
An Abstract Domain to Infer Symbolic Ranges over
Nonnegative Parameters

Xueguang Wu1, Liqian Chen2 and Ji Wang3

National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology,

Changsha 410073, China

Abstract

The value range information of program variables is useful in many applications such as compiler optimization and program
analysis. In the framework of abstract interpretation, the interval abstract domain infers numerical bounds for each program
variable. However, in certain applications such as automatic parallelization, symbolic ranges are often desired. In this paper,
we present a new numerical abstract domain, namely the abstract domain of parametric ranges, to infer symbolic ranges over
nonnegative parameters for each program variable. The new domain is designed based on the insight that in certain contexts,
program procedures often have nonnegative parameters, such as the length of an input list and the size of an input array. The
domain of parametric ranges seeks to infer the lower and upper bounds for each program variable where each bound is a
linear expression over nonnegative parameters. The time and memory complexity of the domain operations of parametric
ranges is O(nm) where n is the number of program variables and m is the number of nonnegative parameters. On this basis,
we show the application of parametric ranges to infer symbolic ranges of the sizes of list segments in programs manipulating
singly-linked lists. Finally, we show preliminary experimental results.

Keywords: Abstract interpretation, Abstract domains, Intervals, Symbolic ranges.

1 Introduction

The range information of variable values, that is the lower and upper bound of the values
that a variable may take, is quite useful in many applications including compiler optimiza-
tion, automatic parallelization, bug detection, etc. Value range analysis seeks to automat-
ically infer a range [a, b] for each program variable x at compile time, which denotes the
constraint a ≤ x ≤ b. The theory of abstract interpretation [8] provides a general frame-
work to compute statically approximate but sound value ranges for program variables. The
interval abstract domain [7] can discover lower and upper bounds on the values of program
variables but the found bounds are numerical constants. However, in certain applications

1 Email: xueguangwu@sina.cn
2 Email: lqchen@nudt.edu.cn
3 Email: wj@nudt.edu.cn

mailto:xueguangwu@sina.cn
mailto:lqchen@nudt.edu.cn
mailto:wj@nudt.edu.cn

(such as automatic parallelization [3], symbolic bounds analysis [14] and bitwidth analy-
sis [17]), symbolic ranges are desired. Symbolic range means that the bounds a and b of
variable x are symbolic expressions over program variables except x.

In this paper, we present an abstract domain, namely parametric ranges, for deriving
symbolic ranges over nonnegative parameters for each program variable. The new domain
is designed based on the insight that in certain applications, the parameters of program
procedures are often nonnegative, such as the initial length of an input list, the initial size
of an input array (or memory region), and the starting address of a memory region. The
domain of parametric ranges seeks to infer the lower and upper bounds for each program
variable where each bound is a linear expression over nonnegative parameters, i.e., x ∈
[Σm

i ai pi+c,Σm
i bi pi+d] where pi denotes the symbolic value of the ith nonnegative parameter

of the program procedure, ai, bi ∈ R, c ∈ R ∪ {−∞}, d ∈ R ∪ {+∞}. The time and space
complexity of the domain operations of parametric ranges is O(nm) where n is the number
of program variables and m is the number of nonnegative parameters. On this basis, we
show the application of parametric ranges to infer symbolic ranges of list segment sizes for
programs manipulating singly-linked lists. Moreover, we show how to combine the domain
of parametric ranges with the affine equality domain to infer more complicated relations.
Finally, we show preliminary experimental results.

We illustrate the domain of parametric ranges for invariant generation using a motivat-
ing example shown in Fig. 1 which has a nonnegative parameter n of type unsigned int. The
interval domain [7] can only infer x ∈ [0,+∞] at the loop head ¬. However, our domain
of parametric ranges infers interesting symbolic ranges for x. Moreover, for this example,
the invariants generated by the domain of parametric ranges are as precise as those given
by the polyhedra domain [9].

void foo(unsigned int n) {
unsigned int x;
x := n;

