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Abstract. Robustness is a key property for critical systems that run in uncertain
environments, to ensure that small input perturbations can cause only small out-
put changes. Current critical systems often involve lots of floating-point compu-
tations which are inexact. Robustness analysis of floating-point programs needs
to consider both the uncertain inputs and the inexact computation. In this paper,
we propose to leverage the idea of self-composition to transform the robustness
analysis problem into a reachability problem, which enables the use of standard
reachability analysis techniques such as software model checking and symbolic
execution for robustness analysis. To handle floating-point arithmetic, we employ
an abstraction that encompasses the effect of rounding and that can encompass
all rounding modes. It converts floating-point expressions into linear expressions
with interval coefficients in exact real arithmetic. On this basis, we employ in-
terval linear programming to compute the maximum output change or maximum
allowed input perturbation for the abstracted programs. Preliminary experimental
results of our prototype implementation are encouraging.

1 Introduction

Uncertainty and inexactness in computing have attracted much attention in computer
science. In Cyber Physical Systems (CPS), the discrete world of computation is inte-
grated with the continuous world of physical processes. Moreover, CPS run in the open
environmental context and thus have to deal with uncertain data which may come from
noisy sensor data or approximate computation. Hence, inputs for programs in CPS are
of intrinsic uncertainty. On the other hand, due to finite precision on computers, physical
values are truncated into digital ones. In modern computers, real numbers are approx-
imated by a finite set of floating-point numbers. Due to the pervasive rounding errors,
numerical computation using floating-point arithmetic is not exact. Since many safety-
critical CPS systems (such as aircrafts, automobiles and medical devices) often involve
lots of numerical computations, there is a great need to ensure that these programs are
robust with respect to the uncertain input as well as the inexact computation.

Although robustness is long known as a standard correctness property for control
systems [39], considering the robustness of programs is quite recent [12–14, 34]. Intu-
itively, robustness of a program means that small input perturbations of the program can
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cause only small output changes. Most existing work on analyzing robustness of pro-
grams assumes that the analyzed program is in exact real arithmetic, although floating-
point computation is pervasive in practical applications. This paper targets the analysis
of robustness properties of floating-point programs.

A program using floating-point arithmetic often exhibits more robustness issues
than that using exact real arithmetic, due to the misunderstandings and non-intuitive
behaviors of floating-point semantics. Although floating-point arithmetic is quite dif-
ferent from the exact real arithmetic, most developers of floating-point programs will
write programs as if computations were done in exact arithmetic. For the same input,
the control flow of the program using floating-point arithmetic can be different from the
one that would be taken assuming exact real arithmetic. Similarly, for two inputs whose
values are close to each other, the resulting two control flows of the same program can
be different (even when following exact real arithmetic). Two different control flows
may lead to very large difference in outputs.
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1 int Orientation(float px, float py, float qx, float qy, float rx, float ry)
2 {

3 float pqx=qx-px, pqy=qy-py;
4 float prx=rx-px, pry=ry-py;
5 float det = pqx * pry - pqy * prx;
6 if (det > 0) return 1;
7 if (det < 0) return -1;
8 return 0;
9 }

Fig. 1. Floating-point implementation for orientation test of 2D points

We illustrate the robustness problem due to floating-point computation using a mo-
tivating example shown in Fig. 1, which is a “classroom” example of a robustness
problem frequently used in the field of geometric computations [30]. The program
Orientation implements the 2D orientation test that decides whether a point r lies
to the left of, to the right of, or on the line −→pq defined by the 2 points p, q, by evaluat-
ing the sign of a determinant det which is expressed in terms of the coordinates of the
input points. Due to rounding errors, the floating-point computation of the determinant
det may lead to a wrong result when the true determinant (via exact real arithmetic)
is close to zero. From the robustness point of view, for this program, even a very small
input perturbation may lead to an output change of 1 or 2. If the rounding modes for the
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floating-point operations are not determinate in the program, the output change can be
2 even when there is no perturbation in the inputs (by running the program in different
rounding modes). This misinformation may then lead to a failure of a computational
geometry application (e.g., crash or not terminate) or produce wrong results [30].

Analyzing robustness of floating-point programs is more challenging than analyz-
ing programs assuming exact real arithmetic, since besides the input perturbations, we
need to consider also the inexactness of floating-point computation. The floating-point
program itself acts as if inputs were perturbated due to the pervasive rounding errors
or non-determinate rounding modes. There exist a few known pitfalls of analyzing and
verifying floating-point programs [37].

In this paper, we present a robustness analysis method for floating-point programs.
The key idea is to leverage the self-composition technique from the field of secure in-
formation flow to transform the robustness analysis problem into a reachability (safety)
problem. Then we use standard rechability analysis techniques such as software model
checking and symbolic execution to analyze the self-composed programs. To cope with
floating-point arithmetic, we utilize a rounding mode insensitive abstraction method to
abstract floating-point expressions into linear expressions with interval coefficients in
the field of reals. On this basis, we use interval linear programming to compute the
maximum output change (when given the input perturbation) or the maximum allowed
input perturbation (when given the output change) for the abstracted programs. The
preliminary experimental results are promising on benchmark programs.

