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Abstract. Statement-wise abstract interpretation that calculates the
abstract semantics of a program statement by statement, is scalable but
may cause precision loss due to limited local information attached to each
statement. While Satisfiability Modulo Theories (SMT) can be used to
characterize precisely the semantics of a loop-free program fragment, it
is challenging to analyze loops efficiently using plainly SMT formula. In
this paper, we propose a block-wise abstract interpretation framework
to analyze a program block by block via combining abstract domains
with SMT. We first partition a program into blocks, encode the transfer
semantics of a block through SMT formula, and at the exit of a block
we abstract the SMT formula that encodes the post-state of a block
w.r.t. a given pre-state into an abstract element in a chosen abstract
domain. We leverage the widening operator of abstract domains to deal
with loops. Then, we design a disjunctive lifting functor on top of ab-
stract domains to represent and transmit useful disjunctive information
between blocks. Furthermore, we consider sparsity inside a large block
to improve efficiency of the analysis. We develop a prototype based on
block-wise abstract interpretation. We have conducted experiments on
the benchmarks from SV-COMP 2015. Experimental results show that
block-wise analysis can check about 1x more properties than statement-
wise analysis does.

Keywords: Abstract interpretation, SMT, Abstract domains, Block en-
coding, Sparsity

1 Introduction

Static analysis based on abstract interpretation (AI) often considers each state-
ment as an individual transfer function, and computes fix-point based on “it-
eration+widening” strategy [12]. However, the statement-by-statement analysis
may cause precision loss due to the limited local information in each statement.
It is often the case that the composition of the optimal transformers of individ-
ual statements in a sequence does not result in the optimal transformer for the
whole sequence [26].

On the other hand, most numerical abstract domains have limitations in ex-
pressing disjunctive information, and thus may cause precision loss when dealing
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with control-flow joins. Satisfiability Modulo Theories (SMT) is expressive for
describing constraints, and could represent disjunctions and quantifiers that are
common in program semantics. Recently, much attention has been paid on de-
scribing semantics of a program through SMT [2][5][24][27][34]. Nevertheless,
loops in programs are challenging to cope with in analysis based on purely SMT
formulas.

To exploit both advantages of abstract domains and SMT, we propose a
framework of block-wise abstract interpretation (BWAI) that extends statement-
by-statement analysis to block-by-block analysis by combining SMT and abstract
domains. The main idea is following: we first partition a program into several
blocks, and then encode a “SMT-expressible” block (e.g., a block without loops)
into a SMT formula; we translate the abstract domain representation of the
pre-state to a SMT formula at the entry of the block and translate the post-
state in SMT formula back to abstract domain representation; in the whole, we
compute the fixpoint based on “iteration+widening” strategy block by block and
use widening operators at widening points. The strategy of block partitioning is
the basis of the BWAI, and two extreme partitioning strategies are to minimize
the size of a block and to maximize the size of a block. One extreme strategy to
minimize the size of a block considers each statement as a block, in which case
the BWAI is degenerated to statement-wise abstract interpretation (SWAI).

Under the BWAI framework, at the exit of a block, we will abstract soundly a
SMT formula to the usually less precise abstract element in an abstract domain.
Such abstraction may cause precision loss and lead to false positives. Hence, we
design a lifting functor on top of base abstract domains to represent and transmit
between blocks the useful information that is out of the expressiveness of the
base abstract domain but may be helpful for precision of successive analysis.
Furthermore, the SMT formula for a block of large size may be so complicated
that abstracting it into an abstract element in an abstract domain may be too
costly or even run out of memory. To alleviate this problem, we leverage the
sparsity inside a large block to improve the efficiency and scalability of BWAI.
Finally, we develop a prototype based on BWAI, and have conducted experiments
on benchmarks from SV-COMP 2015 [1]. The experimental results show that
our BWAI analysis can prove around 66% of the properties in the benchmarks
while analysis based on SWAI can prove only around 34% of the properties.

The rest of this paper is organized as follows. Section 2 presents a motivating
example of block-wise abstract interpretation (BWAI). In Section 3, we present
the BWAI framework. Section 4 presents the lifting functor on top of abstract
domains to fit for BWAI. In Section 5, we leverage the block-wise sparsity in a
large block to improve the efficiency of analysis. Section 6 describes our imple-
mentation together with preliminary experimental results. Section 7 discusses
related work. Finally, conclusions as well as future work are given in Section 8.

2 A motivating example

In this section, we give a motivating example shown in Fig. 1(a), which is ex-
tracted from pc sfifo.c in the directory “systemc” of SV-COMP 2015. Program
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pc sfifo.c simulates reading and writing operations on buffers in operating sys-
tem. Fig. 1(a) shows a fragment of pc sfifo.c. For this example, using SWAI with
the octagon abstract domain, we fail to prove the unreachability of the error at
line 24. In the following, we illustrate how our BWAI approach works for this
example.

int q free, p dw st, c dr st;
int c num read, p num write;
...
1 if(brandom()){
2 p dw st = 0;
3 c dr st = 0;
4 q free = 1;
5 p num write = 0;
6 c num read = 0;
7 }else{
8 p dw st = 2;
9 c dr st = 0;
10 q free = 0;
11 p num write = 1;
12 c num read = 0;
13 }
14 while(brandom()){
15 if(p dw st == 0){
16 p dw st = 1;
17 do write p();
18 }
19 if(c dr st == 0){
20 c dr st = 1;
21 do read c();
22 }
23 }
24 if(p num write < c num read){/∗ error()∗/}
25 ...

void do write p(void){
if(q free == 1){
q free = 0;
c dr st = 0;
p num write+ = 1;
}
p dw st = 2;
}

void do read c(void){
if(q free == 0){
q free = 1;
p dw st = 0;
c num read+ = 1;
}
c dr st = 2;
}
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Fig. 1. A motivating example extracted from SV-COMP 2015

To perform BWAI, we first partition the program and get the block-wise
control flow graph (CFG) as shown in Fig. 1(b), where β1 contains the code
fragment from location `1 to `14 in Fig. 1(a) (where `i represents the program
point at the beginning of the i -th line throughout this paper), β2 contains the
code fragment from location `14 to `23 in Fig. 1(a) (i.e., the loop body), β3
contains the code fragment outside the loop including locations `14, `24 and `25
in Fig. 1(a) when brandom()==false. Note that the code in line 14 (i.e., the head
of the while loop) turns to an assume statement in blocks β2 and β3. Hence,
program points `′1, `′2, `′3 and `′4 in Fig. 1(b) are respectively corresponding to
locations `1, `14, `23 and `25 in Fig. 1(a). And the location `′2 is the widening
point in Fig. 1(b).