¬ while (x ≤ 2n) do {
­ if (?) then x := x + 2;

else x := 2 ∗ x + 1;
® } od
}

Loc Intervals Polyhedra Parametric Ranges
¬ x ∈ [0,+∞] x ∈ [n, 4n + 2] x ∈ [n, 4n + 2]
­ x ∈ [0,+∞] x ∈ [n, 2n] x ∈ [n, 2n]
® x ∈ [1,+∞] x ∈ [n + 1, 4n + 2] x ∈ [n + 1, 4n + 2]

Fig. 1. A motivating example

The rest of the paper is organized as follows. Section 2 discusses some related work.
Section 3 presents the new abstract domain of parametric ranges. In Section 4, we show
the application of parametric ranges to infer symbolic ranges of list segment sizes in list-
manipulating programs. Section 5 presents our prototype implementation together with
preliminary experimental results. Finally, conclusions as well as suggestions for future
work are given in Section 6.

2 Related Work

Value range analysis has received much attention in compilation optimization, automatic
parallelization and program analysis. In the framework of abstract interpretation, Cousot
and Cousot [7] present the interval abstract domain to perform interval analysis using
widening and narrowing. The interval domain can only infer numerical bounds of vari-
able values, but scales to large-scale software in practice due to its linear time and space
complexity.

Blume and Eigenmann [3] present symbolic range propagation technique to compute
symbolic ranges in the context of parallelizing compilers. In their approach, symbolic
range of variable x can be non-linear expressions with max/min operators over arbitrary
variables except x. Hence, their approach is of exponential complexity in the worst case
and requires heuristics to derive polynomial time operations. Our domain of parametric
ranges differs from theirs in the following respect: parametric ranges of program variables
are linear expressions over nonnegative parameters. In our approach, the set of program
variables and the set of nonnegative parameters are disjoint. These restrictions greatly
simplify the algorithms for implementing domain operations of parametric ranges. Thanks
to these restrictions, the domain operations of parametric ranges are O(nm) in time and
space complexity.

Rugina and Rinard [14] present a framework for symbolic bounds analysis of pointers,
array indices and accessed memory regions. They utilize symbolic polynomial expressions
to bound the ranges of the pointers and array indices used to access memory. Instead
of using fixed-point algorithms, their approach formulates the symbolic bound analysis
problem as a system of constraints over symbolic bound polynomials and then reduces
the constraint system into a linear program. The step of reduction to linear program is
incomplete. Moreover, the soundness of the reduction to linear programs requires that all
the variables in the symbolic polynomial expressions should be nonnegative. Our approach
also requires that all the parameters in symbolic ranges are nonnegative. However, our
approach only allows linear expressions as parametric ranges and is designed as an abstract
domain. And our analysis does not need linear programming.

Sankaranarayanan et al. [15] present an abstract domain of symbolic range constraints.
They assume a linear ordering among program variables and restrict the range for a variable
x to involve variables of order strictly higher than x. Our domain restricts the range for
a program variable to involve a separate set of nonnegative parameters rather than other
program variables. In general, our domain is less expressive than their domain, since one
could always assign nonnegative parameters with higher order than program variables in
their domain. Moreover, their domain allows explicit relations among program variables
and does not restrict parameters involved in the ranges to be nonnegative. However, with
respect to time complexity, our domain is cheaper than their domain.

Our domain of parametric ranges is closest to the gauge abstract domain proposed by
Venet [16] which is able to efficiently infer linear inequality invariants between each pro-
gram variable and all loop counters in the scope of the loops. In the gauge domain, each
program variable is approximated by a pair of symbolic ranges that are linear expressions
with integer coefficients over loop counters. Our domain of parametric ranges restricts the

parameters to be nonnegative but not necessarily integers. Also we do not restrict the co-
efficients in the parametric ranges to be integers. The analysis based on the gauge domain
will introduce a loop counter for each level of loops during the analysis, and thus could
infer symbolic ranges for each program variable in terms of loop counters. Those loop
counters can not be considered as parameters in our domain of parametric ranges, since
they are initialized by zero and increase during the analysis. However, the loop bounds can
be considered as parameters in our domain, and then we could infer parametric ranges for
program variables in terms of loop bounds.