The rest of the paper is organized as follows. Section 2 reviews the IEEE 754
floating-point arithmetic and the basic theory of interval linear systems as well as inter-
val linear programming. Section 3 presents the robustness analysis approach via self-
composition for programs (that assume exact real arithmetic). Section 4 presents the
techniques to handle floating-point arithmetic. Section 5 presents our prototype im-
plementation together with preliminary experimental results. Section 6 discusses some
related work before Section 7 concludes.

2 Preliminaries

In this section, we briefly provide the background on the IEEE 754 floating-point arith-
metic and the basic theory on interval arithmetics as well as interval linear program-
ming.

2.1 The IEEE 754 floating-point arithmetic

A digital computer cannot represent all possible real numbers in mathematics exactly. In
computing, floating-point numbers provides an approach to represent a finite subset of
the real numbers. In this paper, we focus on analyzing programs with respect to the bi-
nary formats of the IEEE 754 floating-point standard [43] which is the most commonly
used floating-point representation and is followed by almost all modern computers.

In the IEEE 754 standard, the binary representation of a floating-point number x
can be described as x = (−1)S × M × 2E , where
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– S is the 1-bit sign of x, which represents that x is positive (when S = 0) or negative
(when S = 1);

– E = e − bias is called the exponent, where e is a biased e-bit unsigned integer and
bias = 2e−1 − 1;

– M = m0.m1m2 . . .mp is called the significand, where f = .m1m2 . . .mp represents a
p-bit fraction and m0 is the hidden bit without need of storage.

The values of e,bias,p depend on the floating-point formats. The IEEE 754 standard
supports several formats, among which the basic formats include:

– 32-bit single-precision format, where e = 8 (and thus bias = 127), p = 23;
– 64-bit double-precision format, where e = 11 (and thus bias = 1023), p = 52.

According to the value of e, the floating-point numbers can be divided into the following
categories:

– normalized number (−1)S × 1. f × 2e−bias, when 1 ≤ e ≤ 2e − 2;
– denormalized number (−1)S × 0. f × 21−bias, when e = 0 and f , 0;
– +0 or −0, when e = 0 and f = 0;
– +∞ or −∞, when e = 2e − 1 and f = 0;
– NaN (Not a Number), when e = 2e − 1 and f , 0.

Let F be the set of floating-point formats. For each f ∈ F, we define

– mf f
def
= 21−bias−p, the smallest non-zero positive floating-point number;

– Mf f
def
= (2 − 2−p)22e−bias−2, the largest non-infinity floating-point number.

In general, the result of a floating-point operation may not be exactly representable
in the floating-point representation, and thus the result needs to be rounded into a
floating-point number. The IEEE 754 standard supports four rounding modes: toward
nearest, toward +∞, toward -∞, and toward zero. In this paper, in order to distinguish
floating-point arithmetic operations from exact real arithmetic ones, we introduce addi-
tional notations. As usual, {+,−,×, /} are used as exact rational arithmetic operations.
The corresponding floating-point operations are denoted by {⊕f,r,	f,r,⊗f,r,�f,r}, tagged
with a floating-point format f ∈ F and a rounding mode r ∈ {+∞,−∞, 0, n} (n repre-
senting rounding to nearest). We also use ? to denote arbitrary rounding mode.

Due to rounding errors, many well-known algebraic properties (such as associativity
and distributivity) over the reals do not hold for floating-point arithmetic.

Example 1. Consider the following expressions in the 32-bit single-precision floating-
point arithmetic.

(224 ⊕32,? −224) ⊕32,? 1 = 1

(224 ⊕32,−∞ 1) ⊕32,−∞ −224 = 0

(224 ⊕32,+∞ 1) ⊕32,+∞ −224 = 2

Note that in the 32-bit single-precision format, the significand is M = m0.m1m2 . . .m23.
However, to represent the exact result of 224 +1 over the reals, we need one more bit for
the significand M (say m24). Hence, rounding happens. 224 ⊕32,−∞ 1 will result in 224,
while 224 ⊕32,+∞ 1 will result in (1 + 2−23) × 224 .
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2.2 Interval Linear Systems and Interval Linear Programming

Let A, A ∈ Rm×n be two matrices with A ≤ A, where comparison operators are defined
element-wise, then the set of matrices A ∈ IRm×n defined by

A = [A, A] = {A ∈ Rm×n : A ≤ A ≤ A}

is called an interval matrix, and the matrices A, A are called its bounds. Let us define
the center matrix of A as Ac = 1

2 (A + A) and the radius matrix as 4A = 1
2 (A − A). Then,

A = [A, A] = [Ac − 4A, Ac + 4A]. An interval vector is a one-column interval matrix
d = [d, d] = {d ∈ Rm : d ≤ d ≤ d}, where d, d ∈ Rm and d ≤ d.

Let A be an m× n interval matrix and b be a vector of size m. The following system
of interval linear inequalities

Ax ≤ b

denotes an interval linear system, that is, the family of all systems of linear inequalities
Ax ≤ b such that A ∈ A.

Definition 1 (Weak solution). A vector x ∈ Rn is called a weak solution of the interval
linear system Ax ≤ b, if it satisfies Ax ≤ b for some A ∈ A. Furthermore, the set

Σ∃(A, b) = {x ∈ Rn : ∃A ∈ A, Ax ≤ b}

is said to be the weak solution set of the system Ax ≤ b.