4 Jiahong Jiang, Liqian Chen, Xueguang Wu, Ji Wang

When analyzing the block-wise CFG, we characterize the transfer semantics
of a block using a SMT formula. E.g., the transfer semantic of block β1 can be
encoded into SMT formula “ϕtrans1 ,ite(brandom1 == true, (p dw st = 0) ∧
(c dr st = 0)∧ (q free = 1)∧ (p num read = 0)∧ (c num read = 0), (p dw st =
2)∧(c dr st = 0)∧(q free = 0)∧(p num read = 1)∧(c num read = 0)”. Then,
we compute the post-state of block β1 based on the SMT formula given a pre-
state, and get an abstract element in an abstract domain at location `′2. However,
converting a SMT formula into a specific abstract domain representation may
cause precision loss. E.g., when analyzing block β1 given a pre-state >, we get
the abstract Octagon representation at location `′2 as “(−1 ≤ p dw st−q free ≤
2)∧...∧(0 ≤ p dw st ≤ 2∧0 ≤ q free ≤ 1)”, which causes precision loss (e.g., we
in fact know “((p dw st = 0) ∧ (c dr st = 0)) ∨ ((p dw st = 2) ∧ (c dr st = 0))”
according to the SMT formula ϕtrans1 that encodes precisely the concrete transfer
semantics of β1). And eventually this precision loss leads to the failure of proving
the unreachability of the error at line 24 in Fig. 1(a).

To prove the property, we need more expressive information at location `′2. In
this paper, we choose a predicate set for each block and partition the post state
at the exit location of the block according to the value of the predicates. E.g., the
predicate sets we choose for block β1 and β2 are P1 = P2 = {p0, p1, p2, p3, p4},
where p0 , (p dw st == 0), p1 , (c dr st == 0), p2 , (q free == 0),
p3 , (q free == 1) and p4 , (p num write − c num read < 0). Assume the
base abstract domain is Octagon. With the predicate set P1, we partition the
post-state of β1 at location `′2 and transmit the disjunctive information to anal-
ysis of block β2. Finally, after the fixpoint iteration converges, we could get at
location `′2 the invariant “0 ≤ p num write − c num read ≤ 1” which proves
unreachability of the error at line 24 in Fig. 1(a).

3 Block-wise abstract interpretation framework

3.1 Block partitioning and block encoding

We first present a cutpoint-based approach [19] to partition a program into
blocks. The main idea is to select cutpoints from program points, and take the
program fragment between two adjacent cutpoints as a block. Let the tuple
〈L, E , `0,Le〉 denote the CFG of a program P, where L is the set of nodes de-
noting program points, E is the set of transfer edges, `0 ∈ L is the entry node
of P, which has no incoming edges, and Le ⊆ L is the set of exit nodes, which
have no outcoming edges.

We use SubGraph(`i, `j) , 〈L(i,j), E(i,j), `i, `j〉 to represent the subgraph
determined by the node `i and `j (with a unique entry node `i and a unique
exit node `j), where L(i,j) is the set of nodes in all paths from `i to `j and
E(i,j) is the set of the corresponding edges. We call SubGraph(`i, `j) is L′-
free if L(i,j) ∩ L′ = ∅, where L′ ⊆ L is a subset of program points. Assume T
(e.g., Linear Real Arithmetic, LRA) is one theory of SMT. We call an expres-
sion is T -Encodable, if it can be encoded by theory T . E.g., expressions that
only involve linear computations on program variables of real number type are
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LRA-Encodable expressions. We call SubGraph(`i, `j) is T -Encodable if all
expressions appearing in E(i,j) are T -Encodable. Here, we provide the syntactic
description of a T -Encodable block β:

τ ::= skip|x := exp, β ::= τ |if(b){β1}else{β2}|β1;β2

where exp is a T -Encodable expression, τ is a skip or assignment statement, b
is a T -Encodable condition expression and β1, β2 are T -Encodable blocks. From
the syntactic description, we know that T -Encodable block β is loop-free and
we assume that β has a unique entry point `enβ and a unique exit point `exβ .

We say a subset of program points Lc ⊆ L is a set of cutpoints w.r.t. the
theory T , if Lc satisfies the following conditions: 1) `0 ∈ Lc and Le ⊆ Lc; 2) all
program points at the head of loops are in Lc; 3) program points before and after
statements that are not T -Encodable in SMT are in Lc; 4) ∀`i ∈ Lc \ ({`0} ∪
Le), ∃`j ∈ Lc, s.t. `i and `j determine a subgraph (i.e. SubGraph(`i, `j)) and
SubGraph(`i, `j) is Lc \ ({`i} ∪ {`j})-free. An extreme set of cutpoints is L
itself, in which case we consider each individual statement as a block. Based
on a set of chosen cutpoints, a program can be partitioned into blocks and we
get a CFG with blocks, denoted as a tuple 〈L,Lc, E ,B, `0,Le〉, where B is a
set of blocks. If a block involves skip statements only, we consider this block
as an empty block and do not show in the CFG with blocks. Now we present
our strategy to choose the set of cutpoints and the corresponding partitioning
strategy based on cutpoints.