3 Symbolic Ranges over Nonnegative Parameters

3.1 Domain Representation

Let’s consider a program procedure with n program variables x1, . . . , x j, . . . , xn, together
with m nonnegative parameters p1, . . . , pi, . . . , pm. In practice, those parameters can be
chosen from formal parameters of program procedures, global variables that are only read
but never written by the considered program procedure, inputs from I/O devices, etc.

We maintain parametric ranges for each program variable x j in the abstract domain,
denoted as

x j ∈ [Σiai pi + c,Σibi pi + d]

where ai, bi ∈ R, c ∈ R ∪ {−∞}, d ∈ R ∪ {+∞} and pi is a non-negative parameter. The
concretization is defined by

γ([Σiai pi + c,Σibi pi + d]) = {x j ∈ R | Σiai pi + c ≤ x j ≤ Σibi pi + d}

which represents the set of possible values of x j.

Relaxation of the non-negativity restriction. Note that the non-negativity restriction of
parameters can be relaxed. If we know one of the numerical lower bound c or the numerical
upper bound d for a parameter pi that may take both negative or positive values, we could
introduce a new auxiliary nonnegative parameter p′i such that

p′i
def
= pi − c

or
p′i

def
= d − pi

It is easy to see that it always holds that p′i ≥ 0. Then we could replace all the appearances
of pi by p′i + c (or d − p′i) in the whole program syntactically.

3.2 Domain Operations

Before we show domain operations over parametric ranges, we first define the following
ordering ve (@e) on linear expressions over nonnegative parameters such that

Σiai pi + c ve Σibi pi + d if and only if ∀p ∈ [p, p],Σi(bi − ai)pi + (d − c) ≥ 0

(Σiai pi + c @e Σibi pi + d if and only if ∀p ∈ [p, p],Σi(bi − ai)pi + (d − c) > 0)

where [p, p] denotes numerical ranges for parameters p. Note that it always holds that
[pi, pi] ⊆ [0,+∞] (where 0 ≤ i ≤ m). In our implementation, we first check whether it
holds that

Σi(bi − ai)p′i + (d − c) ≥ 0

(Σi(bi − ai)p′i + (d − c) > 0)

where

p′i =

 pi if ai ≥ bi

pi otherwise

which implies Σi(bi − ai)pi + (d − c) ≥ 0 (or Σi(bi − ai)pi + (d − c) > 0). However, note that
Σi(bi − ai)pi + (d − c) ≥ 0 does not necessarily imply Σi(bi − ai)p′i + (d − c) ≥ 0. We utilize
⊥p to denote the empty parametric range when Σi(bi − ai)pi + (d − c) < 0 .

Now we describe the implementation of the most common domain operations that are
used in numerical static analysis.

Inclusion Test. Inclusion test vp between two parametric ranges for the same program
variable x j, is defined as

[Σiai pi + c,Σibi pi + d] vp [Σia′i pi + c′,Σib′i pi + d′]

def
= Σia′i pi + c′ ve Σiai pi + c ∧ Σibi pi + d ve Σib′i pi + d′

Meet. The intersection up of two parametric ranges for the same program variable x j, is
defined as

[Σiai pi + c,Σibi pi + d] up [Σia′i pi + c′,Σib′i pi + d′]

def
=

⊥p if Σibi pi + d @e Σia′i pi + c′ ∨ Σib′i pi + d′ @e Σiai pi + c

[lexp, lexp′] otherwise

where

lexp def
=



Σiai pi + c if Σia′i pi + c′ ve Σiai pi + c

Σia′i pi + c′ else if Σiai pi + c ve Σia′i pi + c′

Σiai pi + c else if Σiai + c ≥ Σia′i + c′

Σia′i pi + c′ otherwise

and

lexp′ def
=



Σibi pi + d if Σibi pi + d ve Σib′i pi + d′

Σib′i pi + d′ else if Σib′i pi + d′ ve Σibi pi + d

Σibi pi + d else if Σibi + d ≤ Σib′i + d′

Σib′i pi + d′ otherwise

Note that for lexp we try to choose the smaller one (with respect to ve) between Σiai pi + c
and Σia′i pi + c′. When Σiai pi + c and Σia′i pi + c′ are not comparable, we use a heuristic

strategy to pick one from them as the new lower bound, by comparing the sums of the
coefficients. It is worth noting that it is sound to choose either Σiai pi + c or Σia′i pi + c′ as
the resulting lower bound, according to the concrete semantics of intersection, i.e.,

γ([Σiai pi + c,Σibi pi + d]) ∩ γ([Σia′i pi + c′,Σib′i pi + d′])
⊆ γ([Σiai pi + c,Σibi pi + d] up [Σia′i pi + c′,Σib′i pi + d′]).