The weak solution set of an interval linear system is characterized by the following
theorem [40].

Theorem 1. A vector x ∈ Rn is a weak solution of Ax ≤ b iff it satisfies Acx−4A|x| ≤ b.

Let A ∈ IRm×n be an m × n interval matrix, b ∈ Rm be an m-dimensional vector, and
c ∈ IRn be an n-dimensional interval vector. The family of linear programming (LP)
problems

f (A, b, c) = max{cT x : Ax ≤ b}

with data satisfying

A ∈ A, c ∈ c

is called an interval linear programming (ILP) problem.
In this paper, we are only interested in computing the upper bound f (A, b, c) =

sup{ f (A, b, c) : A ∈ A, c ∈ c}. In general, according to Theorem 1, to compute the exact
f (A, b, c), in the worst case up to 2n LP problems have to be solved, one for each orthant.
Recall that a (closed) orthant is one of the 2n subsets of an n-dimensional Euclidean
space defined by constraining each Cartesian coordinate axis to be either nonnegative
or nonpositive. In each orthant, we consider the following LP problem:

max
∑n

j=1 c′jx j

s.t.
∧

0≤i≤m

∑n
j=1 A′i jx j ≤ bi

where
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c′j =

{
c j if x j ≥ 0
c j if x j < 0 A′i j =

{
Ai j if x j ≥ 0
Ai j if x j < 0

And f (A, b, c) will be the the maximum over all the optimal values of the 2n LP prob-
lems with one per each orthant.

3 Robustness analysis via self-composition

3.1 Robustness of programs

In this paper, we follow the definition for robustness of programs used by Majumdar and
Saha [34]. Let f be a function with inputs x1, . . . , xn and output y, i.e., y = f (x1, . . . , xn).
The function f is said to be (δ, ε)-robust in the i-th input xi if a perturbation of at most
δ in the input xi can only cause a change of at most ε in the output, i.e.,

∀xi, x′i .|xi − x′i | ≤ δ =⇒ | f (x1, . . . , xi, . . . , xn) − f (x1, . . . , x′i , . . . , xn)| ≤ ε

where δ, ε ∈ R are non-negative constant parameters specified by users. Recall that we
consider the perturbation over only one input at a time while assume that there is no
perturbation over all other inputs at the same time.

Moreover, in practice, users may be interested in the maximum output change of y
with respect to xi and δ, i.e.,

εδ
def
= max

x,x′

|y − y′|

∣∣∣∣∣∣∣∣
y = f (x1, . . . , xi, . . . , xn)
y′ = f (x1, . . . , x′i , . . . , xn)
|xi − x′i | ≤ δ


Similarly, users may be interested in the maximum input perturbation allowed over xi

with respect to y and ε, i.e.,

δε
def
= max

y,y′

|xi − x′i |

∣∣∣∣∣∣∣∣
y = f (x1, . . . , xi, . . . , xn)
y′ = f (x1, . . . , x′i , . . . , xn)
|y − y′| ≤ ε


Example 2. Consider the following program which implements a piece-wise linear func-
tion. When x = 1.001, the two branches give the same result y = 1002.001 in exact real
arithmetic (assuming floats are reals). It is easy to see that in exact real arithmetic, this
program is (0.1, ε0)-robust for all ε0 ≥ 100.1 but is not (0.1, ε1)-robust for all ε1 < 100.1.
This can be deduced by observing that in exact real arithmetic, given the input pertur-
bation δ = 0.1, the maximum output change of y is εδ = 100.1; Given the output change
ε = 100.1, the maximum input perturbation allowed over x is δε = 0.1.

1 float piecewise_linear(float x) {
2 float y;
3 if (x < 1.001)
4 y = x + 1001.0;

5 else
6 y = x * 1001.0;

7 return y;
8 }
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3.2 Self-composition

The idea of self-composition is firstly used in the field of secure information flow [4, 20]
to characterize non-interference. Let P be a program and P′ be a copy of P with each
variable x in P replaced by a fresh variable x′. Using Hoare triples, non-interference
can be characterized as:

{L = L′} P; P′ {L = L′}

where L denotes low-security variables. In other words, it requires that running two in-
stances of the same program with equal low-security values and arbitrary high-security
values results in equal low-security values. Hence, via self-composition, a secure in-
formation flow property of P reduces to a reachability property over single program
executions of the program P; P′.

In this paper, we would like to leverage the idea of self-composition to reduce the
robustness problem of a program P into an equivalent reachability problem over P; P′.
Assume that program P has n input variables x1, . . . , xn and an output variable y. Sim-
ilarly, using Hoare triples, the (δ, ε)-robustness of program P over the i-th input xi can
be characterized as:

{|xi − x′i | ≤ δ ∧
∧

1≤ j≤n, j,i

x j = x′j} P; P′ {|y − y′| ≤ ε}

Example 3. Consider again the program piecewise linear in Example 1. The self-
composition of the function body is shown below. To express the robustness property,
we add the assumption |x − x′| ≤ δ as a precondition at the beginning of the self-
composed program and add an assertion |y − y′| ≤ ε as a postcondition at the end.