To make the analysis as precise as possible, we try to partition a program
into blocks such that the code size of each block is as large as possible. Hence,
we propose a greedy block partitioning strategy (GBP), that is, we only take
as cutpoints the loop heads and program points before and after the statement
that is not T -Encodable in SMT.

Now we present how to encode the transfer semantics of T -Encodable block
β via a SMT formula ϕ. First, we assume the block β is in a SSA (Static Single
Assignment) form [15] such that: 1) in all paths from `enβ to `exβ , each variable
is assigned at most once; 2) the index of each variable in the then-branch and
else-branch is unified at each join point. We use the standard SSA algorithm
[15] to translate a program fragment into this format. Let ξ: B → F denote the
map from a set of blocks B to a set of SMT formulas F . We define ξ(skip) ,
true; ξ(x := exp) , (x = θ(exp)), where θ(exp) is the SMT encoding for the
expression exp; ξ(if(b){β1}else{β2}) , ite(θ(b), ξ(β1), ξ(β2)), where θ(b) is
the SMT encoding for condition expression b; ξ(β1;β2) , ξ(β1)∧ ξ(β2). We use
function ξ to encode the whole T -Encodable block as a SMT formula.

3.2 Block-wise iteration strategy combining SMT and abstract
domains

In BWAI, the transfer semantics of a block is encoded as a SMT formula, while
at cutpoints we maintain abstract domain representation. Hence, before and
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after cutpoints, we need conversion operators to convert abstract domain repre-
sentation into a SMT formula and also to convert a SMT formula into abstract
domain representation.

Let JβjK
]

: S] → S] characterize the abstract semantics of block βj , where
S] denotes the set of abstract states. Assume that the entry point and exit point
of βj are `′j and `′j+1 respectively in the CFG with blocks. If the abstract value

at cutpoint `′j is aj , then the abstract value at cutpoint `′j+1 will be aj+1 ,

JβjK
]
(aj). In the following, we will show how to calculate JβjK

]
.

Let ν: A → F be the map from a set of abstract values in an abstract domain
to a set of SMT formulas, and ν(a) = ϕ where a is an abstract value and ϕ is a
SMT formula. It is often exact to translate abstract value a to the corresponding
SMT formula ϕ, because constraints in most numerical abstract domains could
be encoded as SMT formulas directly. E.g., the constraint “x ∈ [mi,ms]” in the
Box domain could be encoded as a SMT formula “x ≥ mi ∧ x ≤ ms”.

Let ζ : F → A be the map from a set of SMT formulas F to a set of abstract
values in an abstract domain A. It is worthy noting that a SMT formula ϕ is of-
ten out of the expressiveness of numerical abstract domains, e.g., when ϕ involves
disjunctions. Computing the function ζ is essentially a problem of symbolic ab-
straction that aims to calculate the consequence of ϕ in the abstract domain
A. To guarantee the soundness of static analysis, we need a sound conversion
operator ζ. Let Sol(ϕ) denote the solution set of the constraints corresponding
to SMT formula ϕ. We call abstract value a a sound abstraction of ϕ in domain
A if Sol(ϕ) ⊆ Sol(ν(a)). We call abstract value a the best abstraction in do-
main A of SMT formula ϕ if 1) Sol(ϕ) ⊆ Sol(ν(a)) and 2) for all a′ ∈ A, s.t.
Sol(ϕ) ⊆ Sol(ν(a′)), we have av]a′ where v] is the inclusion operator in the
abstract domain A.

We compute the function ζ via optimization techniques based on SMT (namely,
SMT-opt). The SMT-opt problem is to solve “max e s.t. ϕ”, where ϕ is a SMT
formula and e is an objective function in SMT format [7][24]. In this paper,
we only consider using of abstract domains based on templates which include a
large subset of commonly used abstract domains, such as boxes, octagons [25],
TCMs [32], etc. The templates determine objective functions and the given SMT
formula encoding the post-state determines the constraint space in the SMT-opt
problem. We then get the corresponding template abstract domain represen-
tation by computing the maximum and minimum value of objective function
under the SMT constraint space. It is worthy noting that based on SMT-opt,
we get the sound abstraction of a SMT formula in a template abstract domain.
Let ei (1 ≤ i ≤ n, where n is the number of templates) be a template, we get
ci by solving the SMT-opt problem “max ei s.t. ϕ”, and thus get ei ≤ ci as a
constraint in the template abstract domain representation. Overall,

∧n
i=1 ei ≤ ci

gives the resulting constraint representation in the template abstract domain.
Obviously, Sol(ϕ) ⊆ Sol(ei ≤ ci). We have Sol(ϕ) ⊆ Sol(

∧n
i=1 ei ≤ ci), which

guarantees soundness of ζ via SMT-opt. In fact, we get the best abstraction
of a SMT formula in a template abstract domain based on SMT-opt. E.g., to
get the best abstract representation of Octagon domain for ϕ, we solve a series
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of SMT-opt problems like “max (±x ± y) s.t. ϕ”, which would give the best
abstraction of formula ϕ in the Octagon domain.

Overall, to compute the post abstract value of the transfer semantic of a block
represented by a SMT formula ϕtransj , we first transform the abstract value aj
at the entry of the block to SMT format ϕprej such that ϕprej = ν(aj), then

abstract the SMT formula “ϕprej ∧ ϕtransj ” to an abstract value aj+1, such that

aj+1 = JβjK](aj) , ζ(ϕprej ∧ ϕtransj ).
Now, we briefly describe the iteration strategy on CFG with blocks in the

framework of BWAI, to compute the abstract fix-point of a program. In the
whole, we still solve the fix-point based on “iteration+widening” strategy. We
deal with the statements which are not encoded by SMT based on abstract
domains (e.g., the statements which are not T -expressible), the same as in SWAI.
When analyzing the block β which is encoded by SMT, we transform the abstract
domain representation at the entry point `enβ to a SMT formula, and abstract
the post-state in SMT format to an abstract value in an abstract domain at the
exit point `exβ based on the ζ operator. At the widening points Lw, we still use
the widening operator of the abstract domain. Overall, our iteration strategy in
the framework of BWAI is extended from the one of SWAI, but combines SMT
and abstract domains.