The same idea applies to lexp′ for upper bound.

Join. To abstract the control-flow join in the program, we need to compute the union of
two parametric ranges for the same program variable x j. In this paper, we compute an over-
approximation [lexp, lexp′] of the union such that both the two input parametric ranges are
included in [lexp, lexp′]. The join operation tp is defined as follows:

[Σiai pi + c,Σibi pi + d] tp [Σia′i pi + c′,Σib′i pi + d′] def
= [lexp, lexp′]

where

lexp def
=


Σiai pi + c if Σiai pi + c ve Σia′i pi + c′

Σia′i pi + c′ else if Σia′i pi + c′ ve Σiai pi + c

Σi min(ai, a′i)pi + min(c, c′) otherwise

and

lexp′ def
=


Σibi pi + d if Σib′i pi + d′ ve Σibi pi + d

Σib′i pi + d′ else if Σibi pi + d ve Σib′i pi + d′

Σi max(bi, b′i)pi + max(d, d′) otherwise

Note that since for all i we have pi ≥ 0, it always holds that

(Σi min(ai, a′i)pi + min(c, c′)) ve (Σiai pi + c)

and
(Σibi pi + d) ve (Σi max(bi, b′i)pi + max(d, d′))

Hence, the result of the join operation tp always provides an overapproximation of the two
input parametric ranges.

Example 3.1 Consider the program shown in Fig. 1. When the fixed point iteration be-
comes stable, at ­, we have x ∈ [n, 2n]. At the program point after applying the as-
signment transfer function of the then branch, we get x ∈ [n + 2, 2n + 2]. And at the
program point after applying the assignment transfer function of the else branch, we get
x ∈ [2n + 1, 4n + 1]. Then, at the control-flow join point ®, we need to compute the join
[n + 2, 2n + 2] tp [2n + 1, 4n + 1], which will result in [n + 1, 4n + 2].

Test Transfer Function. Any conditional test involving program variables (x j) and pa-
rameters (pi) can be converted to a series of conditional tests of the form x j ≤ Σiai pi + c

or x j ≥ Σibi pi + d, by substituting each variable xk (where k , j) in the conditional test
constraint by its parametric range. Then we define the test transfer function as follows:[[

x j ≤ Σiai pi + c
]]#

(ρx j)
def
= ρx j up [−∞,Σiai pi + c]

[[
x j ≥ Σibi pi + d

]]#
(ρx j)

def
= ρx j up [Σibi pi + d,+∞]

where ρ denotes the abstract environment that maps each program variable to its symbolic
range before applying the transfer function and ρx j denotes the symbolic range of x j.

Assignment Transfer Function. Any assignment x j := e wherein e is an expression
involving program variables (x j) and parameters (pi) can be converted to an assignment of
the form x j := [Σiai pi + c,Σibi pi + d], by substituting each program variable in e by its
parametric range. Then we define the assignment transfer function as follows:[[

x j := [Σiai pi + c,Σibi pi + d]
]]#

(ρx j)
def
= [Σiai pi + c,Σibi pi + d]

Widening with Thresholds. Widening with thresholds [2] 5T is a widening parameterized
by a finite set of threshold values T , including −∞ and +∞. Widening with thresholds for
the parametric ranges domain is defined as:

[Σiai pi + c,Σibi pi + d]∇T
p [Σia′i pi + c′,Σib′i pi + d′]

def
= [Σia′′i pi + c′′,Σib′′i pi + d′′]

where 

a′′i
def
= ai ≤ a′i ? ai : max{` ∈ T | ` ≤ a′i}

c′′ def
= c ≤ c′ ? c : max{` ∈ T | ` ≤ c′}

b′′i
def
= bi ≥ b′i ? bi : min{h ∈ T | h ≥ b′i}

d′′ def
= d ≥ d′ ? d : min{h ∈ T | h ≥ d′}

where T is a finite set of threshold values, including −∞ and +∞. Recall that ? : denotes
the conditional operator.

