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ABSTRACT

We present an approach under the framework of abstract interpre-
tation to analyze list-manipulating programs by combining shape
and numerical abstractions. The analysis automatically divides a
list into non-overlapping list segments according to the reachabil-
ity property of pointer variables to list nodes. The list nodes in
each segment are abstracted by a bit-vector wherein each bit corre-
sponds to a pointer variable and indicates whether the nodes can be
reached by that pointer variable. Moreover, for each bit-vector, we
introduce an auxiliary integer variable, namely a counter variable,
to record the number of nodes in the segment abstracted by that
bit-vector. On this basis, we leverage the power of numerical ab-
stractions to discover numerical relations among counter variables,
so as to infer relational length properties among list segments. Our
approach stands out in its ability to find intricate properties that in-
volve both shape and numerical information, which are important
for checking program properties such as memory safety and termi-
nation. A prototype is implemented and preliminary experimental
results are encouraging.
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1. INTRODUCTION

Invariants involving both shape and numerical information are
crucial for checking nontrivial program properties in heap manipu-
lating programs, such as memory safety, termination, bounded size
of heap memory. However, automatically inferring such invari-
ants is challenging, especially for programs manipulating dynamic
linked data structures. In this paper, we consider the problem of
analyzing programs manipulating lists. And inferring such invari-
ants over lists requires considering both the shape of lists and the
numerical information over the number of the list nodes.

Shape analysis provides a powerful approach to generate shape
invariants, and much progress has been achieved in shape analy-
sis in the past two decades [1][23]. However, shape analysis it-
self has limited ability in inferring non-trivial properties involv-
ing numerical information such as “the length of the segment be-
tween p and q is n where n is an integer greater than 1”. On the
other hand, numerical static analysis by abstract interpretation [7]
is widely adopted to automatically generate numerical invariants
for programs. However, most existing abstract domains focus on
purely numerical properties and thus are specific for analyzing nu-
merical programs. A recent interesting trend is to combine these
two techniques, using shape analysis to generate shape invariants
and using numerical abstract domains to track numerical relation-
ships [3][5][10][22]. The key technical issue here is how to interact
effectively between the shape aspect and the numerical aspect. Al-
though several generic frameworks for the combination have been
proposed [3][10], tighter bidirectional coupling between the two
aspects still needs further considerations for the selected shape ab-
straction and numerical abstraction. For instance, shape abstraction
needs to be enhanced to support numerical aspects while numerical
abstraction also needs to be adapted with respect to the semantics
of shape abstraction. And transfer functions for the combined do-
main should be designed by taking into account both the shape and
numerical information at the same time.

In this paper, we present an approach in the framework of ab-
stract interpretation to combine shape and numerical abstractions
for analyzing programs manipulating lists. First, for the shape of
a list, we propose a lightweight shape abstraction based on bit-
vectors, upon the insight that list nodes in a list can be naturally
grouped into nonoverlapping list segments according to the reach-
ability property of pointer variables to list nodes. Each list segment
which includes those list nodes that can be reached by the same set
of pointer variables, is abstracted by one bit-vector wherein each bit
corresponds to a pointer variable in the program. From the numer-
ical aspect, in order to track the number of list nodes in each list
segment, we introduce an auxiliary (nonnegative) integer counter
variable for each bit-vector. And we apply numerical abstract do-
mains to infer numerical relations among counter variables. Then,



transfer functions for the combined domain are constructed in terms
of transfer functions of the numerical domain upon the semantics
of the shape abstraction. Specifically, in this paper we instanti-
ate our approach by using a combination of intervals [6] and affine
equalities [13] to conduct numerical abstractions. On this basis, a
prototype is implemented and preliminary experimental results are
presented on benchmark programs.

The rest of the paper is organized as follows. Section 2 de-
scribes a simple list-manipulating programming language. Sec-
tion 3 presents a shape abstraction approach for lists based on bit-
vectors. Section 4 presents a combined domain of intervals and
affine equalities to conduct numerical abstractions over counter vari-
ables. Section 5 presents our prototype implementation together
with preliminary experimental results. Section 6 discusses some
related work before Section 7 concludes.