4 Abstract domain lifting functor for BWAI

In the framework of BWAI, inside a block we take the advantage of SMT to
encode the semantics of the block and use abstract domain representation to
transfer information between blocks. Hence, when the block involves behaviors
which are beyond the expressiveness of the chosen abstract domain but could be
encoded precisely by SMT formula (e.g., disjunctive behaviors), the analysis of
BWAI is often more precise than that of SWAI for this block. However, under
BWAI, we have to convert the SMT-format representation to specific abstract
domain representation at the exit point of a block, which may cause precision
loss. E.g., in the motivating example shown in Sect. 2, at the exit point of block
β1, if we use convex abstract domain to abstract the SMT formula that involves
disjunction, it would cause precision loss and eventually leads to the failure of
proving the unreachability of the error. To express and pass the disjunctive infor-
mation between blocks, we seek to use abstract domains that could characterize
disjunctions. In this section, we present a lifting functor for abstract domains to
express disjunctions in order to fit for BWAI for the sake of precision.

The main idea of the lifting functor is to generate a predicate set Pi for each
block βi through a pre-analysis, and the predicates are all T -Encodable. After
analyzing block βi, we partition the post-state at the exit point `exβi

according
to different evaluation results of predicates in the set Pi. Note that several ap-
proaches are available to utilize predicates to partition the state [8][16][18]. In
this paper, we take the advantage of binary decision tree (BDT) [8] to implement
the partitioning of a state with respect to predicates. A branch node in the BDT
stores a predicate, and each leaf stores abstract value in the base domain under
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specific evaluation results of predicates. We denote the binary decision tree in
parenthesized form

Jp1 : Jp2 : (a1), (a2)K, Jp2 : (a3), (a4)KK

where p1, p2 are predicates in Pi, and aj(1 ≤ j ≤ 4) is an abstract value in
an abstract domain. It encodes that if p1 and p2 are true then a1 holds, if p1
is true and p2 is false then a2 holds, if p1 is false and p2 is true then a3 holds,
or if p1 and p2 are false then a4 holds. Note that the above abstract domain
representation precisely encodes the same information as the following SMT
formula (p1∧p2∧ν(a1))∨(p1∧¬p2∧ν(a2))∨(¬p1∧p2∧ν(a3))∨(¬p1∧¬p2∧ν(a4)).

4.1 Predicate selection

In this subsection, we introduce our strategy to determine the predicate set.
The criterion of choosing the predicate set for the current block is to improve
the precision of successive analysis through transmitting necessary disjunctive
information. Hence, we mainly select predicates for current block from branch
conditions in successive blocks. Note that in this paper an assert(b) statement
is transformed into a branch test statement (as in the benchmarks of SV-COMP
2015) and thus the properties to be checked in successive blocks are in fact also
added into the predicate set.

We call block βj is the direct syntactic successor of block βi, if in the
CFG with blocks, there exists one path from βi to βj without passing through
other blocks. Let DirSynSucc(βi) denote the set of direct syntactic successors
of block βi and βj ∈ DirSynSucc(βi). To transmit information of βi to block
βj at the location `exβi

, we need to choose a predicate set for βi to partition the
abstract state at the location `exβi

. Our strategy is to pick the branch conditions

in block βj . Let η : B→2C denote the map from a set of block B to the powerset

of branch conditions appearing in B. We define η(skip) , ∅, η(x := exp) , ∅,
η(if(b){β1}else{β2}) , {b}∪η(β1)∪η(β2), and η(β1;β2) , η(β1)∪η(β2). In fact,
η(βi) collects the branch conditions from the block βi. E.g., for Fig. 1(b), we have
η(β2) = {p dw st == 0, c dr st == 0, q free == 0, q free == 1} and η(β3) =
{p num write−c num read < 0}. Since both β2 and β3 are syntactic successors
of β1. Hence, for block β1 we choose the predicate set as η(β2) ∪ η(β3), i.e.,
P1 = {p dw st == 0, c dr st == 0, q free == 0, q free == 1, p num write −
c num read < 0}. In general, the predicate set we choose for block βi is Pi ,⋃
{η(βk)|βk ∈ DirSynSucc(βi)}.

The complexity of the analysis based on the lifting functor for BWAI is expo-
nential to the height of the BDT which is equal to the number of predicates in P.
If P contains n predicates, the height of BDT is n, and the abstract state at the
exit point `exβ is a disjunction with 2n individuals. In practice, we must balance
between precision and efficiency through adjusting the size of predicate set. The
predicate set is tightly coupled with each individual block, so the complexity is
determined by the size of predicate set for each block locally. In practice, we set
a threshold Nβi

for each block to restrict the maximum size of predicate set.
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4.2 Abstract domain lifting functor based on BDT

Let FUNC : PS × D → BDT , where PS is a set of predicate sets, D is a set
of base abstract domains, and BDT is a set of BDT domains on top of base
abstract domains. FUNC defines a lifting functor of base abstract domains in
the BWAI framework. Given a predicate set P and a base abstract domain A,
FUNC(P,A) gives a domain in BDT format, denoted by PA. The predicates in
P determine the elements on the branch nodes of BDT, A determines the base
abstract domain representation on the leaves of BDT, and each element in the
PA is of BDT format.