Intuitively, 5T
p utilizes element-wise the interval widening with thresholds for each co-

efficient of parameters as well as the constant term. Furthermore, when a program variable
x j is also known to be always nonnegative, e.g., of type unsigned int, the widening for the
parametric ranges of x j can be improved as:

[Σiai pi + c,Σibi pi + d]∇T
p [Σia′i pi + c′,Σib′i pi + d′]

def
=

 [Σia′′i pi + c′′,Σib′′i pi + d′′] if 0 ve Σia′′i pi + c′′

[0,Σib′′i pi + d′′] otherwise

where a′′i , c
′′, b′′i , d

′′ are defined the same as above.

Example 3.2 Consider the procedure shown in Fig. 2 which is adapted from [6]. After
the first iteration, the input arguments of the widening at ¬ are ρx : [0.75n + 1, 0.75n + 1]
and ρ′x : [0.6875n + 1, n + 1.25]. If we use {0, 0.5, 1, 1.5} together with +∞ and −∞ as
the threshold set T , ρx∇

T
pρ
′
x will result in [0.5n + 1, n + 1.5], which will be stable in the

subsequent increasing iterations.

void foowiden(unsigned int n){
real x;
x := 0.75 ∗ n + 1;
while (true) do {
¬ if (?)

then x := n + 1;
else x := 0.25 ∗ x + 0.5 ∗ n + 1;

} od
}

Fig. 2. An example to show widening of parametric ranges.

4 Application to Infer Symbolic Ranges of List Segment Sizes

In our previous work [4][5], we have shown an approach to derive a numerical program
with nonnegative integer variables from a program that manipulates singly-linked lists. The
main idea is as follows: a singly-linked list can be divided into a set of non-overlapping list
segments, according to reachability of pointer variables to list nodes. For each list segment,
we introduce an auxiliary nonnegative integer variable, called counter variable, to denote
the size of that list segment (that is the number of the list nodes contained in that list seg-
ment). In list-manipulating program procedures, there often exist nonnegative parameters
that represent the initial lengths of the input lists. Hence, in the derived numerical programs
from list-manipulating programs, counter variables together with those numerical variables
appeared in the original list-manipulating programs can be considered as program variables,
while the initial lengths of the input lists can be considered as nonnegative parameters.

In the derived numerical programs from list-manipulating programs, there often exist
affine equality relations between program variables and parameters. Hence, we combine
the domain of parametric ranges with the affine equality abstract domain [12] to perform
the analysis. We use parametric ranges to track symbolic range information of each pro-
gram variable, and use affine equalities to track the affine equality relations among pro-
gram variables and parameters. Assume that there are n program variables and m non-
negative parameters. Then each domain element in the combined domain is described by
an affine equality system Ay = b where y = [x p]T and A ∈ R(n+m)×(n+m), b ∈ Rn+m, to-
gether with symbolic ranges for program variables x j ∈ [Σiai pi + c,Σibi pi + d] (where
ai, bi ∈ R, c ∈ {R,−∞}, d ∈ {R,+∞}) and numerical ranges for nonnegative parameters
pi ∈ [c′, d′] (where 0 ≤ c′ ≤ d′).

Bound tightening. In the combined domain, the symbolic ranges of each program variable
are maintained by the domain of parametric ranges. However, the parametric ranges may
be changed during domain operations of the affine equality domain. E.g., when an affine

equality is added, the parametric ranges of variables can be tightened. In this paper, we
adapt the bound prorogation technique that is a kind of constraint propagation widely used
in constraint programming [1], to tighten the parametric ranges.

