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Efficient Complete Verification of Neural Networks
via Layer-wised Splitting and Refinement
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Abstract—Safety and robustness properties are highly required
for neural networks deployed in safety critical applications.
Current complete verification techniques of these properties
suffer from the lack of efficiency and effectiveness. In this paper,
we present an efficient complete approach to verifying safety and
robustness properties of neural networks through incrementally
determinizing activation states of neurons. The key idea is to
generate constraints via layer-wised splitting that make activation
states of hidden neurons become deterministic efficiently, and
which are then utilized for refining inputs systematically so that
abstract analysis over the refined input can be more precise. Our
approach decomposes a verification problem into a set of sub-
problems via layer-wised input space splitting. The property is
then checked in each sub-problem, where the activation states
of at least one hidden neurons will be determinized. Further
checking is accelerated by constraint-guided input refinement.
We have implemented a parallel tool called LayerSAR to verify
safety and robustness properties of ReLU neural networks in a
sound and complete way, and evaluated it extensively on several
benchmark sets. Experimental results show that our approach is
promising, compared with complete tools such as Planet, Neurify,
Marabou, ERAN, Venus, Venus2 and nnenum in verifying safety
and robustness properties on the benchmarks.

Index Terms—neural network verification, abstract analysis,
input splitting, input refinement, complete verification

I. INTRODUCTION

Neural networks have been widely used in safety-critical
areas, such as autonomous driving [1], [2], medical diagno-
sis [3], and aircraft collision avoidance systems [4]. In such
applications, any violations of critical properties can result
in serious consequences even disasters. Therefore, ensuring
the safety and robustness of such systems has become an
important prerequisite for the deployment of neural network
based techniques in real world. The verification problem is
defined as follows [5]: given a neural network as a function
with certain input-output relationship, to check the property
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that if the input belongs to some set of X then the output will
belong to some set Y .

Test and simulation are the mainstream techniques to val-
idate the properties of neural networks at the moment. But
due to the inherent weakness of these point-wise techniques,
formal verification is highly desired for its provable guarantees
in safety-critical applications [6]–[8]. The existing formal
approaches can be classified into three main categories, i.e.
reachability, optimization and search [5], [9]. The reachability
approaches for verifying neural networks is to calculate the
reachable output set with a given input set, and then check
whether the property is satisfied under this reachable set [5].
Due to high-dimension of input, the nonlinearity of activation
function and the large number of neurons contained in the
neural network, it is prohibitively expensive to compute the
concrete reachable set accurately. One natural solution is to
use abstraction techniques to over-approximate the concrete
semantics of neural networks, which aims at making the
reasoning more efficient by using abstract semantics [6].
However, even small precision loss from the abstraction will
be enlarged layer by layer so as to bring large precision
loss on reachable output set. Thus such a single-pass abstrac-
tion based verification is more likely used to verify some
shallow (coarse-grained) safety properties. Similar situations
may also be encountered when using optimization approaches.
A verifier is said to be complete if it satisfies that (i) the
verifier never returns unknown; and (ii) if the verifier returns
violated, the property is actually violate [5]. To perform a
complete verification, iterative techniques with tree search are
integrated with reachability methods such as [10], and with
optimization methods such as [11]–[13]. However, these tree
search strategies are of few effective heuristic guidance from
the verification process. Henceforth these methods, especially
the sound and complete verification methods, still suffer from
the lack of efficiency and effectiveness.

In this paper, we present a novel approach to ReLU neural
network verification by incrementally determinizing activation
states of neurons quickly. The observation behind is that
the fewer ReLU neurons with undeterministic activation state
(i.e., the neuron may be active or inactive) in hidden layers,
the more precise reachable output set will be computed,
and henceforth the property is more likely to be verified or
falsified. When all ReLU neurons have deterministic states,
the precise relations between the input and the output can be
computed. Moreover, determinizing these hidden neurons can
be specified by constraints over the input variables of the net-
work. Together with a systematic selection of undeterministic
neurons from the first hidden layer to determinize, we propose
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a layer-wised input splitting strategy and constraint-guided
input refinement to achieve a sound and complete verification
approach.

Our main contributions are as follows:
(1) We present a sound and complete verification framework

by incrementally determinizing activation states of neu-
rons via layer-wised input splitting and constraint-guided
input refinement. This framework is proposed on top of
a new verification problem representation combining the
benefit of both interval domain (i.e., fast) and relation do-
main (i.e., precise). Our splitting strategy (splitting guided
by neurons in first undeterministic layer) guarantees that
each split will determine at least one further undeter-
ministic neurons in all the sub-problems. As far as we
know, many methods based on input splitting (dichotomy
input splitting [10], gradient-based input splitting [14])
do not have such a guarantee, whereas such a guaran-
tee is important for obtaining verification completeness
within a predictable worst-case splitting depth. We are
also committed to proposing improvement on linear re-
laxation (which are usually involved in neural network
verification), lightweight backward analysis, speculative
constrain-guided input refinement and counter-example
generation, which all fit to our framework well and
contribute to improve our verifying efficiency.

(2) We implement a parallel neural network verification tool
called LayerSAR and evaluate it. Compared to exist-
ing state-of-the-art complete verifiers, LayerSAR verifies
more properties with less time consumption overall, and
achieves at least 114X, 1163X, 846X, 81X, 2.8X and
2.1X speedups respectively on average over Neurify,
Planet, Marabou, Venus, Venus2 and nnenum when ver-
ifying ACAS Xu networks. Especially, our method are
much more effective than others considering generating
counter-examples for false properties. The ablation study
has also shown the performance improvement benefited
from our proposed techniques, that may devote to the
community of neural network verification.

II. PRELIMINARIES

In this work, focus our attention on fully-connected, feed-
forward neural networks with ReLU activation functions. A
neural network N computes a function FN : Rn → Ro,
where n is the number of input dimensions and o is the
number of output dimensions. The input vector is denoted as
X = {x1, x2, ..., xn}. For each variable xi, we use [xi, xi] to
denote its interval range, where xi, xi are constant values.

1) Abstraction: An abstraction is a computer-representable
over-approximation of a possibly unbounded set of values [15].
As in [10], for a neuron s in the hidden layers and the
output layer, we use a symbolic interval [sl, su] to abstract
its reachable values, where symbolic variables sl and su
are called the symbolic bounds of s, whose value are linear
expressions over input variables. Namely, sl, su are in the form
of

∑n
i=1 wixi + b where wi, b ∈ R are constant coefficients,

and xi ∈ X . We also use [sl, sl] to denote the value range of
symbolic bound sl, where sl, sl are constant values which can

be computed based on the value bounds of input variables.
For instance, if sl =

∑n
i=1 wixi+ b, then sl can be computed

via
∑n

i=0 wix
±
i + b, where x±i = xi if wi < 0, and

x±i = xi otherwise. The computation of sl follows the same
principle. Similarly, we use [su, su] to denote the value range
of symbolic bound su.