The concretization function of PA, denoted by γPA, and abstraction func-
tion, denoted by αPA, can be extended easily from γA and αA in the base
domain A. The concretization function of domain PA is defined as γPA(pa) ,

γA(
∨2k−1

0 ai), where pa is the element in the domain PA, k is the size of the
predicate set, ai (0≤i ≤ 2k−1) is the abstract value in the base abstract domain
on the i-th leaf. The abstraction function αPA is computed by calling the ab-
straction function αA in the base domain A multiple times. For example, assume∧m
i=1

∑n
j=1Aij × xj ≤ ci denotes the constraint system of a template polyhe-

dron, where Aij is the fixed coefficient, m is the number of constraints, n is
the dimension of variables. According to different evaluations of predicates in P,
we call the SMT-based optimization max(

∑n
j=1Aij × xj) s.t. (ψp ∧ ϕ) for each

linear template (
∑n
j=1Aij × xj), where ψp is the conjunction of the constraints

corresponding to the predicates on the top-down path in the BDT, ϕ is the SMT
formula characterizing the current state. Then we get a base abstract domain
representation on a leaf of the BDT. Other domain operators for PA derived by
the lifting functor can be implemented on top of the domain operators of the
base domain A, similarly as in [8].
Example 1. Assume the base domain we use is Octagon. For the example
in Fig. 1(a), if we use SMT inside blocks but only use the base domain at
cutpoints, we will fail to prove the unreachability of the error in line 24 in
Fig. 1. However, if we use the lifting functor over the Octagon domain, we
first get P1 = P2 = {p0, p1, p2, p3, p4} and P3 = ∅, where p0 , (p dw st ==
0), p1 , (c dr st == 0), p2 , (q free == 0), p3 , (q free == 1) and
p4 , (p num write − c num read < 0). At exit point of a block, we use the
respective predicate set to partition the post-state and get the abstract do-
main representation in BDT format. E.g., in Fig. 1(b), after the fixpoint it-
eration converges, at `′2, we get the abstract value in BDT format on top of
octagons as Jp0 : Jp1 : (oct1), (oct2)K, Jp1 : (oct3), (oct4)KK (note that the BDT is
reduced because different values of p2, p3, p4 do not change the abstract value at
leaves), where oct1 = (p num write − c num read = 0) ∧ ... ∧ (p num write =
0) ∧ (c num read = 0), oct2 = (p num write − c num read = 0) ∧ ... ∧ (1 ≤
p num write ≤ +∞) ∧ (1 ≤ c num read ≤ +∞), oct3 = (p num write −
c num read = 1) ∧ ... ∧ (p num write = 1) ∧ (c num read = 0) and oct4 = ⊥.
Eventually, at location `′2 in Fig. 1(b) we get the invariant “0 6 p num write−
c num read 6 1” which implies the unreachability of the error in line 24 in
Fig. 1(a).
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5 BWAI considering sparsity in a large block

BWAI based on the greedy block partitioning (GBP) strategy described in
Sect. 3.1 could get the most precise analysis inside a block. Nevertheless, when
the number of branch conditions in a block is too large, the size of the predi-
cate set for the previous block becomes large, which will result in a large BDT
representation and degrade the efficiency of analysis. Especially, sometimes the
SMT formula for a block of large size may be too complicated to be solved as
a SMT-opt problem. In this paper, we say a block is a large block, if the num-
ber of assignment statements in this block is greater than the threshold Nassign
or the number of branch conditions in this block is greater than the threshold
Nbranch, where the two thresholds Nassign and Nbranch are set by users. To im-
prove the scalability of analysis, we divide a large block into several small ones
by exploiting sparsity [30] inside this block.

5.1 Dividing a large block based on variable clustering

In this paper, we divide a large block into a series of small blocks based on the
concept of variable clustering [22]. We use Cluster : B→2VAR to denote the map
from a set of blocks B to a powerset of variables appearing in B. Given a block
β, Cluster(β) satisfies that 1) for any s ∈ Cluster(β), we have s 6= ∅; 2) for any
s1, s2 ∈ Cluster(β), we have s1∩s2 = ∅ and

⋃
Cluster(β) = Vars(β), where

Vars(β) is the set of variables appearing in β. Cluster(β) defines a partitioning
of the variable set of block β. In this paper, we use Cluster(β) to denote the
variable clustering for block β. To be more clear, we compute variable clusters
based on data dependencies among variables. First, we get the data dependency
graph among variables in the block, and generate a cluster for each isolated
subgraph. Based on variable clustering, we partition a large block into small
blocks such that each block involves variables from the same cluster. To do that,
we put a sub-cutpoint between two statements if these two statements involve
variables from different variable clusters. The statements between two adjacent
sub-cutpoints (cutpoints) define a small block.

5.2 Analysis considering block-wise sparsity

Based on variable clustering, we divide a large block into several small ones
such that each small block involves only its own variable cluster. Thus, we only
need to consider relations among variables appearing within the same small
block. Hence, the dimension of considered variables in abstract values is largely
reduced. Furthermore, the semantic dependencies between small blocks may be-
come sparse and thus we only need to propagate the abstract value from the
current block to those blocks that have data flow dependency on the current
block. Hence, we decompose the semantics of a large block into semantics based
on small blocks, and consider both spatial and temporal sparsity inside the large
block.
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Considering block-wise spatial sparsity. We project out those variables
which are not used in the current block from the abstract state at the entry of the
block, which could reduce the dimension and also the size of the corresponding
SMT formula when analyzing the block.

Considering block-wise temporal sparsity. The block-wise temporal spar-
sity is based on the following observation: the syntactic successor block of the
current block may have no data flow dependency on the current block. We call
a block βj is a direct semantic successor of βi, if 1) βi and βj belong to the
same “large block”, and βj shares the same variable cluster with βi; 2) βj is
reachable from βi; 3) there is no other block βk between βi and βj satisfying 1)
and 2). We use DirSemSucc(βi) to denote the set of direct semantic successors
of βi.