2. LIST-MANIPULATING PROGRAMMING
LANGUAGE

We first present a small language that manipulates lists. The syn-
tax of our language is depicted in Fig. 1. It is a simple procedure-
less sequential language with dynamic allocation and deallocation
but no recursion. There is only one type of variables, i.e., pointer
variables of LIST type, denoted as PVar. For the sake of simplicity,
we first focus on non-circular singly-linked list.

The structure for list nodes contains a next field pointing to the
successive list node, while all other fields are considered as data
fields. The data fields are ignored in this paper, since we assume
that operations over data fields have no influence over the shape of
lists. We assume that there is at most one next operator in a state-
ment and a pointer variable appears at most once in an assignment
statement. All other cases could be transformed into this form by
introducing temporary variables.

p.q € PVar
AsgnStmnt = p:=null|p:=q|p:=q — next|
p — next :=null | p — next :=q |
p = malloc() | free(p)
Cond = p==gq|p==null|-Cond |
Cond, V Cond, | Cond; A Cond, |
true | false | brandom
BranchStmnt .= if Cond then {Stmnt; }* [else {Stmnt; }* | fi
WhileStmnt  :=  while Cond do {Stmnt; }* od
Stmnt = AsgnStmnt | BranchStmnt | WhileStmnt
Program := {Stmnt;}*

Figure 1: Syntax of a list-manipulating program

3. LIST ABSTRACTION BASED ON
BIT-VECTORS

First, we recall the definition of classic shape graph that is a
graph used to represent the allocated memory in heap.

Definition 1. A shape graph for lists is a tuple SG = (N, V,E),
where:

e N denotes the set of pointer variables and list nodes, and we
utilize N,; to denote N U {NULL},

e V C N denotes the set of pointer variables in the program,

e E C N X (N, — V) denotes the set of edges, which describes
the points-to relations of pointer variables as well as succes-
sive relations between list nodes through the “next” field.

From the above definition, we can see that when using a standard
shape graph to describe lists, we have to name explicitly all list
nodes and store all the successive relations between nodes. Hence,
using shape graph may cause heavy memory costs. To this end, we
propose a lightweight approach to encode the shape information
contained in a shape graph. First, we introduce a binary predi-
cate Reach(n, n’) to describe the reachability property between two
nodes n,n’ € N:

Reach(n,n’) = FkeNVO<i<km e NAng=nAn,=n'A

YO0 < ] < k.(}’lj,l’lj.,,]) eE

Obviously, Reach(n,n’) = true holds if and only if there exists a
path from 7 to n’ in the shape graph. We maintain a variable order
for all pointer variables V in the program and use V; to denote the
i-th variable in V where 0 <i < |V| - 1.

Definition 2. For each node n € (N — V), we define a so-called
Variable Reachability Vector (VRV) vec, € {0, 1}V! that is a bit-
vector of length |V/|, where

vec,[i]=1 iff Reach(V;n)=true

We say V; reaches list node n (or VRV vec,) if Reach(V;,n) =
true. We use bit-vector 0 as the VRV for those list nodes that can
not be reached by any pointer variables. Let I' denote the set of
VRVs for all list nodes n € (N — V). For every vec € T, let 7y,
denote the set of the 1-bits in vec: Iy = {i € N | vec[i] = 1}. In
other words, 7. describes the set of the indices of those pointer
variables that can reach vec. If i € 7, it means that V; can reach
vec (and the corresponding nodes). We use I'; = {vec | vec[i] = 1}
to denote the set of VRVs that the variable V; can reach. In fact, I'
describes the reachability properties of all pointer variables to list
nodes. Each VRV vec, can be considered as an abstract node that
represents the set of nodes which can be reached by the same set of
pointer variables as node n.

Example 1. For the shape graph shown in Fig. 2 (a), suppose the
variable ordering is p < g < u < v. Then the VRVs for this shape
graph are shown in Fig. 2 (b). And we have I" = {0011, 0100,
0111, 1111} Toonr = {0, 1}, o100 = {2}, Lot = {0,1,2}, Ty =
{0,1,2,3}; T = {0011,0111, 1111}, T, = {0011,0111,1111}, T, =
{0111, 1111}, I3 = {1111}

0011 —> 0111 > 1111 0(1)(1)

1111
(©) (d)

Figure 2: Example of variable reachability vectors for lists

Definition 3. Given two non-zero VRVs vec, vec,,

o if Tyee, C Zye,, We say vec; can reach vec,, denoted as
vec; C vec,,

o if Tyee, C Lyec,, We say vec, can strictly reach vec,, denoted
as vec; C vec,,



o if Tyee, N Tyee, = 0, we say vec, and vec, can not reach each
other, denoted as vec; N vec, = 0.