Moreover, for a hidden neuron s with an activation function,
we use symbolic variables sb, sf to denote its values before
and after applying the activation function. And we use two
symbolic intervals [sbl , s

b
u] and [sfl , s

f
u] as the abstraction of

neuron s before and after its activation functions respectively.
2) Linear Propagation: Neural networks utilize linear

transformations to propagate values through layers. For any
neuron s in the first hidden layer, we have

sbl = sbu = Σn
i=1wixi + b

where w1, w2, ..., wn are the weights of the corresponding
edges and b is the bias on this neuron. In general, for a neuron
s in the j-th hidden layers or the output layer, we have

sbl =
∑m

i=1 wiy
f±
i + b

sbu =
∑m

i=1 wiy
f±′

i + b

where yi denote the i-th neuron from the previous layer (i.e.,
the (j − 1)-th layer), and

yf±i =

{
(yi)

f
u if wi < 0

(yi)
f
l otherwise

yf±
′

i =

{
(yi)

f
l if wi < 0

(yi)
f
u otherwise

3) Linear Relaxation: Liner relaxation is a widely used
abstraction for non-linear activation functions [13], [14],
[16], [17]. For a ReLU neuron s, since sf =ReLU(sb) =
max(sb, 0) is non-linear, we need to take approximation to
compute sf when the sign of sb is not deterministic. Let
[c, d] be the interval value range of sb, where c, d are constant
values. One well-known approach is to use the following two
linear constraints instead [14]:

d ∗ sb

d− c
≤ sf , sf ≤ d ∗ (sb − c)

d− c
4) Dependency Analysis: Dependency analysis [18], [19]is

a method to further reduce the ReLU space during the“branch
and bound” based verification. In dependency analysis, a
neuron node s depends on another node t if whenever (i.e., for
any network input in the given input space) the activation state
of t is deterministic (i.e., active or inactive), the activation
state of s has to be deterministic (i.e., active or inactive).

III. OUR APPROACH

A. Our Verification Framework

In this work, we firstly define the verification problem for
neural networks more clearly as follows.

Definition 1: (Verification Problem for Neural Networks)
Given a neural network N , an input range X ⊆ Rn of the
network, a set of linear constraints on input variables Ω (which
equals to a predicate that intersecting all the elements inside),
and an property ψ (which is a set of constraints on output
variables, then the unsafe set US = {y | y ∈ Ro and y |=
¬ψ}), the verification problem for neural networks is to check
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if Output(N ,X ,Ω) ∩ US = ∅, where Output(N ,X ,Ω) =
{y | y = FN (x), x ∈ X and x |= Ω}.

Note that, the vector of activation states of hidden neurons,
records as A, can be implied from N , X and Ω. For the
sake of improving efficiency of propagation and choosing
splitting node, we store it explicitly. Thus we actually record
the verification problem representation as ⟨N , ψ,X ,Ω,A⟩.

The main framework of our approach, named VISIR, is
shown in Algorithm 1, which fits to the framework of “bound
and branch (B&B)” [20]. VISIR takes as input a neural
network verification problem ⟨N , ψ,X ,Ω,A⟩ and the splitting
depth sd. Ω stores a set of linear constraints that are used to
constrain the input, i.e., linear input constraint set. For the first
time of applying VISIR over a neuron network, Ω is initialized
as the input range X when it is not given. As records the
activation state of neuron s. It may take three values: active,
inactive and unknown. Each hidden neuron is initialized as
unknown. We define that s is deterministic if As is active
or inactive, otherwise s is undeterministic. sd denotes the
depth of input splitting, initialized by 0. The algorithm first
calls a single-pass verification (detailed in Sect. III-B) to check
whether ψ can be verified (Line 1), which returns a tuple of
three elements, i.e., res indicates the verification result (i.e.,
True,False or unknown), R is the reachable set of values
of each neuron and Ω′ is the updated linear input constraint
set. If res is False, the algorithm terminates immediately
with a counter-example violating ψ; if res is True, it returns
with True; if res is unknown, our algorithm performs
splitting by FUL strategy (Line 8, detailed in Sect. III-C) and
speculative input refinement (Line 9, detailed in Sect. III-D)
to prepare two sub-problems (i.e., ⟨N , ψ,X1,Ω1,A1⟩ and
⟨N , ψ,X2,Ω2,A2⟩) with smaller input regions, and verifies
them respectively (Lines 10-11). If both sub-problems are
verified, it return True (Line 12), which indicates that the
original input verification problem is successfully verified.

Algorithm 1 VISIR (Verification via Iterative Splitting and
Input Refinement)
Input: Network N , Property ψ, Input range X ,Linear in-

put constraint Ω, Activation state A, Splitting depth sd
Output: True or False
1: (res,R,Ω′,A′) ← single pass verification(N , ψ,X ,Ω,A)
2: if res = False then
3: Terminate with False and a counter-example
4: else if res = True then
5: return True
6: else ▷ res = unknown
7: sd← sd+ 1
8: (Ω1,Ω2,A1,A2) ← splitting by FUL(N ,Ω′,R,A′)
9: (X1, X2) ← input refinement(X ,Ω1,Ω2,sd)

10: VISIR(N , ψ,X1,Ω1,A1, sd) //sub-problem 1
11: VISIR(N , ψ,X2,Ω2,A2, sd) //sub-problem 2
12: return True
13: end if

Our framework is possible to perform (single-pass) abstract
analysis only on X (i.e., interval domain, devoting to a fast
“bound” procedure), while to perform splitting and property

checking on Ω (i.e., relation domain, devoting to an effective
and precise “branch” procedure), which both make our verifi-
cation framework be efficient.
An Illustrating Example: Now we use the example shown
in Figure 1 to illustrate our approach. The network has two
input neurons (denoted by symbolic variables x and y), two
hidden layers (each with one neuron, i.e., s1 and s2), and one
output layer (with one neuron s3). For hidden layers, we show
explicitly the symbolic variables representing the values before
and after activation. For simplicity, no activation function is
applied in the output layer. The weights (resp., biases) are
labeled on the edges (resp., under the neurons).

x
3

1
ReLU

[0,1]
[3x-2y,

 3x-2y]

[-2,3]

y
-2

-1
ReLU

 0 1

[-2,3]

[3x-2y, 

 1.8x-1.2y+1.2]

[3x-2y+1,         

 1.8x-1.2y+2.2]

[0,1]

[-1,4] [1,4]

[3x-2y+1, 

 1.8x-1.2y+2.2]

[-1.8x+1.2y-2.2, 

 -3x+2y-1 ]

0

[-4,-1] [-4,1]

s2
bs1

f s3s2
fs1

b s3 0 ? 

