
Data Race Detection for Interrupt-Driven Programs
via Bounded Model Checking

Xueguang Wu† Yanjun Wen† Liqian Chen†‡ Wei Dong† Ji Wang†

xueguangwu@sina.cn y.j.wen@263.com lqchen@nudt.edu.cn dong.wei@263.com wj@nudt.edu.cn

† National University of Defense Technology, Changsha 410073, China
‡ National Laboratory for Parallel and Distributed Processing, Changsha 410073, China

Abstract—In Cyber-Physical Systems with interrupt mecha-
nism, interrupts may cause unexpected interleaving executions
and even wrong execution results. A kind of frequently occurred
errors are caused by data race. We present an approach under
the framework of bounded model checking (BMC) to detect
data race for interrupt driven programs. The key idea is to
automatically serialize a concurrent interrupt driven program as
a non-deterministic sequential program, whose possible execution
set includes all the possible executions of the interrupt driven
program. Moreover, our approach checks data race in the
sequential program and collects all the path condition of the
data race location. On this basis, we leverage bounded model
checking to convert all the path conditions into SMT formulae.
Furthermore, our analysis uses a decision procedure to determine
whether the formula is satisfiable, from which the analysis
eliminates false alarms which can’t occur in real concurrent
executions. A prototype based on CBMC is implemented and
preliminary experimental results are encouraging.

Keywords—Key words: interrupt-driven programs; data race;
bounded model checking; Satisfiability Modulo Theories; Cyber-
Physical Systems; concurrent

I. Introduction

Interrupt driven program is becoming more and more
popular in Cyber-Physical Systems (CPS), because interrupt
mechanism is suitable for many features of CPS. However, the
execution of interrupt driven program may cause complicated
interleaving state space which may contain some unexpected
execution results. One significant problem is caused by data
race. Roughly speaking, a data race on a shared variable
means that two threads access that variable simultaneously and
the accesses are conflicting in concurrent program. Conflict
assessing means that at least one of the accessing is writing the
variable. Although some races are unharmful, bugs are often
caused by data race. Hence, data race detection are valuable
for concurrent programs.

Data race may cause software failure, and such kind
of problem is hard to discover via software testing. Con-
sider the following example in Fig.1 , which is an example
of data race in the interrupt-driven program. The function
Get on board time and Second interrupt are called by
task and interrupt respectively and s second and s millisec

This work is supported by the National Natural Science Foundation of China
(NSFC) under Grant Nos.90818024, 91118007, 61120106006, 61202120, and
the National High Technology Research and Development Program of China
(863 Program) under Grant No. 2011AA010106.

are shared variables. If the interrupt is triggered when the task
execute between line 4 and 5, then we will find that the time
value in result is incorrect. Such kind of problems may cause
serious results in some application scenarios such as aerospace
and aeroplane. Because this kind of bug can only be triggered
in a very special situation, software testing is hard to find this
kind of problem.

1 / ∗ main t a s k ∗ /
2 Time Get onboard time (void) {
3 Time r e s u l t ;
4 r e s u l t . second = s second ;
5 r e s u l t . m i l l i s e c = s m i l l i s e c ;
6 re turn r e s u l t ;
7 }

8 / ∗ i n t e r r u p t ∗ /
9 void S e c o n d i n t e r r u p t (void) {

10 s second ++;
11 s m i l l i s e c = 0 ;
12 }

Fig. 1: Example of Data Race in Interrupt-Driven Programs

Many methods have be adapted to detect data race in recent
years. Static analysis of data race provides a powerful approach
to find race condition, and much progress has been achieved
in the past two decades [1][2][3]. However, static analysis
itself has limited ability in precision. Dynamic analysis of
data race is also used in industry [4][5]. Compared with static
analysis, dynamic analysis is incomplete in race detection.
Software bounded model checking is used to overcome the
state explosion of software model checking. Many progress
have been achieved in recent years [6][7]. Most of the previous
works focus on symbolic bounded model checking, but in
recent years much attentions have been focused on explicit
bounded model checking.