In fact, each affine equality of the combined domain can be used to tighten the para-
metric ranges for those program variables occurring in it. Let [x j, x j] denote the parametric
range of program variable x j. Then, given an equality Σiaixi + Σ ja j p j = b, if ai , 0, a new
candidate parametric lower bound for xi comes from: x′i = (b−Σ ja j p j−Σ j,ia jx j)/ai where
x j = a j > 0 ? x j : x j, and a new candidate parametric upper bound for xi comes from:
x′i = (b − Σ ja j p j − Σ j,ia jx′j)/ai where x′j = a j > 0 ? x j : x j. If the new parametric ranges
are tighter, then xi’s ranges are updated. This process can be repeated with each variable in
that equality and with each equality in the system.

void copy and delete(List* x, uint n){ void copy and delete num(uint n){
1: List* y, p, q; uint tx, ty, txy, tp, tq, tpq;
2: assume \length(x)==n; tx := n;
3: y := x; txy := tx; tx := 0;
4: q := p := null; tp := 0; tq := 0; tpq := 0;
5: while (y != null) do { while (txy ≥ 1) do {
6: y := y→ next; tx := tx+1; txy := txy -1;
7: q := malloc(); tp := tpq; tpq := 0; tq := 1;
8: q→ next := pList; tpq := tp; tp := 0;
9: p := q; tpq := tq+tpq; tq := 0;
10: } od } od
11: y := x; txy := tx; tx := 0;
12: while (y != null) do { while (txy ≥ 1) do {
13: y := y→ next; tx := tx+1; txy := txy -1;
14: q := q→ next; tp := tp+1; tpq := tpq -1;
15: free(x); ty := txy; txy := 0; tx := 0;
16: free(p); tq := tpq; tpq := 0; tp := 0;
17: x := y; txy := ty; ty := 0;
18: p := q; tpq := tq; tq := 0;
19: } od } od
} }

(a) (b)
Fig. 3. A list-manipulating program (a) together with its numerical version (b). uint denotes unsigned int.

Example 4.1 Consider the list-manipulating program procedure copy and delete() shown
in Fig. 3 (a). It has a nonnegative parameter n as the initial length of the input list x. The
program first reversely copies list x to list p, and then delete both lists simultaneously. To
prove the memory safety of this program, a key invariant is needed to show that the length
of list p is equal to the length of list x after line 11. Moreover, if a statement accesses the
next field of a list variable p (e.g., the statements in Lines 6, 8, 13, 14), we need to show
that the length of the list segment pointed to by p is greater than or equal to 1. Fig. 3 (b)
shows a numerical program derived from the list-manipulating program copy and delete(),
in which tpq denotes the size of the list segment that can be reached by list variables p and

q. For example, the list assignment statement {y := x; } on Line 3 in Fig. 3 (a) means that
after the assignment both x and y point to the list segment that used to be pointed to by only
x. And after the assignment, it is easy to see that there will be not any more list segment that
is pointed to by only x (without y). Hence, according to the semantics of list assignment,
we can derive the numerical statements {txy := tx; tx := 0; } shown on Line 3 in Fig. 3 (b).
We refer the reader to [4][5] for details about how to derive a numerical program from a
list-manipulating program. Using the combined domain of parametric ranges and affine
equalities, after Line 12, we infer invariants: {txy − tpq == 0, txy ∈ [1, n], tpq ∈ [1, n], n ∈
[1,+∞]}. These invariants are sufficient to prove the memory safety of the second loop
(i.e., from Line 12 to Line 19).

5 Implementation and Experiments

We have implemented our prototype domain of parametric ranges PaRa, inside the Apron
[11] numerical abstract domain library which provides a common interface for numerical
abstract domains. Our experiments were conducted using the Interproc [13] static analyzer.

In order to assess the precision and efficiency of PaRa, we compare the obtained invari-
ants as well as the performance of PaRa with the interval domain Box and the polyhedra
domain NewPolka in Apron. Our experiments were conducted on two sets of examples.
The results are summarized in Figs. 4-5. The column “#Vars” gives the number of program
variables and “#Pars” gives the number of nonnegative parameters. “PaRa+AffineEqs” de-
notes the combined domain of parametric ranges and affine equalities. “Inv.” compares as
a whole the invariants obtained by two domains. A “>” (“<”, “=”, “,”) indicates that the
left-side analysis outputs stronger (weaker, equivalent, incomparable) invariants than the
right-side analysis. The analysis times are given when the analyzer is run on a 2.5GHz PC
with 2G of RAM running Fedora 12.