Considering the block-wise temporal sparsity, we propagate abstract values
from a block to its direct semantic successor blocks instead of direct syntactic
successor blocks, which could avoid unnecessary propagations along the transi-
tion edges in CFG with blocks. In addition, we choose the predicate set for a
block by extracting branch conditions from its direct semantic successor blocks,
instead of its direct syntactic successor blocks. The size of predicate set chosen
based on direct semantic successor of a small block is usually much smaller than
that chosen by considering the large block as a whole.

1 while(brandom()){
2 if(p1 ! = 0)
3 lk1 = 1;
4 if(p2 ! = 0)
5 lk2 = 1;
6 if(p1 ! = 0 && lk1 ! = 1)
7 //error()
8 if(p2 ! = 0 && lk2 ! = 1)
9 //error()
10 }

(a)
 

𝑙5′ 

𝑙1′ 

𝑙4′ 

𝑙3′ 

𝑙2′ 

𝛽1 

𝛽2 

𝛽3 

𝛽4 

(b)

Fig. 2. A illustrating example extracted from SV-COMP 2015

Example 2. We take an example extracted from test lock.c in the directory
“locks” of SV-COMP 2015. As shown in Fig. 2(a), we consider the loop body
as a large block β and get the variable clustering {{lk1, p1}, {lk2, p2}}. Based
on the variable clusters, we repartition the block β at locations `4, `6, `8(recall
that `i represents the program point at the beginning of the i -th line) and
get the CFG with blocks as shown in Fig. 2(b), i.e., β1 = SubGraph(`1, `4),
β2 = SubGraph(`4, `6), β3 = SubGraph(`6, `8) and β4 = SubGraph(`8, `10).
When we analyze the block β1, which only involves variables p1 and lk1, we
project out unrelated variables (e.g., p2 and lk2) based on block-wise spatial
sparsity and consider the abstract value over only the variable set {p1, lk1}.
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In Fig.2(b), β3∈DirSemSucc(β1) and β4∈DirSemSucc(β2), as shown by the
dashed lines. Analysis considering block-wise temporal sparsity propagates the
abstract value from β1 to β3 instead of β2. Moreover, the predicate set P1 for
block β1 is {(p1! = 0 && lk1! = 1)} which is generated according to the branch
conditions in its semantic successor block β3. Note that, without considering
block-wise temporal sparsity, we would get a much larger predicate set {p1 ! =
0, p2 ! = 0, (p1 ! = 0 && lk1 ! = 1), (p2 ! = 0 && lk2 ! = 1)} for the large
block (i.e., SubGraph(`1, `10)). For the example shown in Fig. 2(a), analysis
considering both block-wise spatial and temporal sparsity can also successfully
prove the unreachability of the errors in line 7 and 9. The example in Fig. 2 shows
a typical patten of programs in the “locks” directory in SV-COMP 2015. During
experiments (in Sect. 6), we find the analysis considering block-wise sparsity is
much more efficient than the one without considering block-wise sparsity.

6 Implementation and Experiments

We have implemented the framework of BWAI as a tool prototype named BW-
CAI, based on the frontend CIL [29], numerical abstract domain library Apron
[23], and SMT optimizer νZ [7]. We have conducted experiments on benchmarks
from directories in the C branch of SV-COMP 2015 [1], including directories
“loop-lit”, “locks”, “systemc”, “termination-crafted”, “termination-crafted-lit”
and “termination-restricted-15”.

Most benchmarks in the directories “loop-lit”, “locks”, “systemc” are to
simulate the behaviors in operating system. Error locations are inserted manu-
ally in each benchmark in these three directories, which are classified as “true-
unreachable” and “false-unreachable”. “true-unreachable” indicates the error in
the example is indeed unreachable, while “false-unreachable” indicates the error
in the example is reachable actually. Because abstract interpretation guarantees
soundness of the analysis, if we analyze benchmarks with tag “false-unreachable”,
we find that the errors are all reachable. Hence, we pick the examples with tag
“true-unreachable” as the experimental benchmarks and set the unreachability
of “false error locations” as the property to check. Examples in the “termination-
crafted”, “termination-crafted-lit” and “termination-restricted-15” are programs
for termination analysis, which are classified to “true-termination” and “false-
termination”. Similarly, we pick the examples with tag “false-termination” which
contain no recurring calls as the experimental benchmarks (since under the
framework of abstract interpretation, analysis on “true-termination” programs
returns normal termination actually).

Table 1 gives the description information of the benchmarks in the exper-
iments. The column “SV-COMP directories” provides the source location of
benchmarks in SV-COMP 2015. We select the examples which are with tag
“true-unreachable” as well as “false-termination” and omit examples that con-
tain complicated pointer operations, array accesses and recurring calls. The col-
umn “Number of files” gives the number of examples selected in the correspond-
ing directories, totally 98 files. The column “LOCs” gives the average number
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of code lines of programs in the corresponding directories and “#Vars” means
the average number of program variables in a program. Among these six direc-
tories, the code size of examples in the directory “systemc” is the largest, and
the largest single program has 1472 lines of code.

Table 1. Discription of benchmarks from SV-COMP 2015

SV-COMP directories Number of files LOCs #Vars

locks 11 163 20

loop-lit 14 21 3

systemc 20 996 65

termination-crafted 16 10 2

termination-crafted-lit 12 11 3

termination-restricted-15 25 21 2

Table 2 summarizes the analysis results on these examples based on the
Box and Octagon domain in the framework of SWAI, as well as BWAI with
and without using the lifting functor. Column “#Y” presents the number of
properties successfully proved, which is the number of error locations proved
unreached. Column “t(s)” gives the average analysis time (including the time
for block partitioning, block encoding and selecting predicates) in seconds in
the corresponding directory when the analysis runs on a double core of 4.0GHz
Intel Core i5 on Ubuntu 14.04. In Table 2, we use the GBP strategy by default
to partition the program. For the Octagon domain, we use the same variable
package [13] manually for SWAI and BWAI, to reduce the cost.