In this paper, we present an approach to detect data race
in the framework of bounded software model checking. We
firstly serialize an interrupt-driven program into a sequential
programs. Then we use the traditional relationship of accessing
variables to find the potential data race. Lastly, we use software
bounded model checking to eliminate the false alarms. On this
basis, a prototype is implemented and preliminary experimen-
tal results are presented on benchmark programs.

The rest of the paper is organized as follows. Section II
discusses some related work. Section III describes the features
of our interrupt driven program. Section IV presents a race
detection method based on accessing relationships of shared
variables and a false alarm elimination method via BMC.
Section V presents our prototype implementation together with
potential experimental results before Section VI concludes.

II. Related work

Lock set data race detection. Data race detection for con-
current program has gained much attention within the past
decade [8][4][1][5]. And various methods have been used for
race detection and false alarm elimination. Such as high level
race detection [8], binary rewriting [4], locksmith’s component
analysis [1]. Cyrille Artho et al. [8] raise a new kind data
abstraction method in high level. Because the classical notion
of data race is not powerful enough, which may miss some
consistencies occurring in practice and the inconsistence may
cause false alarms in the classical data race detection. E.g.,
the structural type data may have to be treated atomically in
traditional race detection, but in high level race detection this
data will be treated as different shared variables. This method
indeed will reduce some kind of false alarms. Stefan Savage
et al. [4] propose a dynamic data race detection method and
implement a race checking tool Eraser. They focus on the
data race caused by improper synchronization such as lock
set. In Eraser they use binary rewriting techniques to record
all the shared variables and verify whether the shared-memory
reference is consistence. In fact because Eraser is a dynamic
checking tool they need not consider whether the execution
path is flexible. Whereas, since we use static analysis we
need to consider whether the race location can be executed
in the real execution. Recently, Polyvios Pratikakis et al [1]
propose a static analysis method for C programs, and they
also implement a static analysis tool named LOCKSMITH.
They mainly focused on the efficiency and effective of data
race detection for multi thread C program based on lock
set. Their work also make some progress in C structures
and void pointers. Compared with their work, our method
is path sensitive static analysis method and the scalability of
LOCKSMITH is better than our tool. Recently, Xinwei Xie
et al [5] presents a dynamic race detection method based
on optimize the happens before relationship (HBR) which
is a classic method to reduce the state space of concurrent
programs. The efficiency of their method is better or no worse
than most of the previous HBR data race detection methods
such as ERASER and FASTTRACK.

Path sensitive data race detection. Recently much attention
has been focused on path sensitive data race detection for
concurrent programs [2][3][9]. Thomas A. Henzinger et al
[2] propose data race detection by context inference which is
based on software model checking. Their method use predicate
abstraction to get the proper model and counter example
guided abstraction refinement (CEGAR) to permit automatic
inference of models. Their method has been implemented in
BLAST which is a model checking tool for sequential C
programs. Compared with our work, BLAST uses predicate
abstraction and CEGAR to automatic generate the interleaving
state space, while we use BMC to get the proper interleaving
state space. The work in [3] presents a data race detection
method by symbolic execution [10]. Their method considers

all the potential executions in static race detection. They
implemented their work in Java PathFinder (JPF) which is a
symbolic execution tool for Java byte code. The differences
between JPF and our work is that JPF uses symbolic execution
to find proper state space while we use BMC to exclude the
unreachable states. More recently Vojdani et al [9] propose
a path sensitive data race detection method. They propose a
global invariant approach to sidestep the state space explosion
and precision lose in both context and path sensitive. They
have implemented their method in a tool called Goblint.
Furthermore Goblint has been tested in about 25 thousand
lines of code which is the “safe” subset of C. In fact the
global invariant approach is much like model checking but their
method adapted some optimization to avoid state explosion in
data race detection.