Program Analysis Results
Name #Vars #Pars Box Inv. PaRa Inv. PaRa+AffineEqs Inv. NewPolka

foo 1 1 0.006s < 0.007s = 0.008s = 0.012s
foowiden 1 1 0.006s < 0.007s = 0.008s > 0.012s

ex ipps95 [3] 1 1 0.004s < 0.006s = 0.007s = 0.011s
ex sas07 [15] 2 2 0.005s < 0.006s < 0.006s = 0.012s

ex toplas05 [14] 2 1 0.006s < 0.008s < 0.010s = 0.016s
ex cav09 1 [10] 3 2 0.007s < 0.010s < 0.015s = 0.021s
ex cav09 2 [10] 2 2 0.007s < 0.007s < 0.010s = 0.017s
ex cav09 3 [10] 4 1 0.008s < 0.011s < 0.017s = 0.021s
ex cav12 1 [16] 2 1 0.003s < 0.004s = 0.004s < 0.010s
ex cav12 2 [16] 2 0 0.001s = 0.002s < 0.004s = 0.006s

all above 20 12 0.023s < 0.053s < 0.092s , 0.335s

Fig. 4. Experimental results on numerical programs.

Fig. 4 shows the results on a collection of small numerical programs. foo and foowiden
respectively correspond to the programs shown in Fig. 1 and Fig. 2. Programs with prefix
“ex ” are taken from related work of symbolic ranges analysis [3,14,15,16], symbolic com-
plexity bound analysis [10]. The program all above is constructed by concatenating all the

other programs listed in Fig. 4. For all programs listed in Fig. 4 except ex cav12 2 (which
involves no parameters), PaRa gives more precise invariants than the interval domain Box.
Compared with the polyhedra domain NewPolka, PaRa generates less precise invariants in
most cases. However, for the program foowiden, PaRa generates more precise invariants
than NewPolka due to the widening with thresholds used in PaRa which tries thresholds
on coefficients of parameters. For all programs with prefix “ex ” except ex ipps95 and
ex cav12 1, although PaRa is less precise than NewPolka, “PaRa+AffineEqs” is as pre-
cise as NewPolka, since these programs involve affine equality relations between program
variables, which cannot be expressed in PaRa but can be expressed in “PaRa+AffineEqs”.
For ex cav12 1, “PaRa+AffineEqs” is less precise than NewPolka, since this program
involves inequality invariants among program variables which cannot be expressed in
“PaRa+AffineEqs” but can be captured by NewPolka.

Fig. 5 shows the results on a set of numerical programs which are manually derived
from list-manipulating programs. These list-manipulating programs contain commonly
used operations over singly-linked lists such as create, traverse, reverse, merge, copy, delete
and dispatch. The program list all above is constructed by concatenating all the other pro-
grams listed in Fig. 5. This kind of numerical programs derived from list-manipulating
programs often involve affine equality relations among program variables and nonnegative
parameters. Hence, we utilize the combined domain of parametric ranges and affine equal-
ities to analyze these programs. On these programs, “PaRa+AffineEqs” gives as precise
invariants as those given by NewPolka. And these invariants are precise enough to prove
the memory safety of the original list-manipulating programs.

Program Analysis Results
Name #Vars #Pars Box Inv. PaRa+AffineEqs Inv. NewPolka

list create 4 1 0.008s < 0.011s = 0.018s
list traverse 3 1 0.006s < 0.008s = 0.016s
list reverse 5 1 0.009s < 0.015s = 0.025s

list length equal 4 1 0.007s < 0.010s = 0.017s
list merge 5 2 0.009s < 0.018s = 0.027s

list copy and delete 6 1 0.007s < 0.024s = 0.032s
list dispatch 7 1 0.011s < 0.029s = 0.040s
list all above 34 8 0.036s < 0.181s = 0.826s

Fig. 5. Experimental results on numerical programs derived from list-manipulating programs.

