all subcomponent objects are
monitored. For a field assignment event (lines from 13 to
21), if the subcomponent object has input specifications, we
conditionally create a monitor for it and update abstract states
of its composite object with the current state of the monitor.
Otherwise, the null-abstraction is used for the subcomponent
object. For a method invocation event, if the receiver o is a
target composite object (lines from 2 to 4), we add a transition
to SC, with its source state as the current abstract state of o
and its destination state as null. Then, we call the procedure
Stack to possibly pop previous events from and then push this
event into the stack of the thread th. The destination state of
this transition is determined by the procedure Stack when this
method call exits. If the receiver o is a subcomponent object
with input specifications (lines from 5 to 12), we first call the
procedure Stack to maintain the stack of the thread th. If there
is a monitor for o, we advance the monitor by the method m.
If we cannot perform the advancement, a violation of input
specifications is encountered. Then we set the current state of
o to be #null, destroy this monitor and log this violation for
later inspection. After all events in the trace are processed, we
call the procedure Stack to pop all remaining events in each
of the stacks of the threads and set the destination states of the
corresponding transitions (line 22). At last, we unionize FSMs
of all objects of the same type to get a single FSM model for
the type (lines 23 and 24). The union of two FSMs consists
of the union of the states and the union of the transitions of
these two FSMs into one FSM.

Algorithm: CompositeMiner

Input:

TYPES = {t,, ..

T: Trace

S§={S, | tis the type of a subcomponent}: deterministic FSMs
for subcomponents

Output:

SC = {SC,| tE TYPES}: specifications for composite objects

L: logs of violations of specifications in S

foreach ¢ € T'in the order in 7 do

., .} types of composite objects, optional

1
2 fe=<m, o, me', th> /\ t(o) € TYPES then
3 add a transition tran for m from abs(o) to null to SC,
4: —Stack(e, tran)
5: if e=<m, o, me', th> /\ Sy, € S then
6: Stack(e, null)
7: if the monitor mo exists for o then
8: advance mo by m
9: if a violation v encountered then
10: abs(0) «— Fnull
11: L destroy mo
12: LLLL—LU {v}
13: if e =<cn, f, cs, th> then
14: fS; € Sthen
15: if cn has a monitor mo then
16: L update state of cs with current state of mo
17: else if cn is newly created then
18: create a monitor mo for cn
19: update state of ¢s with current state of mo
20: —else update state of cs with abs(cn)
21: —"else update state of cs with abs(cn)

22:  Stack(null, null)

23: foreach tE TYPES do

24: L_SC, = union of all SC, with to)=t

25: return SC
Procedure Stack(event: me = <m, o, me', th>, Transition: tran)
with me'=<m’, o', me", th™>

26: if s, is not empty then

27: let (me, = <m,, o,, me,', th>>, tran,) be top element of s,
28: let me,'=<m,’, o', me,", th,">, tran,)

29: if me'= me, then

30: L sw.push(me, tran)

31: else

32: while m," %= m'do

33: Su-pop()

34: if tran; 7 null then

35: L set destination state of tran, as abs(o;)

36: if s, is not empty then

37: | let (me, = <m,, o,, me,', th>, tran,) be top element of s,
38: L else break

39: if m,/=m'and s, is not empty then

40: Sm-pop()

41: if tran; 7 null then

42: L_L set destination state of tran, as abs(o,)

43: L L sy.push(me, tran)

44: else s,,.push(me, tran)

45: if me = null then

46: foreach s,, do

47: while s, is not empty do

48: Sth~pop()

49: if tran; 7 null then

50: L set destination state of tran, as abs(o,)

51: if s, is not empty then

52: L L L L let(me =<m, o0, me/, th>, tran,) be top element of s,

The procedure Stack simulates runtime stacks of the
training program and determines when method invocations in
the trace exit. For a thread th, we write s;;, to denote the
stack of th. If the stack for the thread of the input event is
empty (line 44) or the event at its top is the calling event of
the input event (lines 29 and 30), we simply put the input
event into the stack. Otherwise, we pop the top event and set



the destination state of the transition. This repeats until we
reach the remaining top event of the stack that is called by the
calling event of the input event (lines from 32 to 38). We pop
this top event (lines from 39 to 42) and push the input event
(line 43). When the end of the trace is reached, we pop all
remaining events in each of the stacks of the threads and set
the destination states of the transitions (lines from 45 to 52).
To illustrate the Stack procedure, consider the trace fragment
in Figure 4. The order of method invocation events coming
into and out of the stack of the main thread is as follows: me;
pushed, me; popped, meo pushed, mes popped, mes pushed,
mes popped, mey pushed, mes pushed, mes popped, mey
popped, meg pushed, me; pushed, me; popped, meg pushed,
meg popped, meg pushed, meg popped, meg popped.

