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Abstract—Rounding errors are introduced pervasively when
using floating-point arithmetic to approximate real arithmetic.
The accumulation or catastrophic cancellation of rounding errors
in numerical programs may produce high inaccuracy results,
which can cause serious software failures once being triggered.
High inaccuracies are known hard to debug and fix manually
for developers. Hence, the automated techniques are desired for
solving the high inaccuracy problem. In this paper, we propose a
novel framework for automated repair of high-inaccuracy bugs
in numerical programs. The framework includes the phases
of detecting high-inaccuracy bugs, localizing the buggy code,
generating and validating the patches, and synthesizing the
repaired program at last. Based on this framework, we develop
a prototype tool for repairing high inaccuracies in numerical
programs. Our preliminary experimental results are encouraging.

Index Terms—automated repair, floating-point, numerical
code, dynamic analysis

I. INTRODUCTION

Many areas even safety-critical areas (such as avionics,
aerospace, automotives, medical devices, etc.) use floating-
point arithmetic to implement mathematical calculations, and
rounding errors are inevitable due to the approximation. The
accumulation or catastrophic cancellation of rounding errors
in numerical programs may produce high inaccuracy results
and have led to the confusion in stock index[1], the sinking
of offshore platform [2] and the failure of missile interception
[3].

The high inaccuracies hidden in the program are difficult
to detect and debug for programmers [4][5]. The rounding
errors that lead to high inaccuracies can be far away from the
location where the failure occurs. Furthermore, the developers
without deep understanding of floating-point arithmetic can
not eliminate the high inaccuracies correctly even when the
locations of errors are found.

Therefore, automated repair techniques [6][7][8] are highly
desired for solving the high inaccuracy problem in numerical
programs. However, to automatically repair high-inaccuracies,
there exist several challenges. First, the search space of finding
inputs that trigger high inaccuracies in numerical programs is
huge, due to the large range of the floating-point representa-
tion. Second, rounding errors are propagating and accumulat-
ing during the execution of numerical programs, and thus it
is hard to identify the main source causing high inaccuracies.
Third, automated repair techniques need to generate candidate

patches that improve the accuracy of the buggy code but
without changing its original semantics.

In this paper, we treat high inaccuracies as so-called high-
inaccuracy bugs and propose a novel framework to automati-
cally repair high-inaccuracy bugs in numerical programs. Our
framework consists of four phases: detecting high-inaccuracy
bugs, localizing the buggy code, generating and validating
the patches, and synthesizing the repaired program at last.
Based on this framework, we have developed an automatic
repair prototype tool called AutoFP. We evaluate AutoFP on
programs drawn from FPBench [9], which is a benchmark for
floating-point analysis. Our results demonstrate that AutoFP
can automatically repair high-inaccuracy bugs in those cases.

The rest of the paper is organized as follows. Section II
reviews background. Section III gives an overview of our
approach. Section IV introduces the details of our framework.
Section V shows and analyzes the experimental results. Sec-
tion VI discusses related work. Section VII concludes.

II. BACKGROUND
A. Absolute and Relative Error

The absolute error and relative error are two common
indicators to evaluate the error of floating-point program. For
a real function f(z), we use f,(x) to denote its corresponding
floating-point program. Formulas (1)(2) respectively show the
absolute error and relative error. For the relative error, we add
a 0 (a small positive value) to prevent division by zero.

Absolute_error = | f(x) — fp(z)] ()

/() = fp(2)]

maz([f(x)],) @

Relative_error =

B. High-inaccuracy Bug

Definition 1. In numerical programs, given a positive thresh-
old of an input x, if the relative error between real arithmetic
output O,.(x) (i.e., mathematical output) and floating-point
output Oy (x) is greater than or equal to the threshold e, we
say that the input x triggers a high-inaccuracy bug, i.e.,
|0 () — O ()]
maz(|Oy(z)], 6)
Note that ¢ is a threshold for determining the high-
inaccuracy bug. The value of ¢ can come from the accuracy

requirements of customers or the specifications of numerical
programs.