For the example shown in Fig. 2, we have: vecyy; C vecy;1; Vecoioo C
vecy;11; VeCoioo N vecoor = 0.

TueoreM 1. Given two list nodes ny, n, such that vec,, # vec,,
and vec,, # 0, there exists one path from n; to n, if and only if
vec,, C vec,, holds.

The bitwise set relations among VRVs implicitly characterize the
reachability relations among nodes. All VRVs in I'; form a total
order over C. Let vec? denote the minimum element in I';, then vec?
represents the VRV of the list node that variable V; directly points
to. For the example in Fig. 2, we have I'y = {0011,0111, 1111},
from which we can see that p directly points to 0011, since 0011 is
the minimum element in I'y. Furthermore, from I' = {0011, 0100,
0111,1111}, we can see that

e p,qare alias, since in each VRV from I" the bit corresponding
to p is 1 if and only if the bit corresponding to ¢ is 1;

e p cannot reach the node that is directly pointed to by u, since
the bit corresponding to p in the minimum element of I’ (i.e.,
0100) is 0.

Definition 4. A set of VRVs I is consistent, if for arbitrary two
distinct VRVs vec,, , vec,, €I, vec, Nvec,, = 0V vec, C vec,, V
vec,, C vec,, holds.

THEOREM 2. The set of VRVs of a singly-linked list is consistent.
THEOREM 3. A consistent set of VRVs I satisfies |I'| < 2|V|.

Definition 5. A set of VRVs with Counters (VRVCs) I'" € T'xN
is defined as a set of 2-tuples (vec, num) where vec € I', num € N
standing for the number of the list nodes whose VRV is vec.

The (consistent) set of VRVs with counters provides an exact ab-
straction for the shape of lists when ignoring the data contents. The
list nodes are abstracted via VRVs (i.e., the vec component), the
edges (i.e., the successive relations between nodes) are abstracted
via the implicit bitwise subset relations of VRVs, and the number
of the nodes that are reachable by the same set of pointer variables
are described by the counters (i.e., the num component).

4. NUMERICAL ABSTRACTION OVER
COUNTERS

For each vec € I', we introduce an auxiliary counter variable
1'*¢ € N to denote the value of the corresponding num component
(i.e., the number of the list nodes whose VRV is vec) of VRVCs.
We maintain a bijection between vec and '*. For each ', we
use VEC(1'*°) to obtain its corresponding bit vector vec. Further-
more, we introduce a special auxiliary variable 1*® € N to specify
memory leak (i.e., 2% > 0). We use a lexicographic ordering
on counter variables: %% < (0-01 < (010 ... < 11 Apd
{(vec, ") | "¢ > 0} represents the shape of a list, if it is consis-
tent.

Since counter variables '* € N are numerical variables, we
could leverage numerical abstraction techniques over **¢. In this
paper, we present an abstract domain, namely the CD domain, to
perform numeric abstraction over counter variables, which com-
bines the interval abstract domain [6] and the affine equality ab-
stract domain [13]. If the program has k pointer variables, we

need introduce 2% auxiliary counter variables. We choose inter-
vals and affine equalities to construct the C9 domain, because they
are cheap in both time and memory, and bounds as well as equality
relations are important for list-manipulating programs. However,
it is also worthy noting that according to Theorem 3, most auxil-
iary counter variables equal to 0 and only linear number of counter
variables with respect to |V| need to be tracked.

4.1 Representation

We use intervals to track the range information of each counter
variable 1** € N, and use affine equalities to track the relational in-
formation among those counter variables. Hence, each domain el-
ement P in the CPD domain is described as an affine system Ax = b
in reduced row echelon form together with bounds for counter vari-
ables x € [c,d], where A € R™" b e R",c € N",d € {N, +00}",0 <
¢ < d. It represents the set y(P) = {x e N" | Ax = b,c < x < d}
where each point x is a possible environment (or state), i.e., an as-
signment of nonnegative integer values to counter variables. For
the sake of convenience, we use EQS(P) to denote the affine equal-
ity part, and ITV(P) to denote the interval part from the domain
representation.