The algorithm traverses the input trace 7 only once. Every
method invocation event is pushed into and popped out of a
stack only once, respectively. Each field assignment event is
processed directly. So, if 7 has m method invocation events
and n field assignment events, the algorithm has the time
complexity of O(2m + n). In contrast, the commonly used
kTail algorithm [10] and typical PFSA learners [12] have the
running time quadratic and cubic to the length of the input
trace, respectively

III. IMPLEMENTATION

In this section, we present the implementation of the trace
collector and the implementation of the specification miner
with the collected traces as input.

A. Trace Collection

To obtain the trace to mine specifications, we used the
C programming language to write a tracing agent based on
Java Virtual Machine Tool Interface (JVMTI)’. JVMTI is
convenient to trace programs in many aspects. E.g., it makes it
easy to access the call stack and to attach a unique tag to every
object. The key benefit of the tracing agent is that for both
single-threaded and multiple-threaded applications, events are
issued and recorded when they actually occur during runtime,
that is, the order of events is preserved globally. The tracing
agent is attached to the Java Virtual Machine and writes the
flow of events to a plain text file. The tracing agent records
three types of events: method entry, method exit and field
modification. Table 1 presents the event types and recorded
information. A method entry event is issued when a method
enters. A method exit event is issued when a method exits. A
field modification event is issued when some value is assigned
to a field of an object.

We can configure what events are to be traced by providing
a package name through the option to indicate that the tracing
agent will record events from all classes in this package.
Because we aim to mine API specifications of objects, only
method entry and method exit events of public constructors and
public, instance methods are traced. Our tracing agent is based
on JVMTI that allows a much less complex and thus less error-
prone implementation. The downside of this approach is that
the tracing agent incurs significant runtime overhead. However,
our specification miner is modular and is not bound to this

7http://download.oracle.com/javase/6/docs/technotes/

TABLE L TYPES OF EVENTS AND INFORMATION TRACED BY THE
TRACING AGENT.
Event Type Traced Information

Method Entry The thread name; the stack depth of this invocation; the
name and signature of the called method; the type and
identifier of the receiver.

The thread name; the stack depth of this invocation; the
name and signature of the called method.

The class of the outer object; the identifier of the composite
object; the declaring class of the field, the name and type of
the field; the new value.

Method Exit

Field Modification

tracing agent. Any traces that adhere to the trace definition in
section II.A can be fed into our specification miner.

B. Specification Mining

The traces collected by the agent do not strictly adhere to
the trace definition in section II.A. The method entry event
does not contain its calling event. However, the tracing agent
records extra method exit events that explicitly tell when the
called method of a method entry event exits. For a method
entry event, its corresponding method exit event is the first
method exit event after it in the trace such that the threads and
thread depths of these two events are equivalent, respectively.
For a method entry event e, a method entry event ¢’ is (directly)
called by it if (1) €’ is between e and e’s corresponding method
exit event in the trace, (2) ¢’ has the same thread as that of e,
and (3) the stack depth of ¢’ is larger by one than that of e.

For a method entry event of the constructor of a com-
posite object, we create an ObjectState object to repre-
sent the abstract state of the created composite object. The
ObjectState has a corresponding field for each of the fields
of the composite object. When a field modification event that
modifies the field of this object is encountered, we update
the corresponding field of the ObjectState object with
the abstract value of the new value. The ObjectState is
also updated when the monitors of its subcomponent objects
advance to new states. The field modification event also
captures the initialization of a field at its declaration. In this
way, an ObjectState object maintains the abstract state of
the corresponding composite object. ObjectState objects
are used to determine the source and destination states of a
transition of mined FSM models during the mining process.

IV. EMPIRICAL VALIDATION

We conducted a series of experiments to evaluate the
effectiveness of our approach to mine better specifications of
composite objects and its overhead.