Data race detection for interrupt driven programs. Much
attention has been focused on data race detection of interrupt
driven program [11][12]. One work that is close to our ap-
proach is race detection for embedded systems in [11]. Their
work mainly focuses on the space flight control systems. They
consider race detection synchronized by mask and unmask
interrupts by bit-vectors and every byte of which represents
whether the interrupt is masked or unmasked. They also
support precise pointer alias checking which may find more
precise data race. Compared with their work, our method
doesn’t consider synchronization at moment, our method
mainly focuses on the path sensitive race detection to eliminate
false alarms caused by unreachable execution path. Recently
Martin D. Schwarz et al [12] propose a kind of race detection
for interrupt driven programs with synchronization via ceiling
protocol. Their work is the progressing work of Goblint. Their
method is for priorities of tasks changing dynamically. For this
kind of program they provide static analysis for race detection
between tasks in which the priority is dynamically change.
They also introduce a precise analysis of affine equalities
adopted from value analysis. Compared with our work, their
method is concerned about task priority dynamic changing,
but we consider the fixed priority task. On the other hand,
they use affine equalities to store the value and relationship
of all variables which can be used to judge whether the path
conditions can be satisfied, but we use SMT solver to solve
whether there exists some values satisfying the path condition.

III. Interrupt Driven Programs

The Interrupt Driven Programs which we discuss in this
paper have the following features:

• Program consists of one task and finite number of
interrupts.

• All the interrupts have a fixed priority and every
priority level has only one interrupt.

• A higher priority level interrupt can interrupt the task
or lower priority level interrupts at any time. When
task or lower priority level interrupts are interrupted
they can execute again when the higher priority level
interrupt finish.

In order to simplify the analysis procedure, we assume that
interrupt driven program only have four kinds of basic syntax
statements which are assignment, function call, condition goto

and return statement. All the other kinds of statements can
be transformed to these four kinds. We use control flow
automaton (CFA) to depict task and interrupts. The states
of a CFA are associated to control points of CFG in the
program. The transition between states in CFA is the control
flow between the control points in the program. Thus, a CFA
of a program is an abstraction of program’s control flow
graph which means that the CFA contains all the possible
traces of program execution. Formally, the CFA is a 4-tuple
A = 〈S CF , ICF ,TCF , L〉 where:

• S CF is the set of control states.

• ICF ∈ S CF is the set of initial control states.

• TCF ⊆ S CF × S CF is the set of transitions between the
control states.

• L : S CF \ {END FUNCT ION} → S tmt? is the
label function where S tmt? is the set of program ex-
pressions, END FUNCT ION is the end of function
control states.

• S CF has finite number of control states, but contains
only one final control state END FUNCT ION.

The transition between the control states represents the
control flow in the program. L(ICF) is the entry point of the
function, and (s1, s2) ∈ TCF iff one of the following conditions
hold:

• if L(s1) is an assignment or a function call statement,
then L(s2) is its only successor.

• if L(s1) is a condition goto statement, then L(s2) is its
condition true successor or condition false successor.

• if L(s1) is a return statement, then L(s2) =
END FUNCT ION.

As we have shown before the interrupt-driven program
consists of one task and many interrupts. We use Func =
task ∪ Irp to represent the set of task and interrupts where
Irp represents the set of all interrupts. Task is the normal
routine, while interrupts are some emergency events. If task
is interrupted by some interrupts, then the system scheduler
will hang up the task and assign the processor to the interrupt
processing function. The system allows interrupt nesting. Be-
cause we can’t determine when and where the interrupt will
come, we make a conservative assumption that the interrupt
may come after every instruction of task or interrupts. This
assumption will ensure that we will not ignore any possible
program execution paths. We can can describe interrupt-driven
programs’ execution states based on the CFA. Formally, the
semantic of interrupt driven program execution is a 5-tuple
M = 〈S MI , S IS , IIS ,TIS , L〉 where:

• S MI = S CF ∪ {INIT } is the set of all global control
states.

• S IS ⊆ S MI×S MI · · ·×S MI is the set of interleaving ex-
ecution states where the number of S MI is size(Func).

• IIS ∈ S IS is the initial interleaving states.

• TIS ⊆ S IS × S IS is the set of transitions between the
interleaving states.