6 Conclusion

We have presented an abstract domain of parametric ranges to capture the symbolic ranges
of each program variable, wherein the bounds of value ranges of each program variable are
described as linear expressions over nonnegative parameters. This domain is more powerful
than the interval abstract domain. The time and space complexity of its domain operations
is O(nm) where n is the number of program variables and m is the number of nonnegative
parameters. As an example to illustrate the usefulness of the new domain, we have shown
its application to infer symbolic ranges of list segment sizes for analyzing list-manipulating
programs.

It remains for future work to consider experiments on larger programs and the usage of
parametric ranges in more applications such as buffer overflow analysis. Another direction
of work is to consider using nonlinear expressions over nonnegative parameters as symbolic
ranges. In this case, a nonlinear template could be chosen for each program variable.

Acknowledgements

We would like to thank the anonymous reviewers for their constructive comments. This
work is supported by the 973 Program under Grant No. 2014CB340703, the NSFC un-
der Grant Nos. 61202120, 61120106006, 91318301, and the SRFDP under Grant No.
20124307120034.

References
[1] Bessiere, C., Constraint propagation, in: F. Rossi, P. van Beek and T. Walsh, editors, Handbook of Constraint

Programming, Elsevier, 2006 .

[2] Blanchet, B., P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux and X. Rival, A static analyzer for
large safety-critical software, in: PLDI (2003), pp. 196–207.

[3] Blume, W. and R. Eigenmann, Symbolic range propagation, in: IPPS (1995), pp. 357–363.

[4] Chen, L., R. Li, X. Wu and J. Wang, Static analysis of list-manipulating programs via bit-vectors and numerical
abstractions, in: SAC (2013), pp. 1204–1210.

[5] Chen, L., R. Li, X. Wu and J. Wang, Static analysis of lists by combining shape and numerical abstractions, Science of
Computer Programming (2014), http://dx.doi.org/10.1016/j.scico.2014.06.004.

[6] Chen, L., A. Miné, J. Wang and P. Cousot, An abstract domain to discover interval linear equalities, in: VMCAI, LNCS
5944 (2010), pp. 112–128.

[7] Cousot, P. and R. Cousot, Static determination of dynamic properties of programs, in: Proc. of the 2nd International
Symposium on Programming (1976), pp. 106–130.

[8] Cousot, P. and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints, in: POPL (1977), pp. 238–252.

[9] Cousot, P. and N. Halbwachs, Automatic discovery of linear restraints among variables of a program, in: POPL (1978),
pp. 84–96.

[10] Gulwani, S., Speed: Symbolic complexity bound analysis, in: CAV, LNCS 5643 (2009), pp. 51–62.

[11] Jeannet, B. and A. Miné, Apron: A library of numerical abstract domains for static analysis, in: CAV, LNCS 5643
(2009), pp. 661–667.

[12] Karr, M., Affine relationships among variables of a program, Acta Inf. 6 (1976), pp. 133–151.

[13] Lalire, G., M. Argoud and B. Jeannet, Interproc, http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/.

[14] Rugina, R. and M. C. Rinard, Symbolic bounds analysis of pointers, array indices, and accessed memory regions, ACM
Trans. Program. Lang. Syst. 27 (2005), pp. 185–235.

[15] Sankaranarayanan, S., F. Ivancic and A. Gupta, Program analysis using symbolic ranges, in: SAS, LNCS 4634 (2007),
pp. 366–383.

[16] Venet, A., The gauge domain: Scalable analysis of linear inequality invariants, in: CAV, LNCS 7358 (2012), pp. 139–
154.

[17] Zaks, A., Z. Yang, I. Shlyakhter, F. Ivancic, S. Cadambi, M. K. Ganai, A. Gupta and P. Ashar, Bitwidth reduction via
symbolic interval analysis for software model checking, IEEE Trans. on CAD of Integrated Circuits and Systems 27
(2008), pp. 1513–1517.

	Introduction
	Related Work
	Symbolic Ranges over Nonnegative Parameters
	Domain Representation
	Domain Operations

	Application to Infer Symbolic Ranges of List Segment Sizes
	Implementation and Experiments
	Conclusion
	References