Given each x € y(P), we can derive a set of VRVs from x:
VRV(x) = {VEC(x;) | x; > 1}, as well as a set of VRVs with coun-
ters VRVC(x) = {VEC(x)),x;) | x; > 1}. Obviously, if VRV (x)
is consistent, denoted as wf(VRV(x)), then VRVC(x) describes a
shape of singly-linked lists. And we use ¥(P) to denote the ob-
tained consistent set of VRVCs:

¥(P) ={VRVC(x) | x € y(P) A wf(VRV(x))}

¥(P) can be constructed from y(P) by considering the consistency
among VRVs.

Example 2. Consider the program fragment

traverse(q) {
@ p := q — next,
@ while (p # null) {
® p:=p — next; }
}
Assume ¢ points to a list with length 9 before calling traverse(q)
and the variable ordering is p < ¢g. Then in the first iteration, at
program point ®, we obtain the C© domain element P = {#'0 =
1" = 8¢ e [1,1],#'" € [8,8]}). Then we know that y(P) con-
tains only one possible list shape: y¥(P) = {{{10, 1), (11, 8)}}.

4.2 Domain Operations over Counters

In the CD domain, most domain operations (such as meet, join,
inclusion, etc.) over counter variables can be directly constructed
by combining the corresponding domain operations of the inter-
val abstract domain and that of the affine equality abstract domain.
E.g., the join operation in the CD domain consists of the affine hull
over the EQS part and the interval union over the ITV part.

Bound tightening. In the CP domain, the bounds of each variable
can be obtained from the ITV part of the domain element. The
bounds may be changed during domains operations. E.g., when an
affine equality is added, the bounds of variables need to be updated.
In this paper, we use bound prorogation technique to tighten the
bounds.

In fact, each affine equality from the EQS part of the CD ele-
ment can be used to tighten the bounds for those variables occurring
in the equality. E.g., given an equality X;a;x; = b, if a; > 0, a new
candidate lower bound for x; comes from: x; = [(b — Zja;%;)/a;]
where X; = a; > 07?X; : x;, and a new candidate upper bound for x;
comes from: )_cl’ = (b - ZXjsa;Xj)/a;] where ¥; = a; > O?g_/ cx; If



[p:= null]*

def - -
Let vec' = vec/ p)—o- For each vec € VRVs such that vec’ # vec, we build numerical statements:
if(tvec > 1){ tvec’ = tvec’ + e pree .= () ),

[p := malloc()]* @ First, we apply [p := null]*.

@ Let vec’défO/ {p}1- We build numerical statements: { e = 1; )

def
Lf ree(p)]]n Let vec' = vec/ 1,00 For each vec € I such that (vec & vecg) = Vecg,
o
. . . . 0 0 0
eif vec = Vec(,),, we build numerical statements: if (1'% > 1){ %0 := (00 4 '*% — 1; "% :=0; }
o otherwise, we build numerical statements: if ('¢¢ > 1){ 1¥¢¢ := 1'¢¢ 4 gvec; prec .= (); ).
def B :

[p:= q]]*j Let vec'= vec/ ;4. For each vec € I such that vec’ # vec, we build numerical statements:

if([vec > 1) tvec’ = tvec’ + fYee; pee .= (), }

[p := g — next]fF @ First, we apply [p := null]".

def
® Let vec’' = vec/ (p)—¢- For each vec € I such that vec,, = 01,

e if vec = vecg, we build numerical statements if (' > 1){r'® := ' — ;1% := 1;} else{P’ := T;}
e otherwise, we build numerical statements { 7'¢¢’ := £¢¢; f¥e¢ .= Q; }.

P’

def
[p — next := null]? | Let vec’'=vee/r , o. For each vec such that (vec & vec)) = vec),
vec
9

. . . . 0 0 0
o if vec = vec?, we build numerical statements: if (' > 1){ 100 := (90 4 %% — 1; 1'% = 1; }else{P’ := T;}
o otherwise, we build numerical statements: if (' > 1){ 1'¢¢ := 1'¢¢ 4 f¥e¢; pvec .= (); ).

0

[p — next := qIF @ First, we apply [p — next := null]].