Fig. 1. An illustrating example

As shown in Figure 1, the input range is [0, 1] × [0, 1],
and the property to be verified ψ is s3 ≤ 0. Our approach
first initializes As1 = unknown, As2 = unknown and
Ω = {x ≥ 0, x ≤ 1, y ≥ 0, y ≤ 1}. Then it utilizes abstract
analysis (based on abstract interpretation [15]) to compute the
reachable set R. The analysis results are annotated above or
below each symbolic variable in Figure 1, where the lower
(resp., upper) symbolic bounds and their value bounds are
shown in blue (resp., red). To verify the property, it first
checks the value bounds of s3, that is [−4, 1], which means
the property ψ cannot be verified or falsified yet. Then our
approach makes use of the symbolic upper bound of s3
(i.e., −3x + 2y − 1) and checks whether the constraint set
Ω ∪ {−3x + 2y − 1 > 0} is satisfiable. Then we use a
constraint solver (e.g., a linear programming solver) to find
an input that satisfies the constraint set. Actually, for this
example, after concrete execution, it will turn out that the
found input point is not a real counter-example. Thus this
single-pass verification process returns unknown. Then Ω is
updated as Ω ∪ {−3x+ 2y − 1 > 0}.

Then we choose a target neuron in the first undeterministic
layer, that is s1 in this example. By making use of the
symbolic bounds over sb1, our approach conducts splitting
by adding constraints: 3x − 2y ≤ 0 or 3x − 2y > 0. The
splitting generates two sub-problems with the constraint sets
{Ω1 = Ω ∪ {3x − 2y > 0}, A1

s1 = active} and {Ω2 = Ω ∪
{3x− 2y ≤ 0}, A2

s1 = inactive} respectively. Then the input
ranges in both sub-problems are refined, which are guided by
the constraints in Ω1 and Ω2. After this step, X1 = ∅, since
Ω1 is infeasible, which means that the first sub-problem is
verified directly. For the second sub-problem, the input range is
updated to a tighter range X2 = [0, 0.34]× [0.5, 1], and at least
one more neuron become deterministic (i.e., A1

s1 = active).
Actually, the second sub-problem is then successfully verified
by a single-pass verification. Overall, verification problem in
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Figure. 1 can be verified by our approach with one time of
splitting.

B. Single-pass Verification

1) Abstract Analysis: Abstract analysis propagates an input
region through a neural network through abstract semantics
(involving linear relaxation, etc.). In this paper, we consider
an input region X as the Cartesian product of n intervals
X = I1 × I2 × ... × In (where Ii = [xi, xi], xi and xi
are the lower and upper value bounds of the input variable xi
respectively). The abstract analysis takes a neural network and
an input region X , then outputs an over-approximation of the
reachable set, i.e., abstract reachable set R, which formally
defined as follows.

Definition 2: (Abstract Reachable Set R) For each neuron
s in network N , R records four intervals, which is defined as
Rs ≜ ⟨[sbl , sbu], [s

f
l , s

f
u], [s

b
l , s

b
l ], [s

b
u, s

b
u]⟩, where

• sbl and sbu (sfl and sfu) represent the lower and upper
symbolic bounds before (after) the activation function
respectively, whose value are linear expressions over
input variables.

• sbl , s
b
l are the lower and upper value bounds of sbl respec-

tively, i.e., sbl = minX s
b
l and sbl = maxX s

b
l . Following

the same principle, sbu, sbu are the lower and upper value
bounds of sbu.

In addition, our abstraction explicitly records the activation
state of each neuron s by As. A records activation states
of all hidden neurons in N . And |AD| (|AU |) is defined
as the number of deterministic (undeterministic) neurons.
Abstract analysis computes the reachable setsR from the input
layer to output layer layer-wisely. For each hidden neuron s
in the network, we first compute sbl , s

b
u, s

b
l , s

b
l , s

b
u and sbu , as

shown in Sect. 2. Then we update the activation state of s as
follows:

A′
s =


inactive if

(
sbu ≤ 0 or As = inactive

)
active if

(
sbl ≥ 0 or As = active

)
unknown otherwise

Note that, some activation states will turn to deterministic
from undeterministic here, since this singel-pass analysis has
performed on a smaller intput space (due to refined X and Ω
after intput splitting and refinement) than previous singel-pass
analysis.

Now we show how to handle activation function ReLU. In
the case As = inactive (or As = active), no approximation
needs to be taken, and then we have sfl = 0, sfu = 0 (or
sfl = sbl , s

f
u = sbu) respectively. Note that, explicitly recording

As can help to improve the efficiency of analysis since we
do not need to compute Rs when As is active or inactive.
When As is unknown, since the concrete semantics of ReLU
functions is non-linear, linear relaxation need to be taken to
compute sfl and sfu.

Suppose the input symbolic interval is [sbl , s
b
u] and the input

region is X , the output symbolic interval is [sfl , s
f
u]. Evaluating

which linear relaxation is stronger depends on the comparison
metric. There are two widely used metrics: (1) the value range

of [sfl , s
f
u] satisfying X ; (2) the area of [sfl , s

f
u] satisfying X .

Strictly, which metric is better depends on the property to be
verified
Example 1. Suppose the input interval is [x, 2x], where
x ∈ [−1, 2], and the output is y. One linear relaxation outputs
symbolic interval y = [0, (4x + 4)/3], whose value range
is [0,4] and area is 6, the other outputs symbolic interval
y = [x, (4x+ 4)/3] , whose value range is [-1, 4] and area is
4.5. Considering the property y ≤ 0 , it can be found that the
metric of value range is better, while considering the property
y ≤ x, the metric of area is better.

In our paper, we prefer to use the metric of area for verifica-
tion. While metric of value range ignores the relations between
neurons. It helps reduce the loss of precision during neural
network propagation. Therefore, we propose the following
linear relaxation for ReLU function:

sfu =


sbu if

(
sbu ≥ 0

)
sbu(sbu−sbu)

sbu−sbu
otherwise

sfl =

{
sbl if( sbl ≥ 0 ∧ −sbl < sbl )

0 otherwise

Our linear relaxation can be proved to be an over-
approximation of the ReLU function. Note that, under our
definition of abstract reachable set (i.e., Definition 1), this
linear relaxation has achieved smallest area, i.e., it gets smaller
area than all the other possible linear relaxations, such as those
proposed in DeepPoly [16] and Neurify [14]. In DeepPoly,
they do not consider sbl and sbu, and only make use of the
lower value bound and upper value bound of sb (that is sbl
and sbu in our case) in linear relaxation. In Neurify, sfl is only

set as sbu∗s
b

sbu−sbl
when the activation state is not deterministic.

Example 2. Suppose the input interval is [x, 2x + 3], where
x ∈ [−1, 2]. The output symbolic intervals and its area
satisfying x ∈ [−1, 2] are shown in Table I, where column
“LR” lists the linear relaxation techniques of ours, DeepPoly
and Neurify. It has shown that the symbolic interval area of
our linear relaxation technique is the smallest.