Table 2. Experimental results on benchmarks from SV-COMP 2015

SV-COMP SWAI BWAI BWAI + lifting functor
directories Box Oct Box Oct Box Oct

(Number of files) #Y t(s) #Y t(s) #Y t(s) #Y t(s) #Y t(s) #Y t(s)

locks(11) 0 0.28 0 6.40 11 0.81 11 23.30 11 9.13 11 435.14

loop-lit(14) 1 0.09 2 0.12 1 0.17 3 0.43 3 0.95 7 6.77

systemc(20) 0 24.77 0 89.74 0 63.46 0 343.66 1 846.35 5 4733.16

termination
13 0.08 13 0.09 13 0.12 16 0.14 14 0.35 16 5.22

-crafted(16)

termination
10 0.08 10 0.09 10 0.13 10 0.19 10 0.44 10 2.13

crafted-lit(12)

termination
6 0.09 8 0.09 9 0.14 14 0.20 10 3.05 16 16.75

-restricted-15(25)

From the analysis result, we find that if we use the same abstract domain,
analysis based on BWAI (even without using lifting functor) is always more
precise than that based on SWAI, especially for benchmarks in the directory
“locks”. Programs in the directory “locks” are used to simulate the lock and
unlock operations in operating system, which often contain one large loop that
involves intensive disjunctive behaviors (e.g., disequalities and branches) and the
error location is inside the loop body. When using the GBP strategy, analysis
based on BWAI could check the property in the loop body based on SMT with no
need of converting to abstract domain representation. From the row “locks(11)”,
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we see that analysis based on Box domain under the framework of BWAI could
check all properties in all the 11 benchmarks, while the analysis based on Octagon
domain in the framework of SWAI could check none.

Moreover, from the analysis result, we can see that BWAI analysis with lifting
functor is more precise than that without lifting functor under the framework
of BWAI. From the row “loop-lit(14)”, we see that analysis based on the BDT
domain on top of Octagon domain could check 7 examples out of 14, while
using only the base Octagon domain could check 3 examples. Most programs in
the directory “loop-lit” contain multiple-phases loops which involve disjunctive
behaviors, but the property to check is outside the loop. BWAI analysis without
lifting functor could not check the property, because the SMT formula needs to
be abstracted as base abstract domain representation (such as boxes, octagons,
etc.) at the end of loop body. However, when using lifting functor based on BDT,
the BWAI could maintain and pass the disjunctive information to the successive
analysis. Based on the Box domain, BWAI without lifting functor could prove 44
out of 98 benchmarks, and BWAI with lifting functor could prove 5 more ones;
based on the Octagon domain, BWAI without lifting functor could prove 54 out
of 98 benchmarks while BWAI with lifting functor could check 11 more ones.
Overall, our BWAI with lifting functor could prove around 66% benchmarks (65
out of 98 ones), around one times more than SWAI, which could only check
about 34% properties (33 out of 98 ones).

We have also conducted comparison experiments using BWAI with and with-
out considering sparsity. We find that without considering sparsity, the analysis
time on each program in “locks” is too long (>5 hours). This is because all pro-
grams in “locks” contain at least 11 branches inside a large loop. Hence, when
using lifting functor without considering sparsity, the predicate set for the loop
body has at least 11 predicates, which results in a very large BDT. Nevertheless,
when considering block-wise sparsity, we partition the large loop body into small
blocks, and the average size of predicate set for a small block is 2. The analysis
time “9.13s” and “435.14s” for the directory “locks” shown in Table 2, is the
result when considering block-wise sparsity.

Moreover, we have also conducted the comparison experiments with UFO,
which also combines SMT-opt and abstract domains [3][24]. The comparison
results between UFO (the version of [24]) and BWCAI (BWAI using BDT on
top of Octagon domain) is shown in Table 3. Column “#Ycom” presents the
number of properties which could be proved by both tools. Column “#YUFO”
presents the number of properties which could be proved by UFO only, while
Column “#YBWCAI” presents the number of properties which could be proved by
BWCAI only. Column “#Ncom” presents the number of properties which could
be proved by none of them. From Table 3, we can find that UFO could prove
more programs than BWCAI in directories “loop-lit” and “systemc”, while BW-
CAI could prove more programs than UFO in directories “termination-crafted”,
“termination-crafted-lit” and “termination-restricted-15”, which shows that the
sets of properties proved by the two tools are complementary.
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Table 3. Experimental comparison results between BWCAI and UFO

SV-COMP directories UFO BWCAI
#Ycom #YUFO #YBWCAI #Ncom(Number of files) #Yt t(s) #Yt t(s)

locks(11) 11 0.91 11 435.14 11 0 0 0

loop-lit(14) 10 38.98 7 28.42 7 3 0 4

systemc(20) 18 1278.16 5 4733.16 5 13 0 2

termination-
8 0.22 16 5.22 8 0 8 0

crafted(16)

termination-
8 0.16 10 2.13 8 0 2 2

crafted-lit(12)

termination-
11 2.85 16 16.75 10 1 6 8

restricted-15(25)

Properties in serval examples could not be checked by BWCAI because they
need templates whose expressiveness is beyond octagons, while UFO could check
them by using interpolants which are less limited to specific templates. E.g.,
UFO proves the property in “jm2006 variant true-unreachable-call.c” (from the
directory “loop-lit”), while BWCAI fails to prove it. However, if adding the
template “x − y + z − i + j” (that is out of the expressiveness of the Octagon
domain), BWCAI could also prove it. On the other hand, UFO guesses (typ-
ically using interpolants) an inductive invariant by generalizing it from finite
paths through the CFG of the program. Hence when the behaviors of the loop
in the program are not inductive and the depth of the loop is large, UFO often
does not perform well. E.g., “AlternDiv false-termination.c” (from the directory
“termination-restricted-15”) involves two phases in one loop, and its concrete
execution is switching between these two phases back and forth. UFO fails to
check the property of it, while BWCAI could prove this property by using BDT
on top of the Box domain as well as the Octagon domain. For analysis time,
UFO usually costs less time than BWCAI for these programs in Table 3. How-
ever, we notice that UFO often costs much more time for the programs that
involve multiple-phases loops than other programs. When we manually enlarge
the loop bound in those programs, the analysis time based on UFO increases
dramatically. E.g., if we manually modify the loop bound from 100 to 10000 in
program “gj2007 true-unreach-call.c” (from the directory “loop-lit”), the anal-
ysis time based on UFO turns into “>1h” from 143s, while the analysis time
based on BWAI almost does not change.