• L : S CF \ {INIT, END FUNCT ION} → S tmt? is
the label function where S tmt? is the set of program
expressions.

S MI consists of the global states including the control states
of task and interrupts. TIS is the set of transitions of inter-
leaving control states. We can give the definition of transition
conditions for TIS similarly as that TCF . (S 1, S 2) ∈ TIS iff
one of the following condition holds. Let size(Func) = n,
S 1 = 〈s10, s12, . . . , s1n〉 S 2 = 〈s20, s22, . . . , s2n〉 where s i is
the priority level ranked as i-th interrupts.

• 〈s1i, s2i〉 ∈ TCF , if s1i , INIT and for ∀ j. j < i we
have s1 j = s2 j, for ∀k.k > i we have s1k = s2k = INIT
where i, j, k ∈ [1, n].

• If L(s1i) is function call expression and s2i is entry
point of the function call, then for ∀ j. j < i we have
s1 j = s2 j, for ∀k.k > i we have s1k = s2k = INIT
where i, j, k ∈ [1, n].

• 〈s1i, s2i〉 ∈ TCF , if s1i = INIT and for ∀ j. j < i we
have s1 j = s2 j, for ∀k.k > i we have s1k = s2k = INIT
where i, j, k ∈ [1, n].

These conditions show that task or interrupts execute one
step, task or interrupts call other function, task or interrupts are
interrupted by interrupts, respectively. At the same time, these
conditions satisfy that if the highest priority level interrupt
is executing then the task and other interrupts will not be
executed.

In order to find all data races in program, we need
to consider all possible interleaving states. We assume that
interrupts may come after every instruction of task or inter-
rupts. The complexity of the interleaving states S IS space
is: size(S IS) = size(S F1) × size(S F2) · · · × size(S Fn) where we
assume that size(Func) = n and S Fi is the number of control
states of the rank i-th priority level interrupt. We notice that
the state space of interleaving states S IS may be very large
when interrupt-driven programs consist of too many interrupts.
In fact, we will not store all these interleaving states, so the
state space wouldn’t cause data race check failure because of
memory out. However, the scale of state space will affect the
efficiency of data race detection.

On the other hand, we notice that these interleaving states
may contain some unreachable states in real program execu-
tion, such as the exclusive branch condition in task and inter-
rupts. However, the generation of interleaving states doesn’t
take this condition into account, so the resulting of interleaving
states include these unreachable states. These unreachable
states may cause false alarms for data race detection. This
is because the method of the generation of interleaving states
is path insensitive. We will introduce a false alarm elimination
method based on bounded model checking in Section. IV-C.

IV. Data Race DetectionMethod

Our data race detection method is based on analyzing
accessing relationships of shared variables. This detection
method can be divided into three steps: interleaving states
generation, potential race detection and false alarm elimi-
nation. Interleaving states generation which is depicted in
Section. III is to get the whole program interleaving states. In

order to simplify this problem, we firstly convert concurrent
program to sequential program. After the conversion we collect
the interleaving states based on the serialized program. Race
detection method is that we firstly define a data race violation
rule and then we explore the interleaving state space to find
the violation states. False alarm elimination can be achieved by
coding the path condition of data race states and then judging
whether the path condition can be satisfiable. The first two
steps can be done together. When we get the data race states,
we covert the program to SSA and collect the path condition.
The relationship of the these steps is shown in Fig. 2.

Serialize Program Potential Race Check

Code Program as
Formula

Decision
Procedure

Race Results SMT formula

Real Race

Input C FileInput C File

Serialized C program

SSA form

Ignore false alarm

Fig. 2: Data Race Detection Procedure

A. Convert Concurrent Programs to Non-deterministic Se-
quential Programs

In order to simplify the race detection and make it easy
to generate the interleaving state space we convert interrupt-
driven programs to non-deterministic sequential program. The
main idea of serializing procedure is adding non-deterministic
branches after every instruction. The branch condition is an
unknown value, so that when we coding the program as
formula we will consider both the branches. The true branch
of the added branches is the function call to the interrupt and
the false branch is empty. If there are more than one interrupt
then we need to add many this kind of branches. At the same
time, we should note that we not only add the branch to the
task but also add the branch to interrupts (if there more than
one interrupt). The method of adding branches in task and
interrupts is almost the same. In the task and interrupts we
should add the interrupt which has the priority level next to
the current task or interrupt. This means the highest priority
interrupt need not to add any branch. This process is shown in
Fig. 3 where we assume that brandom is an unknown value,
size(Irp) = n and INTi represents the function name of the i-th
ranking priority interrupt.