TABLE I
OUTPUT COMPARISON OF DIFFERENT LINEAR RELAXATIONS

LR Output Symbolic Interval Area

Ours [x,2x+3] 10.5
DeepPoly [x,7(x+2)/4] 11.625
Neurify [2x/3,2x+3] 11

2) Property Checking: After abstract analysis, the reach-
able sets of the neural network with constrained input is
computed (i.e., R together with Ω). With these information,
our algorithm can check whether the property ψ is satisfied.
Theoretically, if (R ∧ Ω) |= ψ, ψ must be true; if (R ∧ Ω)
|= ¬ψ, ψ must be false; otherwise ψ is unknown.

For illustration, suppose the property ψ is y ≤ y′, where y
and y′ are two neurons in the output layer. By our analysis,
we can compute the reachable sets of neurons y and y′, which
consist of [yl, yu],[yl, yl],[yu, yu] and [y′l, y

′
u],[y′l, y

′
l],[y

′
u, y

′
u].
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Then our algorithm will first check the property with value
bounds: If yu ≤ y′l, then the property must hold; If yl > y′u,
then the property does not hold, and any input satisfying Ω
is a counter-example; In other cases, our algorithm performs
further checking by considering symbolic bounds, with the
help of constraint solver:

• If Ω ∪ {yu > y′l} is unsatisfiable, i.e., yu ≤ y′l always
holds, thus the property holds.

• If Ω ∪ {yu > y′l} is satisfiable, the property does not
necessarily hold. In this case, our algorithm finds an
input satisfying Ω ∪ {yu > y′l} by using constraint
solver and checks whether it is a counter-example by
concrete execution (i.e., by feeding this input to the neural
network).

– If it is a counter-example, the property does not hold.
– If no counter-example is found, our algorithm con-

ducts further investigation. Since yu ≤ y′l implies
that the property must hold, our algorithm only
needs to check the property when yu > y′l. Thus
updated Ω′ is Ω ∪{yu > y′l}. This update mimics a
lightweight backward propagation from the negation
of the property, which can help refine the input
ranges. Note that, our algorithm only takes such
updation when the negation of the property is linear
in our implementation.

Proposition 1: If all hidden neurons are deterministic,
there is no precision loss during a single pass abstract analysis,
and the property can be verified completely. Namely, in
Algorithm 1, if |AU | = 0, res can only be True or False
after executing Line 1.

C. Splitting by FUL Strategy

In the following, we first introduce the notion of the first
undeterministic layer, then describe the splitting process and
input refinement.

1) First Undeterministic Layer (FUL): During analysis
on a neural network layer-wisely, if all neurons in layer L
have deterministic activation states, we call L a deterministic
layer. Otherwise, L is said to be an undeterministic layer.
Among the undeterministic layers, we call the first layer with
undeterministic neurons as the First Undeterministic Layer
(FUL). One property of a neuron s in the FUL is that its
symbolic lower bound equals to its symbolic upper bound (i.e.,
sbl = sbu), which is not necessarily true in later layers. In other
word, there is no precision loss for s during the propagation.
Of course, the neurons in the layers before FUL also share
this property.

2) Splitting with Neurons in FUL : Our strategy is to choose
an undeterministic neuron from the FUL as the next splitting
target. If there are more than one undeterministic neurons in
the FUL, we just choose the neuron with the largest value
ranges 1.

1The intuition behind is that the larger range of an undeterministic neuron,
the larger potential precision loss of propagating it to the later layers. In
Sect. IV-C, we have conducted comparison experiments on choosing neurons
in FUL with different strategies for splitting.

Algorithm 2 gives the workflow of our FUL neuron based
splitting. It takes as input a neural network N , a reachable
set R generated by abstract analysis, a linear constraint set
Ω and a vector of activation states of hidden neurons A.
In the algorithm, size(L) represents the number of neurons
contained in the L-th layer of the neural network N , and
suppose all the neurons of the L-th layer are numbered as
“1, 2, ..., size(L)”. NL

i represents the i-th neuron in the L-th
layer. The algorithm is roughly divided into three stages:

1) Based on the activation states A generated by abstract
analysis, determine which layer in the hidden layer is
FUL (Lines 1 to 12);

2) Based on the reachable set R generated by abstract
analysis, the neuron with the largest value range is
selected from all the neurons in FUL as the target neuron
(recorded as t) for generating splitting predicate (Lines
13 to 21);

3) Based on target neuron t, conduct splitting to generate
two sub-problems for further verification and return
them (Lines 22 to 25). Since the symbolic lower and
upper bounds of the target splitting neuron are equal
before the activation function (i.e., tbl = tbu), we de-
note them as tb for short. Based on tb, our algorithm
generates two constraints {tb ≤ 0, tb > 0}. Then
the original verification problem is split into two sub-
problems ⟨N , ψ,X1,Ω1,A1⟩ and ⟨N , ψ,X2,Ω2,A2⟩,
where Ω1 = Ω ∪ {tb ≤ 0} and Ω2 = Ω ∪ {tb > 0}.
And A1, A2 are computed as follows: for each neuron
s in all hidden layers,

A1
s =

{
inactive if s = t
As otherwise

A2
s =

{
active if s = t
As otherwise

The activation state of neuron t becomes deterministic after
splitting, thus the two sub-problems are easier to be verified
by further single-pass verification.

One may consider other strategies to split, e.g., choosing
neuron that is not from the FUL to split. Compared with these
strategies, our strategy enjoys the following benefits:

• For each splitting, our strategy can always make one
undeterministic neuron become deterministic. Less un-
deterministic neurons will lead to more precise results
during abstract analysis. It means that our splitting always
makes progress for property verification.

• The predicates generated from the target FUL neuron are
usually non-redundant (i.e., if the predicates split Ω into
Ω1 and Ω2, neither of them is equal to Ω) and mutually-
exclusive (i.e., if the predicates split Ω into Ω1 and Ω2,
Ω1 ∧ Ω2 =⊥). Our strategy can make full use of these
characteristics to achieve efficient splitting process, since
our verification problem presentation records Ω explicitly.

• With our strategy, the single-pass analysis during the
current verification problem can make use of the analysis
result of its parent verification problem, e.g., the computa-
tion of activation state A, and the computation of abstract
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Algorithm 2 FUL neuron based splitting algorithm
Input: Neural network N , Reachable Set R,Linear

constraint set Ω, Activation state A
Output: Ω1,Ω2,A1,A2

1: FUL← 1
2: for L ← 1 to m do
3: for s← NL

1 to NL
size(L) do

4: if As = unknown then
5: FUL← L
6: break
7: end if
8: end for
9: if FUL > 1 then

10: break
11: end if
12: end for
13: max interval← 0
14: for s← NFUL

1 to NFUL
size(FUL) do

15: if As = unknown then
16: if sbu − sbl > max interval then
17: max interval← sbu − sbl
18: t← s
19: end if
20: end if
21: end for
22: A1 ← A;A2 ← A
23: Ω1 ← Ω ∪ {tb ≤ 0};A1

t ← inactive
24: Ω2 ← Ω ∪ {tb > 0};A2

t ← active
25: return Ω1,Ω2,A1,A2

reachable set R for neurons (before the splitting layer),
which makes our single-pass analysis more efficient.