A. Experimental Setup

We applied our approach to mine specifications for classes
from three packages and their sub-packages of the Oracle
Java JDK 6 system library: java.lang, java.util, and
java.io, totally 17 packages. Classes in these packages
obey important API specifications and they are widely used
as experimental targets in the literature [11][12][13]. Training
programs used here are the 11 benchmark programs from the
DaCapo benchmark suite 2006-10-MR2 [26], which ensures
a controlled and reproducible execution of all benchmarks.
Considering that numerous events were produced, the execu-
tion time of each program was limited to at most two hours.



TABLE II.

INPUT SPECIFICATIONS AND THEIR SUBCOMPONENTS.

Name Description Regular Expression * Subcomponents

Collectionltr Collection should not be | createlterator(c,i) next(i)* updateCollection(c)T next (i) 79
changed while being iterated

Mapltr Map should not be changed | createCollection(m,c) (updateMap(m) | updateCollection(c))™ 24
while being iterated over its | createTterator(c,) next(4)* (updateMap(m) | updateCollection(e))™
keys or values next (1)

Close Stream should not be used af- | close(s) (read(s) | write(s)) 56
ter it is closed

4 Here matches mean violations. For an event m(p1,p2), p1 represents the receiver of the method m, and po if any represents its return. An
event here may represent a few different methods with the similar functionality of the class. For example, updateCollection(c) can be

add, remove, clear, et al.

All experiments were carried out on a machine of Win7 and
6G RAM, 3.0 GHz Intel Core i5-2320 CPU with the 64-Bit
Server VM of the Oracle Java SE 1.6.0_27. We collected
the data by repeating each run 10 times and the geometric
mean were computed as the final result. In the specification
mining experiments, we monitored all subcomponent objects
with input specifications.

Bodden [22] used eight well-known finite-state properties
of Java system classes in his typestate analysis experiments
to determine whether benchmark programs from the DaCapo
suite [26] violated these properties. To validate our approach,
we used six well-known finite-state properties of Java system
classes as input specifications that cover the eight properties
used by Bodden [22]%. After analyzing the traces, we found
that only three of them have experienced our approach, that
is, there were some objects that obey these properties and
were assigned to fields of some composite objects. These three
properties and the number of classes in the target packages that
obey them are presented in Table II. They are also expressed
as regular expressions in Table II for clarity. These properties
are clearly stated in the Java API documentation. They are
well known in the literature and are often used as subjects for
the analysis and verification of finite-state properties [22][30].
In addition, these three properties are also targets of various
specification miners. For example, the properties Collectionltr
and Mapltr can be (partially) recovered by [12][11], and the
property Close can be (partially) recovered by [7][31]. We
manually created the FSM models® for these properties, which
did not take much time. The FSM for the Close property is
similar to the model in Figure 1 (b). There are more than 150
subcomponents considered, which means our approach can be
intensively experienced.

B. Overview of Results

Table III presents the number of events of the trace, the
number of mined FSMs, the time cost to mine each trace, and
the time increase compared with the null-abstraction approach
for each benchmark program. The fotal/average cell of the time
increase column is the average of the time increases of the 11
benchmark programs. Because different benchmarks may use
objects of the same class, we mined several models for a class,
each from a benchmark program. In such cases, we unionized
these models into one FSM as the final specification for the

80ur Close property covers his Reader and Writer properties (all
Readers and Writers obey the Close property) and our Collectionltr prop-
erty covers his FailSafeEnum and FailSafelter properties (all Collections
and Vectors obey the Collectionltr property).

9Unlike the regular expressions in Table II that are for the readers to
understand these properties, these models encode the valid API usage.

class. In total, 154 FSMs were mined. A FSM has 3.4 states
and 7.4 transitions in average. Our approach is very fast. The
analysis time is roughly linear to the length of the input trace.
Mining one trace of tens of millions of events typically took
around 3 minutes and none of the input traces exceeded 10
minutes. We also implemented the null-abstraction approach
for comparison. Compared with the null-abstraction approach,
the extra execution time is around 10% with the average as
6.79%. This overhead is acceptable considering the improved
precision obtained by our approach.

In the input traces, there are twenty five composite classes
whose objects have some field values as the subcomponent
objects with input specifications. These twenty five composite
classes come from three packages and can be divided into
two domains: /O (java.io and java.util.zip) and
Collection (java.util). To validate mined specifications,
we employed two skilled Java programmers to manually in-
spect the resulting FSM models of these twenty five composite
classes mined by the null-abstraction approach and by our
approach. The mined models of these twenty five classes can
be freely accessed'’. Each programmer inspected all these
models independently and at last compared the inspection
results. If there were some conflicts, they performed further
inspection to get the coincidence. The main reference of the
inspection was the Java documentation and the source code of
the target classes. This task took about three days.