1 assume(−δ ≤x-x′ ≤ δ)
2

3 if (x < 1.001)
4 y = x + 1001.0;

5 else
6 y = x * 1001.0;

7

8 if (x′ < 1.001)
9 y′ = x′ + 1001.0;

10 else
11 y′ = x′ * 1001.0;

12

13 assert(−ε ≤y-y'≤ ε)

Essentially, the copied program P′ has the same program code as P but uses vari-
ables with different initial values. Hence, there exists inherent symmetry and redun-
dancy in the self-composed programs. In order to make the following analysis and ver-
ification process for self-composed programs easier, program transformations can be
used to optimize the self-composed programs. In the field of secure information flow
analysis, Terauchi and Aiken [44] proposed type directed transformation to improve
self-composition. The main idea of type-directed transformation is not to self-compose
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branch (or loop) statements when the branch (or loop) condition is only dependent on
the values of low-security variables. In addition, for an assignment statement {x := e; },
when the right-hand expression e is only dependent on the values of low-security vari-
ables, its self-composition is simplified as {x := e; x′ := x; }.

With respect to robustness, a similar transformation can be applied. Intuitively, we
could consider the perturbed input variable xi as a high-security variable and all other
input variables x j’s as low-security variables where j , i . Hence, similarly to type
directed transformation, we do not self-compose branch (or loop) statements when the
branch (or loop) condition is not dependent on the values of perturbed input variables.
For an assignment statement {x := e; }, when the right-hand expression e is not de-
pendent on the values of perturbed input variables, its self-composition is simplified as
{x := e; x′ := x; }.

Example 4. Consider the following function min plus1 which implements min(x+1, y)
by adding 0.1 to x ten times. The optimized self-composition result of the function body
after applying transformation is given below, when we consider the perturbation over
the input variable x (while assuming no perturbation over y). More specifically, since
the loop condition i < 10 in the original program is not dependent on the value of the
perturbed input variable x, we do not self-compose the loop statement and thus there is
only one loop in the transformed resulting self-composed program.

1 float min_plus1(float x, float y){
2 float z;
3 int i;
4 i = 0;

5 while (i < 10) {
6 x = x + 0.1;

7 i = i + 1;

8 }

9 if (y <= x) z = y;

10 else z = x;

11 return z;
12 }

1 assume(−δ ≤x-x′ ≤ δ and y=y′)
2

3 i = 0; i′ = i;

4 while (i < 10) {
5 x = x + 0.1; x′ = x′ + 0.1;

6 i = i + 1; i′ = i;

7 }

8 if (y <= x) z = y;

9 else z = x;

10 if (y′ <= x′) z′ = y′;

11 else z′ = x′;

12

13 assert(−ε ≤z-z′ ≤ ε)

3.3 Robustness analysis of self-composed programs

Via self-composition, the robustness analysis problem can be reduced to solving a stan-
dard reachability (safety) problem. The recent success of automatic analysis and veri-
fication tools (such as SLAM [1], CBMC [18], and ASTRÉE [5]) aiming at checking
reachability properties in programs makes this approach promising. In the following,
we will present two popular reachability analysis approaches that fit for analyzing ro-
bustness, i.e., software model checking and symbolic execution.

Checking robustness by software model checking Software model checking [29]
provides an automatic approach to check whether a program satisfies a property by ex-
ploring the state space of the program. For the robustness analysis problem, the property
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to be checked is an assertion at the end of the self-composed programs stating that the
output change is bounded by ε, i.e., assert(−ε ≤y-y′ ≤ ε). A main advantage of using
software model checking is that it will generate a counterexample when the robustness
property does not hold. The counterexample shows an execution trace which violates
the robustness property. A counterexample is very helpful for the users to identify the
source of non-robustness.

Finding maximum output change (or input perturbation) by symbolic execution
Symbolic execution [10, 31] is a technique to analyze a program by executing the pro-
gram with symbolic rather than concrete values as program inputs. The process of sym-
bolic execution essentially generates and explores a symbolic execution tree which rep-
resents all execution paths followed during the process. Each tree node represents a
symbolic execution state, while each edge represents a program transition between the
states. At any tree node, the symbolic execution state includes a program counter, a path
condition (PC) that encodes the constraints on the symbolic inputs to reach that node, a
path function (PF) that represents the current values of the program variables as function
of symbolic inputs when the path condition holds true. The path condition is a boolean
expression over the symbolic inputs. The path function describes the expected result of
the program, under the given path condition. Due to conditional branches and loops in
a program, the symbolic execution of a program will result in a set of paths, each of
which is described by a pair 〈PC, PF〉 of the path condition PC and the associated path
function PF.