{ tvec’ = tvec’ + pyec; pvec .— 0,}

def . .
@ Let vec'= vec/r g4 For each vec € I such that vec[g] = 1 and vec’ # vec, we build numerical statements:
vec),

Figure 3: Abstract assignment transfer function over shapes

the new candidate bounds are tighter, then x;’s bounds are updated.
This process can be repeated for each variable in that equality and
for each equality in the EQS system.

Widening. The height of the lattice of affine equalities is finite,
but intervals do not satisfy the ascending chain condition. Thus,
to cope with loops, a widening operator is needed to ensure the
convergence of fixpoint computations over the CD domain. Given
two CD elements P, P’ satistying P E P/,

, def

PVP € EQS(P) N (ITV(P)VATV(P)).

Since "¢ > 0 always holds, we refine the widening over intervals
as:

| la,b>=d? : +oo] ifa<ec,
[@.blVi[e.d] € ! [1,b>d%:+0] elseifa>c>1,
[0,b > d? : +] otherwise.

Here we take 1 as a special threshold for the interval widening,
since pointer variable p may use p — next to access the successive
node, which may cause null pointer dereference.

Furthermore, we use EQS (P’) to tighten the bounds of variables
obtained by ITV(P)V,ITV(P’) after widening. To avoid the well-
known convergence problem of interaction between reduction and
widening[19], we perform bound tightening after widening only
for finite times. However, since the height of the lattice of affine
equalities is finite and each counter variable is bounded by 0 from
below, the non-convergence problem will not be serious in our case.

Example 3. Consider again the program fragment shown in Ex-
ample 2. Assume g points to a list with length 9 before calling
traverse(q) and the variable ordering is p < ¢. At program point
®, we get in the first iteration the CD element P, = {t'* = 1,!! =
8:1'0 e [1,1],¢'! € [8,8]} and in the second iteration P, = {t'* =
2,8 =7:¢10 € [2,2], ' €[7,7]}). And we have
PiuPy = {10+ 111 = 9;¢10 € [1,2], 71 € [7,8]},
PiV(PLUPy) = {10 + 111 =9;110 € [1, +o0], 1! €[1,8]}
=0+ =9:10€1,8],¢'" €[1,8]}.

4.3 Transfer Function over Shapes

Test transfer function over shapes. In this paper, we consider
only four basic kinds of test condition over pointer variables: p ==
null,p == q,p # null,p # q. Other complex conditions can be
obtained by introducing auxiliary pointer variables and composing
basic conditions via logical operators. Let P be the input CD ele-
ment before and P’ be the resulting CD element after applying the
transfer function.

1. [p == nudl]*: When p == null holds, it means that pointer
variable p does not point to any lists and thus can not reach
any list nodes, i.e.,

VI VEC( )T, = 1 - € =0

where 7, denotes the index of the bit corresponding to pointer
variable p. In the CO domain, we add constraints #** = 0 to
P for those ¢ satisfying VEC(t"*“)[1,] = 1. Then we check
the emptiness of P’, and tighten variable bounds.

2. [[p == q]*: When p == g holds, it means that pointer vari-
ables p, g are alias. Hence,

VS VEC()[,) & VEC(™)[L,] = 1 - " =0

where @ denotes the bitwise XOR operation. In the CD do-
main, we add constraints ** = 0 to P for those ' satisfy-
ing VEC(t"*)[1,] ® VEC(t**“)[1,] = 1. Then we check the
emptiness of P’ and tighten variable bounds.

3. [p # null]*: When p # null holds, it means that pointer
variable p does point to some list node. Hence,

lvec > 1
vec[Z)]=1

In the CD domain, if ** = 0 holds for all vec satisfying
vec[Z,] = 1, we put P’ = 1. Otherwise, we use the con-
straint Yyeer,1=1 £ > 1 to tighten variable bounds.



4. [p # qI*: When p # ¢ holds, it means that there exist at
least one list nodes that p and g do not point to at the same
time. Hence,

e >
vec[1 ) |evec[],]=1

In the CD domain, if ** = 0 holds for all vec satisfying
vec[7,] ® vec[Z,] = 1 ,we put P’ = L. Otherwise, we use
Dveel T Jevec(z,1=1 I > 1 to tighten the variable bounds.