>e (e >0.0) 3)



double F(double x){
//assert(—10<x<100);
double y.d,z;

z = 0.0;
if (x > 0.0){
pow(x,5);

x—1.0;

X = pow(x,5); d=xx;
y =x-1.0;

X*X ;

y = d—1.0;

}
while(z < 1el0){
4 X*kX—Y*Y;
X xx2.0+1.0;
}
y = y*Z;
return y;

(a) The code of F(x) (b) The CFG of F(x)

Fig. 1. The code and CFG of numerical program F'(z)

b-0 b-1 b-2 b-3

s- while(z < 1e10){
double y,d,z; d=x*x; z=X"X-y"y; y=y*z;
z=0; y=d-1.0; x=x"2.0+1.0;} return y;
b-0 b-1 b-2 b-3

s-2 while(z < 110
double y,d,z; X = pow(x,5); | | z=X"x-y"y; y=y*z;
z2=0; y =x-1.0; X =x*2.0+1.0;} return y;

Fig. 2. The slices and blocks of F'(z)

III. OVERVIEW

In this section, we use a numerical program F'(z), which in-
cludes catastrophic cancellation and accumulation of rounding
errors, to illustrate our approach for repairing high-inaccuracy
bugs. As shown in Fig. 1(a), the numerical program F'(z)
contains loops and conditional statements, and it is difficult
for programmers to inspect where high-inaccuracy bugs are
hidden. To repair high-inaccuracy bugs in F(x), our frame-
work consists of four phases:

1) Detecting high-inaccuracy bugs: According to the con-
dition statement and the input domain of F'(z), we divide the
input domain into two parts: I; = {-10.0 < z <= 0.0}
and I = {0.0 < z < 100.0}. Then, we generate sample
points inside each part. For each sample point, we use shadow
value execution (described in Section IV) to obtain real output,
and calculate the relative error (according to formula (2)).
After that, we can get the distribution of relative errors over
those sample points as shown in Fig. 3. We set the threshold
€1 = le — 14 for Fig. 3(a) and ¢ = 1le — 8 for Fig.
3(b). Then, we get two small input intervals that trigger
high-inaccuracy bugs: = € [—1.0042,—0.9982] for I; and
x € [39.5303, 100.0000] for I.

2) Localizing buggy code: We localize the buggy code
by extracting program slices that correspond to those input
intervals. Furthermore, as shown in Fig.2, we divide those
program slices into blocks based on the control-flow graph of
the original program. We use the input that triggers the highest

e =1le—14

e=1e-8
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(a) I1 of F(z) (b) I of F(x)

Fig. 3. Before repairing: error distribution of F'(x)
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Fig. 4. After repair: error distribution of F'(x)

relative error among sampling inputs to calculate the relative
errors that are introduced by each block, and we rank those
blocks according to the relative errors they introduce (from
large to small).

3) Generating and validating patches: First of all, we
extract and compose floating-point expressions symbolically
from the block ranked first in the block list. For example, for
the block b-1 in slice s-1, we get the floating-point expression:
x * x — 1.0 after replacing d with x * z in d — 1.0. Then, we
use the mathematically equivalent transformation to change
x*z — 1.0 to (z — 1.0) * (x + 1.0), and then validate
the expression by directly testing it on the input interval
[—1.0042, —0.9982]. After testing, we find that the accuracy
of expression x * x — 1.0 is improved after transformation
over the given input interval. Next, we insert the transformed
expression back to its block and re-evaluate the whole program
slice over the input interval. After the evaluation, we find that
the accuracy of the whole program slice is also improved
over the input interval, and thus the previous high inaccuracies
are reduced. At last, we get a valid patch. Similarly, a valid
patch for program slice s-2 is also found, where the expression
x*x —y*y in b-2 of s-2 is transformed to (z — y) * (x +y).

4) Program synthesis and simplification: After obtaining
the valid patches, we insert those patches back into the original
program by program synthesis. The synthesized program is
shown in Fig. 5(a). Furthermore, if we retest the patches for
this example over the whole input domain [—10,100] rather
than over the small input intervals triggering high-inaccuracy
bugs, we find that no high-inaccuracy bugs are introduced,
and thus we can simplify the repaired program to the version
shown in Fig 5(b). The distributions of relative error after
repair are depicted in Fig 4, where the maximum relative error
is below the le — 15.