• Since the precision loss will be amplified layer by layer
during abstract analysis, improving precision of earlier
neurons will be more effective in limiting the precision
loss in outputs.

• The two sub-problems obtained by FUL neuron based
splitting are completely independent, thus they are more
conducive for parallel verification to improve the effi-
ciency.

From above, we can get the following proposition directly.
Proposition 2: After one splitting by the FUL strategy, at

least one more undeterministic neuron become deterministic
when conducting another single pass abstract analysis for each
sub-problem.

D. Speculative Constraint-guided Input Refinement

Given the input ranges, abstract analysis computes the
reachable sets for each neuron. Since the precision loss will
be amplified layer by layer during abstract analysis, the value
bounds of the input layer (i.e., earliest layer) can affect the
precise of abstract analysis greatly. With tighter input ranges,
abstract analysis can find more neurons deterministic and
compute more accurate reachable sets, which greatly help to
reach high-performance verification (see experimental results
of Sect. IV-C4). During each splitting, new constraints are

added into Ω, the input ranges can be refined simultaneously.
This is achieved by linear programming. More clearly, for
each input variable xi ∈ X(i = 0, 1, ..., n), our algorithm
generates two linear programming problems, where Ω is used
as constraints, and max xi and min xi are objective functions.
By solving these problems, the input range of xi is refined.

In the above refinement process, after each splitting, our
algorithm needs to call 2n times of linear programming solvers
to refine all input variables. Since each splitting adds only one
constraint (sometimes it may even be redundant), performing
input refinement immediately may not lead to significant
refinement on the input. Therefore, in order to reduce the
overhead of calling the linear program solver, our algorithm
utilizes a speculative input refining strategy. The main idea lies
in that we do not refine the input after each splitting, but every
m (m ≥ 1) times of splitting, where m is configurable. The
choice of m is tricky. As m increases, the average running time
for each iteration may decrease, but the number of iterations
is likely to increase.

Generating Counter-examples from Refined Input: To im-
prove the efficiency of finding counter-examples, after each
refinement on the input, our algorithm selects several con-
crete input points as potential counter-examples for concrete
execution. Currently, we choose inputs from the bound-
aries and middle points, e.g., (x1, ..., xn), (x1, ..., xn) and
(x1+x1

2 , ...,
xn+xn

2 ). Combining concrete execution and ab-
straction refinement makes our algorithm more efficient in
falsifying the property when the property does not hold.

Since the input ranges of variables are refined each time,
we can generating new potential counter-examples from the
refined input, which makes out approach be more likely to
find true counter-example for false property compared to
verification with no input refining.

E. Completeness Discussion

First, our approach is sound (i.e., if the verification pro-
cess terminates within time-limit and returns “true”, then the
neural network must satisfy the property), since we use over-
approximations of the concrete semantics of neural networks
under the framework of abstract interpretation [15], like other
similar works utilizing abstractions [6], [16]. In the following,
we discuss the completeness.

Theorem 1: Let d be the number of undeterministic neurons
of a neural network N after the first single pass verification.
Our approach is complete, in the sense that if N satisfies the
property ψ, then VISIR will terminate within maximal splitting
depth d and return “True”. In other words, the maximal value
of sd in Algorithm 1 is never larger than d.

Proof 1: From Proposition 2, we find that VISIR will make
at least one more undeterministic neuron become deterministic
in both sub-problems after each splitting and refinement.
Namely, if sd is increased by 1, |AU | will be decreased by 1
at least after conducting abstract analysis in both sub-problem
1 and sub-problem 2. Thus when sd is increased by d or even
larger, |AU | will be decreased by d at least, which means all
the undeterministic neurons have become deterministic. Then
from Proposition 1, property ψ must be verified at that time.
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Note that for those approaches not taking the FUL strategy
(e.g., [14]) under our framework, there is no guarantee of
decreasing the number of undeterministic neurons after each
splitting, and thus there is no guarantee of completeness within
d splitting steps.
Example 3. We give an example as shown in Figure 2 to show
the incompleteness of non-FUL strategy within 2 splitting
steps. The network contains one input x, two hidden layers
(each with one neuron, i.e., s1 and s2 respectively), one output
y. The weights are s1 = x, s2 = 4s1 − 1, y = s2. Assume
x ∈ [−1, 1] and property ψ is y >= (4x − 1)/2. Ω is
initialized as {x ≥ −1, x ≤ 1}

x 1 4
ReLU

[-1,1]

[x, x]

[-1,1]

1
ReLU

 0 -1

[-1,1]

[0, 0.5x+0.5]

[-1, 2x+1]

[-1,-1] [-1,3]

[0, 1.5x+1.5]

[0, 1.5x+1.5 ]

0

[0,0] [0,3]

s2
bs1

f ys2
fs1

b
y>=(4x-1)/2?

unknown unknown

Fig. 2. Example for completeness discussion

After the first time of abstract analysis, we get sb1 =
[x, x], sf1 = [0, (x + 1)/2], sb2 = [−1, 2x + 1], sf2 = [0, 3(x +
1)/2], y = [0, 3(x+1)/2] as shown in Figure 2. Since whether
ψ holds is unknown for x = [−1, 1], we perform splitting.
Suppose we split with the (non-FUL) neuron s2 by its bound
sb2, and get two cases: (1) Ω1 = Ω ∪ {2x + 1 < 0}; (2)
Ω1 = Ω ∪ {2x + 1 >= 0}. Case (1) is verified by one
other single-pass abstract verification directly. For case (2),
x is refined to [−0.5, 1], the activation state of neuron s2
is still not deterministic. With another abstract analysis, we
get sb1 = [x, x], sf1 = [x, (x + 1)/2], sb2 = [4x − 1, 2x +
1], sf2 = [0, 2x + 1], y = [0, 2x + 1]. Whether ψ holds is
still unknown. We choose to split over each node at most
once, and we continue to split node s1 and get two cases (21)
Ω21 = Ω2 ∪ {x < 0}; (22) Ω22 = Ω2 ∪ {x >= 0}. Case (21)
is easily verified. For case (22), x is refined as [0, 1], but after
abstract analysis, we only get: sb1 = [x, x], sf1 = [x, x], sb2 =
[4x − 1, 4x − 1], sf2 = [4x − 1, 3x], y = [4x − 1, 3x]. The
activation state of s2 and whether ψ holds are still unknown,
which means the property can not be verified by non-FUL
strategy with at most one split on each node, i.e., within 2
splitting steps.

IV. EVALUATION

To evaluate our approach, we have implemented a prototype
LayerSAR on top of Neurify [14]. In the implementation,
we use the OpenBLAS library to efficiently calculate matrix
multiplication. During the phases of single-pass verification
and input refining, we use lp solve 5.5 [21] to check whether
a constraint set is satisfiable and solve optimization problems.
In each splitting, the two new sub-problems can be verified
independently, thus they are verified with multi-threading to
gain speedup.