Assignment transfer function over shapes. We consider the as-
signment transfer functions in the form of P’ = [[astmz]*(P), where
astmt denotes an assignment statement of shapes. Let vec/7 de-
note the bitwise substitution of those bits in 1 with value 0, vec/ 7,
denote the bitwise substitution of those bits in 7 with the value of
the corresponding bit of variable g, and vec,, denote the projection
of vec on positions of p and g. The abstract semantics of assign-
ment transfer function over shapes is shown in Fig. 3. The main
idea here is to transform an assignment over shapes into a series
of numerical statements over counter variables, according to the
changing of the shape.

Example 4. Consider the assignment transfer function [p := u])*
over the list shown in Example 1. As depicted in Fig. 4, before
applying [p := u]* , we have P = {{0!! = 2,/0100 = 1 ol =
1,t1111 - 1;1’0011 c [2,2],[0100 c []’ 1],[0111 c []’ 1],l1111 c [1’ 1]}
According to the semantics of [p := u])*, we know that the bit vec-
tor 0011 changes to 0010, and thus we construct the following nu-
meric assignments: if ({11 > 1){ {2010 ;= 0010 4 0011, 0011 .— (3, 3,
Similarly, for the changement from 0100 to 0101, we build numer-
ical assignments: if (190 > 1){ (0101 := (0101 4 (0100, 40100 .— ¢, 3
Finally, after performing all the above assignment transfer func-

tions over counters, we will get P’ = {f?010 = 2 (0101 = 1 !l =
1M =1; 0010 ¢ 2, 2],[0101 e[l, 1],[0”1 e[l, 1],t”]1 e[1,1]}.
0100
- Vo=p; Vi=q; VUl num
o Vesu Ve=v ooclui 2
0011 0011 \ 0111 1111 o100 1
n N3 Ny 13 NULL
@@ A0y ol s o1 ns o/ s J»{nuie] o] 1
H t()()l() = t()OlO + tO()ll: f()()ll = 0: 1111 1
pi=1u 0101 .__ 40101 0100. 10100 ._ .11
@\ 0101 {}t =T A =0 Ugp| num
Q010 2
0111 1111 Q101 1
000 s | NuLL] i1 1
[ 2 > s } 11 1
\' O
A

Figure 4: Example of assignment transfer function

Maintaining veci. From above, we see that the information of

0
P

“next” field to numerical assignments. Recall that vec;’, specifies
the bit vector that the pointer variable p directly points to. In the
concrete semantics, vecg can be computed from environment of
auxiliary counter variables, i.e., the least bit vector vec such that
vec[p] = 1 A **¢ > 0. However, in the abstract semantics, due to
precision loss, we may not have enough information to determine
such a vector and may only know some vec satisfying vec[p] =

1 A "¢ > 0. In this case, there may be 2 subcases:

vec, is important for transforming shape assignments that involve

o if vec[p] = 1 A 1" > 0, then vec) = vec,

o clse if vec[p] = 1 A ¥ = 0, then vec?7 is some other vector
vec’ greater than vec.

For the sake of precision, we maintain a set of possible vecg’s, de-
noted as 1"2, for each pointer variable p. We redefine the transfer
functions based on 1"2. The main idea here is to first apply the trans-
fer function separately on each Vecg € l"g and then perform join
over the results computed from each vec(p’. We also define rules to
update F?, after each transfer function.

4.4 Extension Discussions

Abstraction over list contents. The CD domain can be easily
extended to support abstractions over list contents. Following the
same idea of introducing counter variables, for each vec € I', we
could introduce an auxiliary content variable d**¢ to abstract the
contents of the list nodes whose VRV is vec. If the list contents
are of numerical data type, we could apply numerical abstractions
to d**¢, similarly to what we do over 7**¢. However, to be sound,
we can only apply weak update semantics to handle assignments
to p — data. In order to obtain more precise information over
p — data, we need to extend our bit-vector shape abstraction to
distinguish the first element from the rest elements in a list segment.

Extension to circular lists and doubly linked lists. Until now, we
have considered only singly linked lists without cycle. To deal with
circular lists, we first introduce a specific tag bit for each VRV to
denote whether the list nodes abstracted by this VRV are involved
within a cycle. If there is a cycle, we employ a so-called “cut” oper-
ation to choose a cutpoint to cut the cycle at some next edge, which
transforms a circular list into a non-circular one. To deal with dou-
bly linked lists that are well-founded [14], we maintain reachability
properties for the next field and the prev field separately. In other
words, we maintain different VRV sets for next and prev. And we
do communication and propagation between the two fields when
needed.