We now show how to use symbolic execution to conduct a robustness analysis of
program P with inputs x1, . . . , xn and output y. First, the analysis algorithm performs
symbolic execution on the self-composed program P; P′. Assume that the algorithm
collects, at the end of the self-composed program, a set S of pairs 〈PC, PF〉 of the path
condition PC and the associated path function PF. Then for each s 4= 〈PC, PF〉 ∈ S,
we compute the maximum output change ε s

δ:

max |PFy − PFy′ |

s.t. (|xi − x′i | ≤ δ ∧
∧

1≤ j≤n, j,i

x j = x′j) ∧ PC

Here, PFy and PFy′ denote the symbolic expressions that the path function PF maps
the variables y and y′ to, respectively. Let εδ be the maximum element of {ε s

δ | s ∈ S},
i.e., εδ = max({ε s

δ | s ∈ S}). If εδ ≤ ε, then the original program P is (δ, ε)-robust.
Similarly, given the bound of output change ε, computing the maximum allowed

input perturbation is reduced to solving a series of the following optimization problems
for each s 4= 〈PC, PF〉 ∈ S:

max |xi − x′i |

s.t. (
∧

1≤ j≤n, j,i

x j = x′j) ∧ PC ∧ |PFy − PFy′ | ≤ ε

And δε will be the maximum element of {δ
s
ε | s ∈ S}, i.e., δε = max({δ

s
ε | s ∈ S}).
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4 Robustness analysis of floating-point programs

In this section, we consider the robustness analysis problem of floating-point programs.
In Section 3.3, we propose to utilize software model checking and symbolic execution
to perform robustness analysis of self-composed programs (in exact real arithmetic).
However, most existing software model checkers and symbolic execution tools can not
be directly applied to floating-point programs, since they rely on constraint solvers that
often assume good algebraic properties such as associativity and distributivity over the
reals which do not hold for floating-point arithmetic. To handle floating-point arith-
metic, we have to resort to bit-precise modeling of floating-point arithmetic or abstract-
ing floating-point arithmetic to real number arithmetic.

CBMC (C Bounded Model Checker) [18] is one of the few software model checkers
that have considered floating-point arithmetic. CBMC employs a sound and complete
decision procedure for floating-point arithmetic [7, 26]. It precisely encodes floating-
point operations as functions on bit-vectors. Each floating-point operation is further
modeled as a formula in propositional logic. The formula is then handled by a SAT-
solver in the backend to check for satisfiability.

When we consider symbolic execution of floating-point programs, both the path
condition and the path function will involve floating-point expressions. Hence,to com-
pute the maximum output change (or maximum allowed input perturbation), we need
optimization methods supporting floating-point constraints. However, as far as we know,
even for linear programming, there is no available sound solver supporting floating-
point constraints. To this end, in this paper, we abstract the optimization problem with
floating-point constraints into an interval linear programming problem (i.e., linear pro-
gramming problem with interval coefficients) over the reals. The main idea is to use
the so-called floating-point linearization technique [35, 36] to abstract floating-point
expressions into linear real number expressions with interval coefficients (in the form
of Σi[ai, bi]xi) .

4.1 Floating-point abstraction

In this subsection, we will explain how to abstract floating-point expressions into inter-
val linear expressions over the reals.

First, let us consider the upper bound on rounding errors due to one floating-point
operation. Let Rf,r(x) denote the floating-point rounding function that maps a real num-
ber x to a floating-point number (or a runtime error due to, for example, overflows)
with respect to the floating-point format f and the rounding mode r. The amount of the
rounding error due to Rf,r(x) depends on the category of x.

– If x is in the range of normalized numbers, then |Rf,r(x) − x| ≤ εrel · |x| where
εrel = 2−p (wherein p is the number of bits of fraction in the significand of the
floating-point format f). In this case we consider the relative rounding error εrel.

– If x is in the range of denormalized number, then |Rf,r(x) − x| ≤ εabs, where
εabs = mf f (wherein mf f is the smallest non-zero positive denormalized floating-
point number in the floating-point format f, which is also the gap between two
neighboring denormalized numbers). In this case, we consider the absolute round-
ing error εabs.
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The rounding errors of these two cases can be unified as

|Rf,r(x) − x| ≤ max(εrel · |x|, εabs)

Since max is not a linear operation, we derive an over-approximation

|Rf,r(x) − x| ≤ εrel · |x| + εabs

Furthermore, when b ≥ 0, |y| ≤ b is equivalent to y = [−1, 1] × b. Hence,

Rf,r(x) − x = [−1, 1](εrel · |x| + εabs)

that is,
Rf,r(x) = [1 − εrel, 1 + εrel] × x + [−εabs, εabs]

In general, we could abstract floating-point operations into interval linear expressions
in real number semantics. E.g.,

x ⊕f,r y

that is
Rf,r(x + y)

can be abstracted into

[1 − εrel, 1 + εrel] × (x + y) + [−εabs, εabs]

that is
[1 − εrel, 1 + εrel] × x + [1 − εrel, 1 + εrel] × y + [−εabs, εabs]

The advantage of this kind of rounding mode insensitive floating-point abstractions
is that the result is sound with respect to arbitrary rounding modes, since Rf,r(x) always
satisfies Rf,−∞(x) ≤ Rf,r(x) ≤ Rf,+∞(x) while |Rf,r(x)−x| ≤ εrel ·|x|+εabs has already taken
into account the extreme cases of r = −∞ and r = +∞. This is of practical importance,
since we may not know the exact rounding mode for each floating-point operation. E.g.,
C99 provides the fesetround() function to set the current rounding mode. Of course,
when we know the exact rounding mode for the floating-point operation, we could make
the floating-point abstraction more precise. E.g., if the current rounding mode is toward
nearest, then

Rf,n(x) = [1 − εrel/2, 1 + εrel/2] × x + [−εabs/2, εabs/2]

In addition, if we know the range of x, we may also define more precise floating-point
abstractions. E.g., if we know that x is in the range of denormalized numbers, then