From the serialization procedure we can see that the
serialization process contains all the possibility of interrupt
driven programs’ execution. In the task we add the ranking first
interrupt shows the task can be interrupted by any interrupts.
While in an interrupt we only add the interrupts which has
higher priority than the current interrupt, which shows the
interrupt only can be interrupted by the interrupts of higher
priority.

1 / ∗ main t a s k ∗ /
2 void TASK(void) {
3 . . .
4 / ∗ a f t e r e v e r y i n s t r u c t i o n ∗ /
5 i f (brandom) INT 1 () ;
6 . . .
7 }

8 . . .
9 / ∗ i n t e r r u p t ∗ /

10 void INTi (void) {
11 / ∗ a t t h e b e g i n n i n g o f i n t e r r u p t ∗ /
12 i f (brandom) INTi + 1 () ;
13 . . .
14 / ∗ a f t e r e v e r y i n s t r u c t i o n ∗ /
15 i f (brandom) INTi + 1 () ;
16 . . .
17 }

Fig. 3: Convert Concurrent Programs to Sequential Ones

When adding the branch to the task function, we may find
that we have to take special consideration for function calls.
Because in S CF the successor of function call expression is
the successor in the control flow, but in S IS the successor
of the function call is the entry point of the function. From
the perspective of analysis we also need to add the branch
to the expression of function body, because data race may be
happened in function call. In order to simplify the analysis
procedure and overcome the previous problem, we inline all
the function calls. In fact in order to make the following race
detection and false alarm elimination simple, we inline the
whole program in three steps Firstly we inline the program of
the task and all the interrupts, Secondly we add the branch to
the task and interrupts, Lastly we inline the task procedure.
Then we get the serialized program with only assign and
condition goto expression.

B. Race Detection In Sequential Programs

We detect data race based on shared variables by exploring
the interleaving state space. The data race violation happens
iff one of the following condition holds:

• If the read variables set of current task or interrupts
is written by other interrupts simultaneously .

• If the write variables set of current task or interrupts
is accessed other interrupts simultaneously.

We focus on interrupt-driven program executing on single
core CPU, which in fact is a serialization execution process.

Now we can give the race detection procedure. We define
Variables as the set of all the shared variables, for any
expression e ∈ S tmt, var(e) represents the set of read and
write variables where var : S tmt → 2Variables. For any control
states S ∈ S CF , v read(S) and v write(S) represent the
set of read and write respectively where v read, v write :
S CF → 2Variables. Because we have serialized the program
which convert the program into the one with only assign and
condition goto expression, the read and write set of every

expression can be acquired easier. We can give the data race
definition as follows.

data race : S IS → Bool

data race(S) = true ⇐⇒ ∃i, j ∈ [1, n], i , j, (ri ∩ w j) ∪ (wi ∩

w j) ∪ (wi ∩ r j) , ∅

where S ∈ S IS , S i ∈ S CF , S = 〈S 1, S 2, . . . , S n〉, ri =
v read(S i), wi = v write(S i), r j = v read(S j) and w j =
v write(S j).

In fact we detect data race when we convert the program
into a serialization program. When finding interleaving states
satisfy the data race violation condition, the analyzer records
the violation state. The algorithm of our data race detection is
depicted in Algorithm.1 where S MI is the control states of the
whole program, ipt state is a list of interleaving states.