S. EXPERIMENTS

We have developed a prototype tool for analyzing list manipulat-
ing programs based on the AproN [12] numerical abstract domain
library and the INTERPROC [15] static analyzer. We implemented
our CPD domain inside AproN. Since INTERPROC uses the Spl input
language which supports only numeric (integer or real) variables,
inspired by CINV[3], we encode our programs on lists via Spl.
Pointer variables of list type are coded by real variables while data
variables are encoded by integer variables. The constant NULL is
encoded by value 0.0. And the operations on pointers are encoded
using operations on real variables. E.g., p := ¢ — next is encoded
by p = casts,(q), and p — next := q is encoded by p = cast;,(q).

To exemplify the ability of invariant synthesis of our C9 domain,
let us consider an example program copy_and_deletel (which for
sake of space allows statements like p := p — next and is a sim-
plified version of copy_and_delete2 in Fig. 5 ) together with the
generated invariants by the CD domain, as shown in Fig. 6. The
program first copies one list to another and then deletes both si-
multaneously. Suppose the initial length of the input list xList is 9
and the variable ordering is pList < gList < xList < yList. From
the invariants after line 7, we can see: (1) Pointer variables pList ,
qList are alias while xList , yList are alias; (2) The two list respec-
tively pointed to by pList and xList are of the same length; (3) The
bounds of counter variables are strictly positive, which indicates
that the operations on lines 8-10 are free of null pointer derefer-
ence. Finally, the special auxiliary variable 1> equals to 0 at all
the program points, which proves the absence of memory leak in
the program.

Our experiments were conducted on a selection of benchmark
examples, some of which are taken from [3]. These benchmark ex-



Program CPD domain . .
- - Key loop invariants
name | #pvars | #iterat. | time(ms)
create 2 4 PRl
traverse 3 5 P10 O —
reverse 3 5 0T 010 —
0000T 0001 -
I3 + 7 =n;
length_equal 5 5 {00001 _ 400100 _ (3. 00011 _ ,01100 _ ()
merge 3 5 70000 TO00T 07000 10007 — 7
copy_and_delete2 5 9 (O00TT 1 (T1000" — ;. /01000 4 /TT000 — 1,
dispatch 3 5 /000010000100 001000 —

Figure 5: Experimental results for benchmark examples

void copy_and_delete(List* xList) {

/* assume \length(xList)==9; */

1: List* yList, pList, gList;

/% 19100 = 9; 40190 € 19 9]; 0 « /

2: yList = xList; qList = pList = null,

[ % {0100 4 (1100 — g (0011 4 41100 _ 9. 0100 ¢ [] 9] 41100 ¢ [0, 9],
01 € 10,97, 0 % /

3: while (yList = null){

/ % tOlOO + tllOO — 9, tOOll + tllOO — 9; tOlOO c [1’ 8],t1100 c []’9]’
19011 € [0, 8]; 0 * /

4: yList = yList — next; gList = malloc();

5: qList — next = pList; pList = qList;}

/ % t()()ll — 9, tOlOO — 9; tOOll c [9’ 9]7 IOIOO c [9’ 9]’ [V /

6: yList = xList;

/ % t()Ol] _ [I]()(J — O;t()()l] c [0,9],“]0(} c [0’9];0 % /

7 : while (yList = null){

/ % tOOll _ tllOO — O; tOOll c []’9]’1,1100 c [1’9];(7 % /

8: yList = yList — next; qList = qList — next;

9: free(xList); free(pList);

i(l): xList = yList; pList = qgList;

/ % VYvee.r"* =0/

}

Figure 6: Example program copy_and_delete]l and the gener-
ated invariants. The notation © means 1 = 0 for any '* that
does not appear in the annotated invariant.

amples contain commonly used operations over lists, such as cre-
ate, traverse, reverse, merge, copy, delete and dispatch. Experi-
mental results are shown in Fig. 5. For each program, “#pvars”
indicates the total number of pointer variables in the program. “#it-
erat.” gives the number of increasing iterations during the analysis.