Rf,r(x) = x + [−εabs, εabs]

For the sake of generality, in this paper, we use the following rounding mode insen-
sitive floating-point abstraction:

R]
f,?(x) = [1 − εrel, 1 + εrel] × x + [−εabs, εabs]

11



where we assume |x| < M ff .
More clearly, we use the following abstraction for floating-point arithmetic:

R]
f,?(x ⊕f,? y) = [1 − εrel, 1 + εrel] × x + [1 − εrel, 1 + εrel] × y + [−εabs, εabs]

R]
f,?(x 	f,? y) = [1 − εrel, 1 + εrel] × x + [−1 − εrel,−1 + εrel] × y + [−εabs, εabs]

R]
f,?(x ⊗f,? y) = [1 − εrel, 1 + εrel] × x × y + [−εabs, εabs]

R]
f,?(x �f,? y) = [1 − εrel, 1 + εrel] × x/y + [−εabs, εabs]

Specially, for a constant number c that appears in the source code, we use the following
abstraction:

R]
f,?(c) = [R]

f,−∞(c),R]
f,+∞(c)]

4.2 Symbolic execution of abstracted floating-point programs

From Section 4.1, we see that floating-point expressions can be soundly abstracted into
real number expressions with interval coefficients. Since the multiplication x × y and
division x/y are not linear expressions when both x and y are not constant numbers, in
order to obtain linear expressions with interval coefficients, we replace y with its inter-
val range denoted as [y, y]. In symbolic execution, y is always an expression over the
symbolic input values. We assume users provide the interval ranges for those symbolic
input values. Then, all floating-point expressions can be abstracted as interval linear
expressions. Therefore, the resulting path conditions of symbolic execution consist of
interval linear constraints while the resulting path functions consist of interval linear
expressions.

Finally, the problems of computing the maximum output change and the maximum
allowed input perturbation are reduced to solving a series of interval linear program-
ming problems. For example, computing the maximum output change requires the so-
lutions of the following interval linear programming problems:

max Σi[ai, ai] × xi + Σi[a′i , a
′
i] × x′i + b

s.t. (|xi − x′i | ≤ δ ∧
∧

1≤ j≤n, j,i

x j = x′j)

∧
∧

k

Σi[Aki, Aki] × xi + Σi[A′ki, A
′

ki] × x′i ≤ ck

where Σi[ai, ai]× xi +Σi[a′i , a
′
i]× x′i +b denotes the abstracted output change PFy − PFy′

(or PFy′ − PFy) while
∧

k Σi[Aki, Aki] × xi + Σi[A′ki, A
′

ki] × x′i ≤ ck denotes the abstracted
PC.

Example 5. Consider the self-composed program piecewise linear in Example 3.
Suppose we would like to compute the maximum output change, given the input per-
turbation δ = 0.1 over x. The self-composed program includes four paths overall. Let’s
consider for example the path that takes the else branch in both the unprimed program
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P and the primed program P′. Since x, y are of float type, εrel = 2−23 and εabs = 2−149

for the 32-bit single precision floating-point format. We will have

PC : x ≥ R]
f,−∞(1.001) ∧ x′ ≥ R]

f,−∞(1.001)
PFy : [1 − 2−23, 1 + 2−23] × [R]

f,−∞(1001.0),R]
f,+∞(1001.0)] × x + [−2−149, 2−149]

PFy′ : [1 − 2−23, 1 + 2−23] × [R]
f,−∞(1001.0),R]

f,+∞(1001.0)] × x′ + [−2−149, 2−149]

Thus, we get the following interval linear programming problem:

max [1 − 2−23, 1 + 2−23] × [R]
f,−∞(1001.0),R]

f,+∞(1001.0)] × x

+[−1 − 2−23,−1 + 2−23] × [R]
f,−∞(1001.0),R]

f,+∞(1001.0)] × x′ + [−2−148, 2−148]

s.t. x − x′ ≤ 0.1 ∧ −x + x′ ≤ 0.1
∧ − x ≤ −R]

f,−∞(1.001) ∧ −x′ ≤ −R]
f,−∞(1.001)

Solving the above interval linear programming problem by the method described in
Section 2.2 will give us 100.10023889571252. After we deal with all other paths in the
same way, we will find that 100.10023889571252 is the maximum output change with
respect to the given input perturbation 0.1. Hence, the program piecewise linear in
floating-point arithmetic is at least (0.1, 100.10023889571252)-robust.

5 Implementation and experimental results

We have implemented a robustness analysis tool RAFP, based on the symbolic execu-
tion and floating-point abstraction techniques presented in Section. 4. Given an input
perturbation δ over one input variable of the program, RAFP can compute the maxi-
mum output change. Furthermore, if the user also provides a candidate output change
ε and would like to check whether the program is (δ, ε)-robust, RAFP will check this
property during the process of computing maximum output change and will stop once
one path violating the property is found. Also, given an output change ε, RAFP can
compute the maximum allowed input perturbation for floating-point programs. RAFP
is built on top of Symbolic PathFinder (SPF) [38] which is a symbolic execution engine
for Java programs. We use SPF to extract the path conditions together with the associ-
ated path functions. For linear programming, RAFP makes use of the Java Binding for
GLPK (GNU Linear programming kit) called GLPK-Java [41].