A. Experimental Setup
In the experiments, we use following datasets: ACAS

Xu [22], Collision Detection [13] and MNIST [23]. The

dimensions of all of the verification problems from above four
datasets are given in Table II.

• The ACAS Xu data set is a neural network based advisory
system for aircraft in order to prevent collisions.It consists
of 45 networks, each with 4 properties (Properties 1 to 4
defined in [11]) to be verified.

• The Collision Detection (row “CD”) network is used
to predict collisions between two vehicles with different
configurations. It contains 500 verification problems. For
MaxPooling activation function, we decompose it into a
series of ReLUs as shown in [20].

• We also conduct preliminary experiments on MNIST
dataset, which is designed for classifying hand-written
digits. It has more inputs than the above datasets.

TABLE II
DIMENSIONS OF OUR BENCHMARKS

Model Architecture

Dataset #Properties #Inputs #Hidden units #Outputs

ACAS Xu 180 5 6 layers*50 5
CD 500 6 40 MaxPooling+19 ReLU 2

MNIST 700 784 2 layers * 512 10

All experiments are carried out on a computer with 16GB
RAM, a 3.6 GHz octa-core Intel® CoreTM i7-7700U host
CPU, and Ubuntu 16.04. The number of maximum threads
is set to 128 for LayerSAR.

B. Comparisons with Other Complete Verifiers

1) Experiments on Safety: For the comparisons we restrict
our attention to complete verifiers. These verifiers are of-
ten less scalable than incomplete ones, while they provide
full guarantees on the correctness of their outputs, which
is a key objective in safety-critical areas. We conduct com-
parison experiments with some typical, technically similar
and high-performance tools, e.g., Neurify [14], Planet [13],
Marabou [12], Venus [18], Venus2 [19], nnenum [24], [25] and
complete version of ERAN with DeepPoly domain [16]. Neu-
rify is one of the most similar tool with ours, which combines
symbolic linear relaxation and gradient guided input splitting.
Planet and Marabou both perform complete verification of
neural networks with the help of SMT. Marabou is built based
on Reluplex [11], also performing input splitting heuristically
to achieve high efficiency. Venus2, which is on top of Venus, is
a MILP-based verifier combining input splitting and symbolic
interval propagation, leveraging dependency relations between
the ReLU nodes to reduce the search space. Nnenum combines
zonotopes with star set overapproximations, and uses efficient
parallelized ReLU case splitting.

In our experiment, Planet (not support multi-threading)
and Marabou were run with the parameters reported in [12]
(using Marabou’s D&C model with 64 cores on its stable
branch, i.e., cav artifact2). Neurify and ERAN was run with
MAX THREAD set to 128 and Venus was run with 7 splitters,

2https://github.com/NeuralNetworkVerification/Marabou/tree/cav artifact
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TABLE III
COMPARISON WITH COMPLETE VERIFIERS

Tools
Dataset

ACAS Xu
CDP1 P2 P3 P4 Total

LayerSAR
F/T/TO 0/45/0 39/6/0 3/42/0 3/42/0 45/135/0 172/328/0
Time(s) 108 63 11 6 188 12

Neurify
F/T/TO 0/45/0 36/4/5 3/42/0 3/42/0 42/133/5 -
Time(s) 572 19821 997 53 21443 -

Planet
F/T/TO 0/24/21 20/0/25 3/42/0 3/40/2 26/106/48 172/328/0
Time(s) 96075 98041 13505 11084 218705 96

Marabou
F/T/TO 0/29/16 38/2/5 3/39/3 3/40/2 44/110/26 172/328/0
Time(s) 87496 31120 27461 13046 159123 241

Venus
F/T/TO 0/45/0 39/6/0 3/42/0 3/42/0 45/135/0 -
Time(s) 8362 2698 290 3839 15189 -

Venus2
F/T/TO 0/45/0 39/6/0 3/42/0 3/42/0 45/135/0 -
Time(s) 111 389 15 12 527 -

nnenum
F/T/TO 0/45/0 39/6/0 3/42/0 3/42/0 45/135/0 -
Time(s) 216 109 40 35 400 -

LayerSAR
Speed-up

vs.Neurify 5.3 314.6 90.6 8.8 114.1 -
vs.Planet 889.6 1556.2 1227.7 1847.3 1163.3 8

vs.Marabou 810.1 494 2496.5 2174.3 846.4 20.1
vs.Venus 77.4 42.8 26.4 639.8 80.8 -
vs.Venus2 1.0 6.2 1.4 2.0 2.8 -
vs.nnenum 2.0 1.7 3.6 5.8 2.1 -

128 workers (i.e., 128 threads). Venus2 was run with its ver-
sion of participating in the VNN-COMP 2021 [26]3. Nnenum
was run with the online version with default parameters
directly4. Neurify, Venus, Venus2, nnenum and ERAN were
not run on the CollisionDetection, due to lack of frontend
support of the dataset. All the experiments were conducted
with a time limit of 3600s.

The experimental results are shown in Table III. These
tools run on two date sets: ACAS Xu (columns “P1, P2, P3,
P4, Total”), Collision Detection (row “CD”). Row “F/T/TO”
means the number of verified unsatisfiable (i.e., false) proper-
ties, satisfiable (i.e., true) properties and unverified properties
(i.e., timeout) respectively. The row “Time” includes the total
running time on all networks. In the case of a timeout, the
runtime is counted as the time limit (3600s), even though the
real runtime could be more. As a result, the total runtime for
methods with more timeout cases would be worse in practice.
Since our approach is with the least unverified properties, the
speedups compared to other tools in practice could be larger
than these reported here.

For ACAS Xu networks, LayerSAR outperforms other tools
by verifying more problems and by being faster on average.
LayerSAR, Venus and nnenum verify all of the 180 verification
problems, while Marabou, Planet and Neurify have timeout
cases. LayerSAR at least has an average 114X, 1163X, 846X
and 81X speedups over Neurify, Planet, Marabou and Venus
respectively. To evaluate the efficiency of counter-examples
generation for false property, we further summarize the total
time cost for the 45 unsatisfiable properties, which is 19s for
LayerSAR, 12540s for Neurify, 76516s for Planet, 12083s for

3https://github.com/pkouvaros/venus2 vnncomp21
4https://github.com/stanleybak/nnenum. We run on a recently download of

the master branch.

Marabou and 950s for Venus. Thus LayerSAR at least achieves
660X, 4026X, 635X and 50X speedups over them respectively.
This achievement mainly comes from our counter-example
generating method of taking concrete testing on refined input.
After several splittings, our approach can narrow the search
space to a quite small input space, which is more conducive
to finding counter-examples, compared to many method of
doing testing directly on the initial input space. Compared with
nnenum (the fastest complete verifier on ACAS Xu networks
in VNN-COMP 2021 [26]) and Venus2, LayerSAR has the
same order of magnitude on verification efficiency as them,
and still achieves an average 2.8X and 2.1X speedups for
all the 180 properties (17.6X and 2.4X speedups for the 45
unsatisfiable properties) respectively.