The quality of models for these twenty five classes
mined by our approach is satisfactory. For example, eigh-
teen out of the twenty five classes are streams. Except for
the OutputStreamWriter, the PrintStream and the
InputStreamReader, the Close property is successfully
recovered for each of them. The completeness of the mined
properties depends on the methods called by the benchmark
programs. For some of these classes, the mined property is not
complete because some methods that consist of this property
are not invoked.

C. Enhancing Models: Qualitative Evaluation

Models for fifteen out of the twenty five classes pro-
duced by the null-abstraction approach have no overgener-
alization!!. All of these fifteen classes have some direct or
indirect state-indicating fields such as the our field of the
BufferedWriter that is initialized by its constructor and
is set to be null by its close method. Models for the left
ten classes produced by the null-abstraction approach are
overgeneralized. Models for three out of these ten classes

10nttps://sourceforge.net/projects/tsminer/.
1T All of them exhibit some incompleteness.



TABLE IIL.

OVERVIEW OF BENCHMARK PROGRAMS AND EXPERIMENTAL RESULTS

Benchmark Program Events FSM Models Execution Time (minutes) Time Increase
antlr 47,598,159 80 2.19 5.29%
bloat 60,267,427 82 5.68 18.70%
chart 59,093,129 145 4.56 4.35%
eclipse 57,351,123 91 4.28 6.29%
fop 38,251,808 89 1.63 4.78%
hsqldb 67,276,475 82 2.62 1.55%
jython 56,232,181 77 8.81 4.45%
luindex 50,191,882 83 4.85 3.19%
lusearch 38,366,642 79 2.03 6.28%
pmd 56,156,929 92 7.98 5.11%
xalan 41,277,812 82 1.82 6.27%
total/average 572,063,567 154 46.45 6.79%

<init> \ update
@ 0’ iterator
A . next

(a)

next

update

<init>

Fig. 5.  Model for the HashSet: the initial one (a) mined by the null-
abstraction approach and the enhanced one (b) mined by our approach.

produced by our approach are the same as that of the null-
abstraction approach. Our approach failed to remove the over-
generalization of models of these three classes. The reason
for this is not the limitation of our approach. As for the
OutputStreamWriter and the PrintStream, we did
not observe their close invocations during the runs of the
benchmark programs. As for the Input StreamReader, no
specification was provided for its field sd because the type of
this field is sun.nio.cs.StreamDecoder that is beyond
the target packages. Models for the left seven of the ten classes
are enhanced by our approach. These seven classes are listed
in Table IV.

The first six out of the seven classes presented in Table IV
are streams and they obey the Close property. For the initial
model of each of these classes produced by the null-abstraction
approach, if there is a close transition that does not end
in the closed state, our approach exactly adds one additional
closed state as the destination for this close transition. The
added closed state has no non-close incoming or outgoing
transitions, which exactly reflects the Close property. One
such enhanced model is for the Buf feredOutputStream
presented in Figure 2 (b), compared with the initial model in
Figure 2 (a). The model of the HashSet was enhanced by
our approach through a HashMap subcomponent that obeys
the Mapltr property. To recover the Collectionltr property of
the HashSet, we added the next method of the Tterator
returned by its iterator method to its alphabet of meth-
ods'?. The model mined for the HashSet is presented in
Figure 5. The update method denotes methods that modify
contents of the HashSet, such as add, remove and clear.
The null-abstraction approach produced the useless model
in Figure 5 (a) that violates the Collectionltr property. Our
approach successfully recovered the Collectionltr property
of the HashSet by exploring the Maplir property of its
subcomponent.

120ur approach currently focuses on single object specifications. To recover
specifications of multiple objects, the expansion of the alphabet to include
methods of multiple objects is requisite.

D. Enhancing Models: Quantitative Evaluation

Although we can easily see that the quality of mined
specifications is enhanced by our approach compared with
those mined by the null-abstraction approach, we try to
quantitatively evaluate the enhancement. In the literature, the
measurement of precision (the percentage of mined behavior
that is correct) and recall (the percentage of correct behavior
that has been mined) are often used [10][18][19]. After the
manual inspection, we observed that no recall is lost for all
of the enhanced models compared with their corresponding
initial ones for the case of our benchmark programs. This
resulted from the fact that our approach just added necessary
states to models of composite objects to make them obey
specifications of their subcomponents. Theoretically speaking,
it is possible for our approach to add redundant states to models
of composite objects and thus lead to recall loss. However, we
did not observe this in our experiments.