To conduct experiments on checking robustness properties of floating-point pro-
grams via software model checking, we choose CBMC (C Bounded Model Checker)
[18] which implements bounded model checking for ANSI-C programs using SAT/SMT
solvers. CBMC utilizes a bit-precise modeling for floating-point operations and em-
ploys a sound and complete decision procedure for floating-point arithmetic. CBMC
provides an option --floatbv to use IEEE floating point arithmetic and options for
choosing rounding modes. However, CBMC does not support to use different round-
ing modes for the floating-point operations in the same program. In other words, all
floating-point operations in a program are of the same rounding mode during the anal-
ysis. We use the default rounding mode --round-to-nearest during our experi-
ments. Moreover, CBMC provides CPROVER assume() and CPROVER assert()
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statements, which are needed for robustness analysis of self-composed programs. Both
statements take Boolean conditions. The CPROVER assume() statement restricts that
the program traces should satisfy the assumed condition. For the CPROVER assert()

statement, CBMC will check whether the asserted condition holds true for all runs of
the program.

Table 1. Experimental results for benchmark examples

program δin
RAFP CBMC

εmax t(ms) εunr t(ms) εr t(ms)

piecewise
0 2.3889571220452006e-4 29 ? ? ? ?

0.01 10.010238895712442 33 ? >1h ? >1h
linear 0.1 100.10023889571252 34 ? >1h ? >1h

Max1

0 1.4012987984203268e-45 44 ? ? ? ?

0.01 0.010000000000000007 55 0.0099 215 0.01 16066
0.1 0.10000000000000006 54 0.099 227 0.1 16262

MorePaths

0 1.0000000027939686 59 ? ? ? ?

0.01 1.0000000027939686 79 0.99 279 1.0 379
0.1 1.0000000027939686 86 0.99 314 1.0 471

Orientation

0 2.0 55 ? ? ? ?

0.1e-8*E 2.0 68 0 1840 1.0 6845
0.1e-3*E 2.0 73 0 1338 1.0 13327
0.1e-2*E 2.0 80 1.0 14165 2.0 413

Filtered
0 1.0 54 ? ? ? ?

0.1e-8*E 1.0 70 0 1044 1.0 29641
Orientation 0.1e-2*E 1.0 73 0 898 1.0 30261

0.1*E 2.0 75 0 719 1.0 26463
E 2.0 68 1.0 13206 2.0 654

We have conducted experiments on a selection of benchmark examples using both
RAFP and CBMC. Table 1 shows the comparison of performance and the resulting
output changes. The column“δin” shows the considered input perturbation over one in-
put variable of the program. The column “εmax” shows the resulting maximum output
change computed by RAFP with respect to the given input perturbation. The column
“εunr” gives the largest possible output change that we have tried with CBMC such that
the program is not (δin, εunr)-robust with respect to the given input perturbation. The col-
umn “εr” gives the smallest output change that we have tried with CBMC such that the
program is (δin, εr)-robust with respect to the given input perturbation 1. Since CBMC
uses the same rounding mode for all floating-point operations in the same program dur-
ing the analysis, the output change is always 0 when the given input perturbation is
0. Hence, for those rows that specify input perturbation as 0, we do not need to run

1 Note that CBMC can be used only to check whether a program is (δ, ε)-robust and can not
be used to compute the amount of output change with respect to the given input perturbation.
During our experiments, we try CBMC with different candidate values of ε to find εunr and εr.
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CBMC and thus we mark the table entry with ? in this case. Our tool RAFP utilizes
rounding mode insensitive floating-point abstraction and thus in principle it holds that
εmax ≥ εr ≥ εunr, which is confirmed by the experimental results.

The program piecewise linear corresponds to the program shown in Example 2.
Max1, MorePaths come from JPF Continuity [8]. Max1 is a floating-point program
that implements max(x, y), and thus it is (δin, δin)-robust. MorePaths is a floating-
point program that involves both a step function and a max function, and thus it is
(δin, 1.0)-robust for all δin ≤ 1.0. Orientation (which corresponds to the program
shown in Fig. 1) together with Filtered Orientation are extracted from the com-
putational geometry algorithms library CGAL [21] and address robust geometric com-
putation. Filtered Orientation is an improved version of Orientation via static
filter technique. The approximate result of computing the sign of a determinant is com-
pared with a given positive filter bound E (rather than compared with zero). When the
approximate result is in the interval [−E,E], Filtered Orientation gives 0. Dur-
ing our experiments, we set E=1.5e-5 (and for the sake of comparison, we express
the input perturbation in terms of E also for Orientation although here E does not
appear). The outputs of Orientation and Filtered Orientation are always -1
(negative), 0 (zero), or 1 (positive). Hence, in Table 1, the resulting output changes
for these two programs are always 0, 1.0, or 2.0. From Table 1, we could find that
Filtered Orientation is more robust than Orientation. E.g., given the input per-
turbation δ=0.1e-2*E, CBMC finds that for ε=1.0, Filtered Orientation is robust
while Orientation is not. Similarly, given the input perturbation δ=0.1e-2*E, RAFP
gives εmax = 1.0 for Filtered Orientation but gives εmax = 2.0 for Orientation.