7 Related work

The use of block encoding via SMT in software verification has gained much
attention recently, especially in software model checking (SMC). Beyer et al.
propose large block encoding [5] and adjustable block encoding [6] techniques
for SMC based on abstract reachability tree (ART) with CEGAR-based refine-
ment. Their main goal is to improve the efficiency of ART-based software model
checking by reducing the number of program paths to explore through large (ad-
justable) block encoding. Our idea of block encoding is inspired from their work,
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but our main goal in this paper is to improve the precision of statement-by-
statement abstract interpretation through block encoding. Moreover, they use
boolean predicate abstraction to represent the abstract successor state in SMC,
while we use numerical abstractions to over-approximate the abstract successor
state in AI.

Combining decision procedures and abstract interpretation has received in-
creasing attentions recently. Cousot et al. [14] propose to combine abstract inter-
pretation and decision procedures through reduced product or its approximation,
e.g., to perform iterated reduction between numerical and SMT-based logic ab-
stract domains. Henry et al. propose a path-sensitive analysis which combines
abstract interpretation and SMT-solving, and implement a tool named PAGAI
[20]. PAGAI performs fix-point iteration by first focusing temporarily on a cer-
tain subset of paths inside the CFG and use “path focusing” [27] technique based
on SMT-solving to obtain a new path [21] that needs to enumerate. In this paper
we consider a block as a whole, encode all paths in the block as a single SMT
formula, and then transform the problem of computing successor abstract value
w.r.t a SMT formula into SMT-opt problems.

The recent work by Li et al. [24] on using SMT-based symbolic optimiza-
tion to implement the best abstract transformer, is the closest related work to
our work. They propose an efficient SMT-based optimization algorithm namely
SYMBA, and use SYMBA to calculate the best abstract transformer for nu-
merical abstract domains in UFO [2][24]. In this paper, we also use SMT-based
optimization technique to compute the abstract value given a SMT formula. In
our implementation, we use νZ [7] which is a SMT-based optimizer, but we could
also use SYMBA. However, the abstract value we use SMT-based optimization to
compute is in a lifting domain of base numerical domains extended with BDT.
Besides, we use only abstract interpretation while UFO combines abstraction
based over-approximation and interpolation based under-approximation. The
experimental comparison results of our approach and UFO [3] using SYMBA
in Sect.6 show that the sets of properties proved by the two approaches are
complementary.

The problem of computing the best symbolic abstract transformers is first
considered by Reps et al. in [31] and has gained much attention recently. Reps et
al. have done a series of work on constructing abstract transformers relying on
decidable logics [33][34]. The main idea is to use a least and a greatest fix-point
computation to maintain an over-approximation and an under-approximation of
the desired result. In general, their approach fits for arbitrary numerical abstract
domains, but the iteration process may not terminate and thus needs a threshold
to stop the iteration, which gives over- and under- approximations for the best
abstract transformer. In this paper, we use SMT-based optimizer to compute
the best abstract transformer but only for template based abstract domains.
Monniaux et al. propose a method for computing optimal abstract transformers
over template linear constraint domains but their approach is based on quantifier
elimination [26][28], while we use SMT-based optimization.
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Recently, to deal with disjunctive properties, a variety of abstract domains
have been designed to allow describing disjunctive information inside the domain
representation. Examples include abstract domains supporting max operation
[4], abstract value function [9][11], interval linear constraints [10], set minus
[17], decision diagrams [18], etc. More recently, Chen et al. propose a binary
decision tree (BDT) abstract domain functor which provides a new prospective
on partitioning the trace semantics of programs as well as separating properties
in leaves [8]. In this paper, we use an abstract domain lifting functor based on
BDT, but we further propose a specific selection strategy for predicate set as
the branch nodes in BDT to fit for BWAI. We choose for the current block
the predicate set that is determined locally by its direct syntactic/semantical
successor blocks, while [8] determines the branch nodes in BDT based on a
branch condition path abstraction that abstracts the history of the control flow
to the current program point.

8 Conclusion and Future work

We extend statement-by-statement abstract interpretation to block-by-block ab-
stract interpretation, and propose block-wise abstract interpretation (BWAI) by
combining abstract domains with SMT. In the framework of BWAI, we use a
SMT formula to encode precisely the transfer semantics of a block and then
analyze the block as a whole, which usually gives more precise results than using
abstract domains to analyze the block statement by statement. Moreover, in or-
der to transmit useful disjunctive information between blocks which is obtained
by SMT-based analysis inside a block, we propose a lifting functor on top of
abstract domains to fit for BWAI. The lifting functor is implemented based on
binary decision trees, wherein the branch nodes are determined by a selection
of predicates according to the direct successor relationship between blocks. Fur-
thermore, to improve the efficiency of BWAI, we consider block-wise sparsity in
a large block by dividing a large block further into a set of small blocks. Ex-
perimental results on a set of benchmarks from SV-COMP 2015 show that our
BWAI approach could prove around one times more benchmarks than SWAI
(our BWAI approach could prove 66% ones, while SWAI approach could only
prove 34% ones).

For the future work, we will consider more flexible block partitioning strate-
gies to balance between precision and efficiency. Also, we plan to develop more
powerful SMT-based optimization solvers to support more SMT theories (such
as the array theory).
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