We have also conducted a comparison between (the com-
plete version of) ERAN with DeepPoly domain and our
LayerSAR on ACAS Xu dataset with property 1-4. LayerSAR
verified 180 properties (45 false and 135 true) in 183s, while
ERAN verified 130 properties in 754.3s.5

We further compared these verifiers in Figure 3, which
summarizes the execution of all 180 properties from ACAS
Xu. Here, the y-axis is the time in seconds (with a time limit
3600s), and the x-axis is the number of properties verified
within that time. Notice that the y-axis is log scale, so that
differences in runtimes between easy and hard benchmark
instances are both visible. The result has shown more clearly
that LayerSAR outperforms other verifiers on ACAS Xu.

For Collision Detection networks, it has shown that all the
three verifies finished successfully. On this easily verified data
set, LayerSAR still obtains 8X and 20.1X speedups over Planet
and Marabou on average respectively.

5For 5 true and 45 false properties, ERAN terminates with exception errors
quickly (thus we did not put the result in Table III).
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Fig. 3. Comparison of Complete Verifiers on ACAS Xu

2) Experiments on Robustness: We used MNIST [23] for
our preliminary experiments. MNIST consists of grayscale
images of size 28 × 28 pixels (i.e., 784 inputs) with 10 likely
output. We conduct experiments with an experimental setup
similar to VNN-COMP2021 [26]. The benchmark set consists
of three fully-connected MNIST networks with 2 layers and
24, 50 and 512 ReLU nodes in each layer. We randomly
sampled 25 correctly classified images from the MNIST test
set. For each image, we perform perturbation to every pixel
value with a total perturbation bound ε (its range is 1 to 13)
by the L∞ norm (i.e., |X|∞ < ε) [10]. The timeout bound is
600s for each verification. We conduct experiments on the top
3 tools in Table III and Figure 3, i.e., LayerSAR, Venus2 and
nnenum 6.

Figure 4 shows the results. When ε is small (i.e., less than
3), all the 3 tools can verify most of the safe properties. But as
ε get larger (i.e., less than 7), the number of verified safe cases
drops dramatically because (1) the underlying model tends
to become unsafe and (2) LayerSAR suffers from relatively
higher overestimation errors, since our singe-pass analysis
with symbolic interval is less precise than that of nnenum
(with star set) and Venus (with MILP). However, as ε increases
further, more and more counter-examples can be found by
LayerSAR. This result indicates that LayerSAR can generate
counter-examples more efficiently than nnenum and Venus2,
by taking our FUL splitting and input refinement.

C. Ablation Study

To evaluate the contribution of each technique, we conduct
the following experiments on verifying 4 properties of ACAS
Xu networks. All the experiments were conducted without
time limit.

1) Linear Relaxation: We compare our linear relaxation
technique with those from DeepPoly [16] and Neurify [14].
We have implemented all these linear relaxation techniques in
our framework to conduct a fair comparison. The results are

6Note that, LayerSAR supports “nnet” format, while nnenum and Venus2
support “onnx” format, thus we have translated the MNIST models from
“nnet” format into “onnx” format with tool NNet, https://github.com/sisl/nnet.

60

80

100

1 3 5 7 9 1 1 1 3

Ve
rif

ie
d 

Pe
rc

en
ta

ge
(%

)

ɛ

nnenum

LayerSAR

Venus2

Fig. 4. The verifying percentage with different ε on MNIST

listed in Table IV. It demonstrate that our linear relaxation
is more efficient than the other two in verifying 4 properties
of ACAS Xu networks. The average speedup is around 1.4
times. This achievement is mainly obtained from that the
output symbolic interval of our linear relaxation technique has
introduced smallest area within the input region.

2) Splitting with Neuron by FUL: To evaluate our splitting
strategy with neurons in the FUL, we compare our strategy
(column “FUL”) with three non-FUL strategies: a total ran-
dom strategy (column “RD”, which randomly chooses one
neuron for splitting from all undeterministic neurons), the
gradient based branching [14], [27] (column “GD”, which
computes scores based on gradient information to prioritize
undeterministic ReLU nodes) and the dependency analysis
based branching [18], [19] (column “DD”). DD branching
strategy is based on intra-layer dependencies (since inter-
layer dependencies analysis is too costly [18]), i.e., DD firstly
specifies a non-FUL splitting layer, then chooses the neuron
with largest depending number in the selected layer, where
depending number of neuron s is defined as the number of
neurons that depend on s in its same layer. All the branching
strategies are implemented in our tool to assure the fairness.
Note that, for the non-FUL strategies, we split over each node
at most once for each property.

The result is shown in Table V. When verifying the property
P2, there are 17, 21 and 20 networks that cannot be verified by
the random, gradient based and dependency based strategies
respectively, because the non-FUL strategies based verification
is incomplete within our assumption. Considering the time
cost, the results show that FUL is much faster than the non-
FUL strategies, with over 1-2 orders of magnitude speedup on
average for these networks.

3) Strategies for choosing splitting neuron in FUL: We
compare our strategy of choosing neuron with the largest
value range (column “LVR”) in FUL with following strategies:
(1) choosing the first undeterministic neuron (i.e., with the
smallest index, column “FUN”); (2) choosing neuron with the
smallest value range (column “SVR”); (3) choosing the neuron
with largest depending number (column “LDN”) in FUL.

The results are listed in Table VI. It demonstrate that
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TABLE IV
COMPARISON OF DIFFERENT LINEAR RELAXATIONS

Total Time Our LR Speed-up

ACAS Xu Our LR DeepPoly’s LR Neurify’LR vs. DeepPoly’LR vs. Neurify’LR

P1 108 170 153 1.57 1.42
P2 63 80 85 1.27 1.35
P3 11 13 15 1.18 1.36
P4 6 7 7 1.17 1.17

Total 188 270 260 1.44 1.38

TABLE V
COMPARISON OF FUL AND NON-FUL SPLITTING STRATEGIES

U/S/T Total Time FUL’s Speed-up

ACAS Xu FUL RD GD DD FUL RD GD DD vs. RD vs. GD vs. DD

P1 0/45/0 0/45/0 0/45/0 0/45/0 108 25971 1642 1332 240 15 12
P2 39/6/0 28/0/17 24/0/21 25/0/20 63 46167 5305 3415 733 84 54
P3 3/42/0 3/42/0 3/42/0 3/42/0 11 814 68 135 74 6 12
P4 3/42/0 3/42/0 3/42/0 3/42/0 6 289 51 96 48 9 16

Total 45/135/0 34/129/17 30/129/21 31/129/20 188 73241 7066 4978 390 38 26

TABLE VI
COMPARISON OF STRATEGIES FOR CHOOSING SPLITTING NEURON IN FUL

ACAS Xu
Total Verifying Time LVR’s Speed-up

LVR FUN SVR LDN vs. FUN vs. SVR vs. LDN

P1 108 139 159 117 1.3 1.5 1.1
P2 63 75 77 78 1.2 1.2 1.2
P3 11 14 17 13 1.3 1.5 1.2
P4 6 7 8 7 1.2 1.3 1.2

Total 188 235 261 215 1.3 1.4 1.1

choosing neuron with the largest value range (column “LVR”)
in FUL is a little more efficient than the other strategies on
average when verifying the 4 properties of ACAS Xu, even
better than the intra-layer dependency based strategy (column
“LDN”) [18]. It indicates that the value ranges of neurons may
affect much on the verification efficiency, since its precision
loss will be amplified layer by layer during abstract analysis.