The column “t(ms)” presents the analysis times in milliseconds when the analyzers
run on a 2.5GHz PC with 4GB of RAM running Windows 7. 2 From Table 1, we could
see that RAFP outperforms CBMC in time efficiency. Especially for piecewise linear,
CBMC could not even finish the analysis process in 1 hour. The low efficiency of CBMC
is because that CBMC uses a sound and complete decision procedure for floating-
point arithmetic. Especially, the multiplication and division floating-point operations
may generate formulae that are expensive to decide and quite hard for SAT solvers to
solve [33]. Hence, checking robustness properties of floating-point programs via CBMC
may have limitations in scalability due to the current expensive decision procedures for
floating-point logic. During our experiments, the approach via symbolic execution of
abstracted floating-point programs is much more efficient. In principle, symbolic ex-
ecution may suffer from the path explosion problem. However, the recent success of
symbolic execution tools such as KLEE [9] on analyzing large-scale programs [10],
makes this approach promising.

6 Related work

Robustness analysis of programs. Robustness is a standard correctness property for
control systems [39]. Robustness analysis of programs has received increasing atten-
tion in the recent years. Majumdar and Saha [34] took a first step toward analyzing the

2 RAFP runs further on a Java Virtual Machine (JVM) while CBMC runs further on a virtual
machine VMWare running Fedora 12.
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robustness of programs in control systems. They also utilized symbolic execution and
optimization techniques to compute the maximum difference in program outputs with
respect to the given input perturbation. However, they assumed exact real arithmetic in
the program. Continuity as one aspect of robustness for software was firstly considered
in [27]. Recently, Chaudhuri et al. presented logic-based mostly-automated methods to
determine whether a program is continuous [12] or Lipschitz continuous [13, 14], and
more recently to determine whether a decision-making program is consistent under un-
certainty [11]. Quite recently, Shahrokni and Feldt [42] conducted a systematic review
of software robustness. However, most existing work on robustness analysis does not
handle floating-point arithmetic in the program. Bushnell [8] presented a symbolic ex-
ecution based approach to identify continuties and discontinuties associated with path
condition boundaries for floating-point software, but it did not consider the true floating-
point semantics. Besides, Gazeau et al. [22] presented a non-local method for proving
the robustness of floating-point programs, but which needs much manual work. Re-
cently, Goubault and Putot [25] proposed an abstract interpretation based robustness
analysis method for finite precision implementations.

Safety analysis of floating point programs. Monniaux [37] described common pitfalls
in analyzing and verifying floating-point programs. Abstract interpretation [19] based
techniques have shown quite successful on analysis of floating-point programs. In [23],
Goubault analyzed the origin of the loss of precision in floating-point programs based
on abstract interpretation. Following this direction, a static analyzer FLUCTUAT [24]
was developed. The abstract interpretation based static analyzer ASTRÉE [5] checks
for floating-point run-time errors based on the computed set of reachable values for
floating-point variables. As in ASTRÉE, we rely on the floating-point abstraction tech-
nique of [35] to soundly abstract floating-point expressions into ones over the field of
reals. Chen et al. [16, 17] utilized interval linear constraints to design numerical abstract
domains and to construct sound floating-point implementations [15]. Ivančić et al. [28]
used bounded model checking based on SMT solvers to detect numerical instabilities
in floating-point programs, based on a mixed integer-real model for floating-point vari-
ables and operations. Brain et al. [6] recently improved the bit-precise decision proce-
dure for the theory of floating-point arithmetic based on a strict lifting of the conflict-
driven clause learning algorithm in modern SAT solvers to abstract domains. Barr et
al. [2] presented a method to automatically detect the floating-point exception through
symbolic execution.

Self-composition. The idea of self-composition is firstly used in the field of secure
information flow [4, 20], to characterize non-interference. Terauchi and Aiken [44] pro-
posed the type-directed transformation approach to make self-composition work in
practice with off-the-shelf automatic safety analysis tools. Recently, Barthe et al. [3]
proposed a general notion of product program that is beneficial to relational verifica-
tion, which could be considered as the generalization of self-composition. Kovács et
al. [32] presented a general method to analyze 2-hypersafety properties by applying
abstract interpretation on the self-compositions of the control flow graphs of programs.
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7 Conclusion

We have proposed a self-composition based approach for robustness analysis of pro-
grams, which enables making use of off-the-shelf automatic reachability analysis tools
to analyze robustness properties of programs. Then, we have shown how to use soft-
ware model checking and symbolic execution techniques on self-composed programs
to analyze program robustness properties. In particular, we have considered the robust-
ness analysis problem of floating-point programs. To deal with floating-point arithmetic
during symbolic execution, we have utilized a rounding mode insensitive floating-point
abstraction to abstract floating-point expressions into interval linear expressions in ex-
act real arithmetic. On this basis, the maximum output change (when given the input
perturbation) or maximum allowed input perturbation (when given the input perturba-
tion) are computed based on symbolic execution and interval linear programming for
abstracted floating-point programs. Experimental results of our prototype implementa-
tion are encouraging.

It remains for future work to exploit the intrinsic symmetry of self-composed pro-
grams to reduce the number of considered paths during robustness analysis. We also
plan to improve the prototype implementation and to conduct more experiments on
larger realistic floating-point programs.
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