Algorithm 1 Race Detection In Sequential Programs
Initialization:

Set S = S MI ; ipt state = []; ipt f lag = f alse;
it = begin(S); pre it = it;

1: while it ! = NULL do
2: if Is int begin f lag(it) then
3: ipt f lag← true;
4: Push back(ipt state, pre it); Continue;
5: end if
6: if Is int end f lag(it) then
7: if Is empty(ipt state) then
8: ipt f lag← f alse;
9: end if

10: Pop back(ipt state, pre it); Continue;
11: end if
12: if ipt f lag == true then
13: if Is race(ipt state, it) then
14: Add potential f lag(it);
15: end if
16: end if
17: pre it ← it; it ← next(it);
18: end while
19: return S ;

When data race detection is finished we transform pro-
grams to static single assignment (SSA) which will simplify
coding the program as SMT formulae. There are many effi-
cienct and effective methods for converting program to SSA
such as [13][14] and we will not discuss this problem here.

C. False Alarm Elimination via Bounded Model Checking

There are many different bounded model checking algo-
rithms in [15][16]. In this section we only consider how to use
the idea of BMC to eliminate false alarms of race detection.

Before we code the program as formulae, we still have
one important problem to solve. That is how to deal with
loops. Though the program only consists of assignment and
condition goto statements, the conditional goto may go back
to a previous program point which means that it may be a
loop. The method we adapting is loop unwinding. The main
strategy is as follows:

• If user has set the max unwind, then either we unwind
the loop as the max unwind when the loop condition

always hold, or we unwind the loop until the loop
condition does not hold.

• If user doesn’t set the max unwind, then we unwind
the loop until the loop conditions does not hold.

Loop unwinding is an important method to simplify the
complexity of the problem in this paper. Because the complex-
ity of software, software bounded model checking always has
the problem of scalability. In the experiment, we find that when
the program consists of many loops, the data race detection
method may be failed due to memory out. So we may always
set the max unwind number except the program is simple.

After dealing with loops, we can begin to convert the
program to formula. In fact, there are many method to code the
program as formula in [17][16]. We use the method described
in [17], since the syntax form of our program is simple, it
is easy to adopted this method in our program. Because the
program has been serialized and transformed as SSA we only
need to consider assign and branch condition. The branch
expression can be changed to a conditional operator, the assign
expression can be still as an assign formula. This process can
be depicted in Fig. 4.

Once programs are encoded as SMT formulae, we can use
these formulae to eliminate false alarms. Firstly we get all the
potential race program points from the previous section, then
we can get SMT formulae from the beginning of the program
to the potential race program point. Secondly we use a SMT
solver to solve whether these formulae can be satisfied. Lastly
we eliminate false alarms of potential race points by the results
of SMT solver.

V. Implementation and Experiments

The data race detection method from Section IV is imple-
mented one top of the analyzer CBMC for Ansi-C [17] [18].
The analyzer CBMC is a Bounded Model Checker for ANSI-C
programs. It also supports SystemC using Scoot front-end. It
can be used to verify array bounds, buffer overflows, pointer
safety, exceptions and user-specified assertions. Furthermore,
it can check the consistence of ANSI-C with other languages,
such as Verilog. The verification procedure of CBMC is
performed by unwinding the loops in the program and passing
the resulting equation to a decision procedure. The aim of this
analyzer is for embedded software, it also supports dynamic
memory allocation using malloc and new. Because of CBMC
taking path conditions into account the analysis may exclude
some unreachable execution paths and therefore may raise less
false alarms.

Our test suite consists of sample programs from our
own examples together with the Goblint implementation [12].
Because the benchmark of Goblint implementation is from
the nxtOSEK[19] and the programs’ syntax of which is a
little different with standard C programs, we convert the
program to C under the premise of keeping program semantic
unchange. The main differences between nxtOSEK programs
and C programs lie in that some of the key words are different
and nxtOSEK programs support synchronization via resource
competition. For the first difference, we change the key words
of nxtOSEK program to the equal semantic key words of C
programs. For the second difference, we use a global variable

x = y;

if(x > 1){

 x = x + 1;

}

else{

 x = x + y;

}

/*possible data race location*/

x0 = y0;

if(x0 > 1){

 x1 = y0 + 1;