Considering the fact that our approach did not lose recall
for these models, we adopted a convenient way to evaluate the
precision enhancement. We define the precision enhancement
as the percentage of the behavior of the initial model that
are rejected by the enhanced model. This rejected behavior is
erroneous behavior that is incorporated in the initial model
but removed from the enhanced model by our approach.
To perform this evaluation, we applied the trace generation
algorithm TraceGen [19] to randomly generate normal traces
from the initial model and then simulated these traces on the
corresponding enhanced model. A normal trace is a sequence
of transition labels (methods) that form a path starting from
the initial state to a final state of the FSM model. It represents
normal behavior of the object that is accepted by its model. To
generate a normal trace, we start from the initial state of the
model and randomly choose an outgoing transition to reach
the next state. This repeats until we reach a final state. The
precision enhancement is the ratio of the number of traces
that are rejected by the enhanced model to the number of all
generated traces from the initial model.

For example, for the initial model presented in Figure 2 (a)
of the Buf feredOutputStream, we can generate a set of
two normal traces that cover all of its transitions at least once:

T): <init>, write, write, close.

Ty: <init>, write, close, write, close.

We can see that T; represents normal behavior while 75
represents erroneous behavior. Then we simulate these two
trace on the enhanced model presented in Figure 2 (b). T} is
accepted, while T5 is rejected. So, for this set of normal traces,
the precision enhancement is 1/2 = 50%.



TABLE IV. PRECISION ENHANCEMENTS OF MINED SPECIFICATIONS
BY OUR APPROACH.
Subject Class Enhancement
BufferedOutputStream 18.21%
BufferedReader 6.13%
DataInputStream 4.85%
DataOutputStream 45.23%
FileReader 26.05%
FileWriter 47.83%
HashSet 27.02%

We configured the TraceGen algorithm to generate sets of
normal traces such that each transition in the initial model had
to be covered at least 3 times. We computed the precision
enhancement by repeating each experiment 10 times with 10
different sets of normal traces, and the average of the results is
presented in Table IV. The results show that our approach can
significantly remove overgeneralized behavior from the initial
model and thus effectively improve the precision of the mined
models. The enhancements for the DataOutput St ream and
the FileWriter are significantly high because their initial
models have very few (only 2) states. The more overly general
(fewer states) the initial models are, the more effective our
approach can be. In total, for the 7 enhanced FSM models, our
approach gains an average precision enhancement of 25.05%.

V. RELATED WORK

Object-oriented typestate systems are proposed [24][25].
Typestates are intended for specifying correct sequences of
method invocations. Because typestates reflect how state
changes of objects can affect valid method invocations, a
typestate is an abstraction of a set of concrete object states
and can be characterized by values of all fields of an object.
Typestates are mapped onto fields of the class by defining
a predicate on field values for each typestate, called a s-
tate invariant. State-based specification mining techniques are
based on these ideas. They try to automatically recover state
invariants. Different approaches for state-based mining utilize
different state abstraction functions. For example, PACHIKA
[14] mines specifications for Java classes by abstracting field
values of objects; ReAjax [27] mines a state machine for an
Ajax web application by abstracting states of its Document
Object Model elements. These state abstraction functions do
not consider the possible available specifications of subcompo-
nents and typically use the null-abstraction for subcomponents.

Dallmeier et al. [8][13] propose to mine specifications
of Java classes by abstracting values of object fields (or
returns of observer methods [8]). Because of the coarse null-
abstraction, they can produce overly general models such as
those presented in Figure 2 (a) and Figure 5 (a). Our approach
explores benefits of available specifications of subcomponents
and can mine more precise models such as those shown in
Figure 2 (b) and Figure 5 (b). Dallmeier et al. [13] propose
to automatically generate test cases to enrich mined specifi-
cations. Their approach is effective to increase the number of
transitions but has a limited power of discovering new states
due to the state abstraction function used. For example, the
generated test cases may cover the transition of the close
from the state 2 to the state 3 in Figure 2 (b), but the mined
model is still the one presented in Figure 2 (a). This is
because the states / and 3 are indistinguishable under the null-
abstraction. Our approach complements theirs.