4) Strategies for Input Refinement: We first compare our
default input refinement strategy (refining all the input after
each splitting, called AIR) with a strategy called PIR, which
only refines partial of the input (i.e., the first variable) after
splitting7. The comparison result is shown in Table VII. Both
strategies can verify all the networks in ACAS Xu. The total
verifying time of AIR is significantly decreased compared with
that of PIR strategy. The rate of decrease in iterations and
the speedup in verification time are both nearly 3 orders of
magnitude on average.

We analyze the influences of speculative number m of input
splitting when verifying ACAS Xu. In Figure 5, the x-axis
shows the different speculative number m and the y-axis shows
the speedup of our default strategy (i.e., m = 1) relative to
experiments with different values of m. The results show that,
for property 1 and 2, m = 1 achieves the highest efficiency,
while for property 3 and 4, m = 2 achieves the highest
efficiency. This indicates that LayerSAR can be more efficient

7Note that, if we don’t do input refinement for any variables, it failed to
verify most of the properties.

TABLE VII
COMPARISON OF DIFFERENT INPUT REFINEMENT STRATEGIES

Number of Iterations Total Time

ACAS Xu AIR PIR AIR PIR Speedup

P1 720784 1236688516 108 368586 3413
P2 374527 236213960 63 66806 1060
P3 50647 4805628 11 777 71
P4 17752 1014266 6 161 27

Total 1163710 1478722370 188 436330 2321

with a suitable speculative number, and the choice of m may
be sensitive to the structure of neural network and property.

5) Multi-Threading Technique: For ACAS Xu date set, we
set the thread number (i.e.,“#Threads”) as 1, 4, 16, 64, 128
separately, and record the verifying results in Table VIII, which
indicates that our approach is naturally parallelized.

TABLE VIII
THE IMPACT OF THREAD NUMBERS

#Threads 1 4 16 64 128

Total time(s) 473 383 262 205 188

D. Threats to Validity
The main threat to validity lies in the representativeness of

the benchmarks. The datasets used in this paper have relatively
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small number of neurons (with ReLU activation function).
Because of that, our findings may be less convincing. However,
existing complete verifiers are known to be hard in verifying
large-scale neural networks at moment, and the size of neural
networks in the evaluation dataset used in this paper is com-
parable with those used in existing state-of-the-art complete
verification tools. Thus comparing with complete verifiers over
these data sets still show meaningful results.

V. RELATED WORK

Huang et al. [9] and Liu et al. [5] survey techniques to
verify safety and robustness of deep neural networks. Besides
the soundness as the basic requirements of verification, all
these methods can be either incomplete or complete.

It is generally impractical to verify the property of the
neural network through exact reasoning directly. To reduce
the complexity of verification, a set of abstraction methods are
applied during the neural network propagation, such as sym-
bolic interval analysis [10], abstract interpretation [6], [16] and
duality [28], star sets based reachability analysis [29]. Con-
vex relaxation is another widely used technique for abstrac-
tion [13], [14], [16], [17], [30]. Botoeva et al. [31] presented
a layer-wise convex relaxation framework that unifies all LP-
relaxed verifiers and suggested there is an inherent barrier to
tight verification for existing convex relaxations. Most of these
researches are often incomplete, and may scalable for large
networks. While unlike complete methods, incomplete method
may not give conclusive answers for verification problems due
to precision loss during abstraction.

In this paper, we prefer the complete approaches. Such
approaches are the first batch of verification methods for neural
networks. The ideas are to encode the verification problems
and feed them to Satisfiability Modulo Theory [7], [11]–[13]
or Mixed Integer Linear Programming (MILP) solvers [32],
[33]. Recently, some researchers use a combination of overes-
timation and refinement techniques to get a complete verifica-
tion [10], [12], [14], [18], [34]–[41]. Bunel et al. [20] present
a unified “branch and bound” view of piecewise linear neural
network verification, and well fits SMT-based verifiers (e.g.,
Planet, ReluPlex) to their framework.

Splitting over input space or acivation neuron is often used
for tightening the output of neural networks [10], [12], [16],

[27], [37], [42]–[46]. Two of the most closely related works are
ReluVal [10] and Neurify [14]. To verify a given property, both
of them have tried over-approximated technique to compute
reachable output sets and applied iteration techniques to refine
the outputs. ReluVal [10] performs symbolic interval analysis
and splits input space by dichotomy strategy. Neurify [14]
combines symbolic linear relaxation and intermediate predi-
cates based splitting techniques, where splitting neurons are
ordered statically by gradient analysis before verification. The
key differences to our approach are that we always choose
FUL neuron to generate splitting predicates dynamically,
and utilize constraint guided input refinement technique to
make more undeterministic neurons become deterministic.
That makes our search tree has smaller maximum depth and
obtain a much better performance.

Several researchers have devoted to utilize abstract inter-
pretation [15], [16], [47], [48], efficient bound propagation
techniques [40], [41], [49] and scalable convex hull approx-
imations [50] for getting precise reachable output efficiently,
These works aim to generate more useful output for abstract
analysis from different aspects. They are orthogonal to our
work, since we use single-pass abstract analysis as a black
box. It is interesting to combine these techniques with our
work in the future.

VI. CONCLUSION

We have presented an approach for verifying safety and ro-
bustness properties of neural networks through determinizing
activation states of neurons. During the verification, we pro-
pose a more precise linear relaxation technique, a FUL neuron
based splitting strategy and a configurable constraint-guided
input refinement to make more neurons with undeterministic
activation states become determinized, which all contribute to
achieve high verifying efficiency of our approach. And our
approach can achieve complete verification finally.
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for verification and analysis of deep neural networks,” in International
Conference on Computer Aided Verification (CAV 2019). Springer,
2019, pp. 443–452.

[13] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” in International Symposium on Automated Technology for
Verification and Analysis (ATVA 2017). Springer, 2017, pp. 269–286.

[14] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal
safety analysis of neural networks,” in Advances in Neural Information
Processing Systems (NIPS 2018), 2018, pp. 6367–6377.

[15] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.
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