}

else{

 x2 = x0 + y0;

}

x3 = (x0 > 1) ? x1 : x2 ;

/*possible data race location*/

PC := x0 = y0 x1 = y0 + 1

 x2 = x0 + y0

 x3 = (x0 > 1) ? x1 : x2 ;

C Program SSA Formula

Fig. 4: Example of Converting Program to Formula

to represent the resource, and the get and release operations
of resource become test and set of the shared global variable.
This is a simple way to rewrite the program, but many of the
program properties have been changed, such as the priority of
the resource can’t represent. However, we don’t change the
read and write relation between task and interrupts which is
our main focus.

Program posture control is part of the control software of
a kind of aerobat. posture control has a task which is dealing
with the normal procedure and a interrupt to process the
exception of aerobat posture. The rest programs are all from
Goblint examples which are converted to C and renamed by
adding a prefix “C ” before their original name. Each of these
programs consists of one task and multi-interrupts. Program
C privative is an example for data race between task and inter-
rupts, and the interrupt uses a soft lock-set to mutually access
share variable. Programs C example and C example fun are
examples of [12], and these two programs are examples for
improper using synchronization variable and inter-procedure
data race checking respectively. Program C privatintervals
which consisting of one task and three interrupts is an example
for more than two interrupts data race situation. Program
C suffix consists of an task which initials two shared variables
and stores the result of adding the two shared variables. The
initial and store procedure are protected by different mutex-
lock and interrupts which modify the shared variable and may
cause data race under some condition.

The results of running the analyzer on these programs are
shown in TABLE I. For each program, the column “Size” gives
the lines of the programs, “Time(s)” presents the analysis times
which takes average of 10 times analysis and the unit of time is
second, “Int” gives the number of interrupts and “VCC” gives
the number of verifying conditions during bounded model
checking. We ran these experiments on a Intel(R) Core(TM)2
i5-2320 CPU machine with 3.00GHz and 2GB memory under
Fedora 12. The decision procedure of CBMC is Minisat 2.2.0.

After the analysis, we find that all programs have data
races. For posture control, because this program has many
loops, most of the loops have a deterministic boundary, such
as 256. The CBMC takes loop unwinding to deal with loop

Program Size(loc) Time(s) Int Race VCC

posture control 169 551.247 1 42 395

C privative 36 0.164 2 6 12

C example 38 0.169 2 3 9

C example fun 51 0.186 2 7 12

C privatintervals 51 0.191 3 4 23

C suffix 40 0.177 2 3 9

TABLE I: Experimental Results for Benchmark Examples

as we have mentioned before. At first we unwind all the
loops without setting unwind depth, the analyzer ran about 10
minutes and threw a memory out exception. So we set the max
unwind depth to 10, then the analyzer can finish race detection.
The data races in posture control program are caused by the
following situation during the normal routine, task may access
the global timer to get current time or reset it, while on the
other hand during the exceptional routine interrupt may change
the aerobat posture at some time interval and the interrupt
also needs to modify the global timer. This causes data race
happening. The data races in C privative program are caused
by improper synchronization via mutual variable. The task
uses a proper synchronization variable to protect the shared
variable, but the lower priority interrupt uses one synchroniza-
tion variable, while the higher priority interrupt uses another
variable to protect the accessing of shared variable. It causes
data races between interrupts. The data races in both versions
of the example program are discovered. The race warning in
C privatintervals occurs because the synchronization variables
are different between the interrupts and there is data race
between interrupts. For C suffix, race warnings are produced
for the task getting the sum of the shared variable, which may
race with the interrupt. The reason why the posture control
consumes so much time compared with the others is that the
other program contains fewer loops and the size is not very
large, but posture control consists many loops which will
cause the state space growing rapidly.