Dallmeier et al. [14] also propose to mine deep models that
also consider states of transitively reachable objects rather than
just a #null state for reference fields. The depth parameter
is introduced to define the number of considered indirections
when including states of deeper reference fields. Models
produced under the null-abstraction have the depth of 0 and
models with the depth of 1 also consider fields of reference
fields of the target object. Reference fields beyond the depth
are still subject to the null-abstraction. To discover all useful
states of the composite object, this approach depends on the
existence of state-indicating fields of the object or those of its
descendant fields, which cannot be guaranteed in general. In
addition, considering unrelated fields can lead to unnecessary
states that complicate mined specifications. In general, we do
not know what is the best state abstraction function for specific
classes without further knowledge. We believe that there is
no best and general state abstraction function even for the
primitive numeric types. Moreover, to keep the approach to
be scalable, the depth must be small (Dallmeier et al. [14]
mine models with the depth of 1), and choosing an appropriate
depth for the general specification mining technique is difficult.
In contrast, our approach directly leverages the abstraction
encoded within available specifications of subcomponents to
mine more precise specifications of composite objects.

The Daikon tool [15] can infer program invariants that
are boolean expressions on variables and constants at specif-
ic program points. Typical program invariants include class
invariants, preconditions and postconditions of methods. Al-
though states of subcomponents of composite objects can be
considered and abstracted through derived variables, invariants
are mined from invariant templates, which does not consider
existing specifications of subcomponents.

Whaley et al. [6] propose to extract a separate submodel for
each class field which consists of only these methods that refer
to this field. Their dynamic model extractor records a set of
pairs of method calls and do not inspect objects’ states. Their
static model extractor finds pairs of methods such that calling
the second after the first will certainly raise an exception.
Inspired by this, Alur et al. present the JIST tool [23] that
produces interface specifications for Java classes. The interface
specification consists of sequences of method calls that will
not reach exceptional states (in which exceptional predicates
hold). JIST utilizes sophisticated techniques such as predicate
abstraction and symbolic model checking to statically reason
about exceptional states of the target class. In contrast, our
approach works on concrete program executions and tries to
generalize concrete state of objects to infer meaningful API
specifications. In addition, JIST does not explore benefits from
available specifications of subcomponents.

Ghezzi et al. [17] present the SPY approach to mine
specifications of Java data container classes. Concrete return
values of inspector methods are used to label states of the target
object. Specifications mined by SPY cannot be represented
by a finite number of FSMs, so they build a set of graph
transformation rules to generate specifications intensionally.
SPY can mine very precise but at the same time very complex
API specifications. Our approach inspects objects’ internal
states and utilize abstract states of subcomponents encoded
within their specifications to mine models of moderate size
with balanced precision and recall. Furthermore, our approach



can control the complexity of mined models through input
specifications. Simple input specifications tend to produce less
complex models of composite objects.

Lo et al. [10] present a steering mechanism to improve
the precision of specifications mined by the k7ail algorithm.
They first infer simple temporal properties of two events. Then,
they use inferred simple temporal properties to guide the k7ail
algorithm such that two equivalent states are merged only if
the merging does not violate any temporal properties. This
approach does not consider explicit states of programs. The
inferred simple properties may capture some constraints of
subcomponents, but more benefits of available specifications
of subcomponents are not explored.

Wu et al. [31] propose to mine resource releasing specifi-
cations in the form of (resource-acquiring, resource-releasing)
API method pairs from source code and API documentation.
Techniques are proposed to mine multiple object specifications
[11][12] that can include method invocations from more than
one objects. Our approach currently focuses on specifications
of single objects. However, this is not the inherent limitation.
Our approach can be easily extended to mine specifications of
multiple objects.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an approach to mine precise specifica-
tions of composite components by leveraging available spec-
ifications of subcomponents. We implemented our approach
based on the state-based specification mining techniques. Ex-
periments show that our approach can make important states
of composite objects distinguishable and that specifications of
subcomponents can be used to effectively improve the pre-
cision of mined specifications of composite components. The
quality of input specifications of subcomponents may influence
mined specifications of composite components. In future work,
we plan to evaluate our approach with imperfect input specifi-
cations, such as these produced by other specification miners.
In addition, we plan to conduct further empirical studies with
subjects from other libraries and explore the possibility of
leveraging input specifications of other forms, such as the
invariants over variables, to improve mined specifications.
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