Invariants. These benchmark programs involve relational prop-
erties among lengths of list segments. Our CPD domain that is
based on intervals and affines equalities, is able to find interest-
ing affine equality relations and bounds of lengths of list segments.
In Fig. 5, the column “Key loop invariants” gives some important
affine equality relations among list segments found by our CD do-
main inside loops.

Performance. The column “time(ms)” in Fig. 5 presents the anal-
ysis times in milliseconds when the analyzer is run on a 3.1GHz
PC with 4GB of RAM running Fedora 12. The results show that
the analysis upon CD seems efficient, but increasing the number
of pointer variables degrades the computation cost a lot. Currently,
we use the dense representation in APRON to represent the matrices
in the affine equality domain. During our experiments, we found
that matrices are in fact rather sparse, almost linear to the number
of pointer variables in most cases. Our future implementation will
consider using the sparse representation.

6. RELATED WORK

Shape Abstractions. Programs manipulating lists have gained much
attention within the past decade [9] [18] [4]. And various abstrac-
tions have been used for analyzing shape properties of lists and
dynamically linked data structures that are more general, such as
canonical abstraction [23], boolean heaps [21], separation logic [8],
etc. One work that is close to our shape abstraction is boolean
heaps [21] by Podelski et al. It adopts also the concept “bit-vector”
and utilizes sets of bit-vectors to encode boolean heaps. Their ap-
proach is general for modeling all kinds of relations in heaps by
using proper heap predicates, while in this paper we focus on lists
and utilize one basic predicate (Reach). In addition, our approach
maintains automatically numeric information (length of list). Re-
cently, Gulwani et al. [11] propose an abstract domain that allows
representation of must and may equalities among pointer expres-
sions. Our work uses also equalities but to track the numerical
properties over the number of list nodes. Hguyen et al. [20] pro-
pose an approach based on separation logic that can precisely track
shape and size properties. Their approach is general for a wide
range of data structures (e.g., trees, priority heap, lists, etc.) but
needs user-defined shape predicates and does not infer invariants.

Combining shape and numerical abstractions. Recently, much
attention has been focused on combining shape and numerical ab-
stractions [4][5][10][22]. Bouajjani et al. [2][3][4] utilize counter
automata as an abstract model for lists, and propose a framework
for combining a heap abstraction with various abstractions over
the sequences of data in a list. Their method maintains the exact
data stored in a list segment as well as their sequences and thus
can discover relational properties over list contents. Compared
with the counter automata model, our heap abstraction based on
bit-vectors is quite lightweight. Moreover, our approach can also
find alias among pointer variables and detect potential null pointer
dereference as well as memory leak. More recently, Gulwani et
al. [10] propose a general combination framework for tracking re-
lationships between sizes of memory partitions. It combines a set
domain (for tracking memory partitions) with a set cardinality do-
main (for tracking relations between cardinalities of the partitions)
via reduced products. Our work encodes the shape abstraction by
bit-vectors that itself can be considered as numerical values, which
makes it easy to build a combined domain based on numerical ab-
stractions taking into account the semantics of shape abstractions,
without resort to reduced product.

Reducing heap-manipulating to numerical programs. Magill et
al. [16][17] propose a method to automatically transform heap ma-
nipulating programs into numeric ones while keeping the desired
property. Separating shape abstraction and numerical abstraction
has clear engineering advantages to make use of existing numeric



reasoning tools. However, the transformation is unidirectional and
thus may lose precision especially when the shape aspect and the
numerical aspect interact in complicated ways. Our work allows
bidirectional communication between shape and numerical aspects.

7. CONCLUSION

We have presented an approach in the framework of abstract in-
terpretation for analyzing list-manipulating programs. The main
idea is to combine heap and numerical abstractions. The structural
information of the shape of a list is encoded in a lightweight way
via bit vectors, one for each list segment, while numerical relations
among the number of list nodes in these segments are tracked by
numerical abstract domains. We have instantiated our approach by
establishing a combination domain of intervals and affine equali-
ties to infer relations over the length of list segments. A key benefit
of our approach is the ability to leverage the power of the state-of-
the-art numerical abstract domains to analyze intricate properties
of list-manipulating programs.

Future work will consider extending our approach to infer prop-
erties over the content of lists, e.g., sortedness, no duplicated el-
ements. Inferring non-trivial relational properties over list con-
tents requires reasoning over inter-segment relations among differ-
ent segments and intra-segment relations among elements in the
same segment.
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