VI. Conclusion

We have presented an approach in the framework of
bounded model checking for analyzing data race for interrupt
driven programs. The main idea is to use accessing relations
over shared variables to detect potential data race and use
path condition to eliminate some false alarms. The data race
detection algorithm based on shared variable is implemented
by exploring the serialized program CFG. The algorithm
analyzes each interleaving control states to find the violation
of shared variable accessing rule. This method is a lightweight
way to detect data race but may cause many false alarms. Thus,
on this basis, we gather the path conditions of all the possible
race locations, then we use SMT solver to decide whether the
path condition is satisfiable. The path condition is unsatisfiable
means that the data race execution path is infeasible in real
execution and the potential data race with this path condition
is false alarm. A key benefit of our approach is the ability to
check data race for interrupt driven programs path sensitively.

Future work will consider two aspects to improve our
race detection method. On one hand, we want to extend
the scalability our approach to reason large scale programs.
Because shared variables are what we focus on during data race
detection, we can use code slice according to shared variables
to reduce the code size of the analyzed program. On the other
hand, we want to improve the efficiency of the analyzer. We
can use inter-procedure optimization method such as function
summarization to improve the efficiency of our race detection
method.

References

[1] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith:
Practical static race detection for c. ACM Trans. Program. Lang. Syst.,
33(1):3:1–3:55, January 2011.

[2] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race
checking by context inference. In Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation,
PLDI ’04, pages 1–13, New York, NY, USA, 2004. ACM.

[3] Klaus Havelund and Thomas Pressburger. Model checking java pro-
grams using java pathfinder. International Journal on Software Tools
for Technology Transfer, 2:366–381, 2000.

[4] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst., 15(4):391–411,
November 1997.

[5] Xinwei Xie and Jingling Xue. Acculock: Accurate and efficient
detection of data races. In Symposium on Code Generation and
Optimization, pages 201–212, 2011.

[6] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of
concurrent software. In Nicolas Halbwachs and LenoreD. Zuck, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
volume 3440 of Lecture Notes in Computer Science, pages 93–107.
Springer Berlin Heidelberg, 2005.

[7] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.
Bounded model checking of software using smt solvers instead of sat
solvers. In Antti Valmari, editor, Model Checking Software, volume
3925 of Lecture Notes in Computer Science, pages 146–162. Springer
Berlin Heidelberg, 2006.

[8] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races.
Software Testing, Verification and Reliability, 13(4):207–227, 2003.

[9] V. Vojdani and V. Vene. Goblint: Path-sensitive data race analysis.
Annales Univ. Sci. Budapest., Sect. Comp, 30:141–155, 2009.

[10] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976.

[11] Rui Chen, Xiangying Guo, Yonghao Duan, Bin Gu, and Mengfei
Yang. Static data race detection for interrupt-driven embedded software.
In Secure Software Integration Reliability Improvement Companion
(SSIRI-C), 2011 5th International Conference on, pages 47–52, June.

[12] Martin D. Schwarz, Helmut Seidl, Vesal Vojdani, Peter Lammich, and
Markus. Static analysis of interrupt-driven programs synchronized via
the priority ceiling protocol. In POPL’11, pages 93–104, 2011.

[13] Marc M. Brandis and Hanspeter Mössenböck. Single-pass generation
of static single-assignment form for structured languages. ACM Trans.
Program. Lang. Syst., 16(6):1684–1698, November 1994.

[14] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst.,
13(4):451–490, October 1991.

[15] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. volume 58 of Advances
in Computers, pages 117 – 148. Elsevier, 2003.

[16] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Methods
in System Design, 19:7–34, 2001.

[17] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Kurt Jensen and Andreas Podelski, editors, Tools
and Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages 168–
176. Springer, 2004.

[18] Daniel Kroening et al. The CBMC homepage, 2013. http://www.
cprover.org/cbmc/.

[19] Takashi Chikamasa et al. OSEK platform for MINDSTORMS, 2010.
http://lejos-osek.sourceforge.net/.

http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/
http://lejos-osek.sourceforge.net/

	Introduction
	Related work
	Interrupt Driven Programs
	Data Race Detection Method
	Convert Concurrent Programs to Non-deterministic Sequential Programs
	Race Detection In Sequential Programs
	False Alarm Elimination via Bounded Model Checking

	Implementation and Experiments
	Conclusion
	References