double F(double x){ double F(double x){
//assert(—10<x<100); //assert(—10<x<100);
double y,d,z; double y,d,z;

z = 0.0; z = 0.0;
if (x> 0.0){ if (x> 0.0){
X = pow(x,5); X = pow(x,5);
y = x—1.0;} y = x—1.0;
else{
if ((x >= —1.0042) else{
&&(x <= —0.9982)) d = xx*x;
y=(x—1.0)*%(x+1.0);
d = x*x; }
y=(x—1.0)%(x+1.0); while(z < 1el10){
telse{ z = (X—y)*(xX+y);
d = xx*x; X = x%2.0+1.0;
y = d-1:}} }
if ((x>=35.5303) y = y*z;
&&(x<=100)){ return y;
while(z < 1e10){ }
z = (X=y)*(X+y):
x = x%2.0+1.0;}
}else{
while(z < 1e10){
Z = XkX—Yy*Y;
x = x%2.0+1.0;}}
Yy = y*z;
return y;
}
(a) Before simplification (b) After simplification
Fig. 5. The synthesized program for repairing F'(x)
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Fig. 6. The workflow of our framework for automated repair of high-

inaccuracy bugs

IV. A FRAMEWORK FOR AUTOMATED REPAIR OF HIGH
INACCURACIES

In this section, we describe our framework for automated
repair of high inaccuracies. Fig. 6 depicts the workflow of our
framework. There are four main phases: detecting high inac-
curacies, localizing buggy code, generating and validating the
patches, synthesizing the repaired program. In the following
subsections, we detail these four phases.

A. Detecting High-inaccuracy Bugs

The goal of this phase is to find the input intervals that cause
high-inaccuracy bugs. This phase takes the numerical program

and its input domain as input. The input domain is sampled
and the relative error for each sample point is calculated. When
the input triggering high inaccuracy is found, we continue to
find inputs that can trigger high inaccuracy near this input, and
finally use a sufficiently small interval to include those inputs
in order to get an input interval that triggers high inaccuracies.

To achieve the goal, two critical issues need to be addressed.
One is how to calculate the real arithmetic result to calculate
the relative error. A common solution is to use shadow value
execution, a technique often used in dynamic floating-point
analysis [10][11]. The main idea is to execute a program P
under the given precision and also maintain a higher precision
execution on the program. After the execution, two outputs are
produced and can be used to calculate the relative error (see
Formula (2)). However, the higher precision execution may
introduce extra errors for some precision-specific operations,
e.g., the implementation of many functions in C math library
is implemented specifically for 64 bit floating point number,
while using the 128 or higher bit may break the original
semantic and introduce extra error [12].

Another is how to efficiently find the input intervals that
trigger high-inaccuracy bugs. In Section III, we use random
samples for the small input domain [—10,100] and find
high-inaccuracy bugs. However, when the input domain of
a numerical program is large, the method of random search
with limited number of sampled points may not be able to
find high-inaccuracy bugs. In this situation, we need a good
search algorithm to find the buggy input intervals. There
are two recent choices to trigger the high inaccuracies for
the numerical program: Locality-Sensitive Genetic Algorithm
(LSGA) [13] and Binary Guided Random Testing (BGRT)
[11].

B. Localizing Buggy Code

In this phase, we extract the program slice from the whole
execution path that produces the high-inaccuracy bug and
divide the slice into blocks based on the control flow graph of
the original program.

The reason why we localize the high-inaccuracy bug inside
a whole program slice lies in that floating-point errors are non-
local, which means that the source causing the high-inaccuracy
bug may be far away from the statement that outputs the high-
inaccuracy results. For example, in Section III, with respect to
the slice s-7, the source of the high-inaccuracy is due to the
statement y = d — 1, while the statement y = d — 1 and the
output statement y = y *x z are separated by a loop.

The blocks in the program slice are ranked according to the
values of relative errors introduced in each block (from large
to small). We only consider the relative error of each block
that are related to those variables directly connected to the
expression that produces output of the program. For example,
in Section III, for the expression y * z that produces the final
output of y, the relative error of the block b-1 in slice s-1 is
measured according to the relative error of variable y whose
value is propagated to y * z.



C. Generating and Validating Patches

We first try to generate patches inside a single block. If those
patches can not repair the program, we then try to generate
patches crossing multiple blocks. The patches are validated
through regression testing over the input interval found in the
detecting phase.

In detail, for the case of a single block, we first choose
a block from the block list and compose the floating-point
expressions that may influence the output of the numeri-
cal program. For example, in Section III, we symbolically
calculate the expression d — 1, which result in expression
xz *x — 1 in block b-1 of s-1. The expression z * v — 1
provides more information for producing patches. Then, we try
to transform the floating-point expressions by rewriting rules,
including the commutativity, associativity, and other laws of
basic real arithmetic. For example, we transform z 2 — 1 into
(x — 1) * (x + 1) by factorization. After the transformation,
we insert the expression back to the program slice and retest
it on the input interval to validate the patch. A patch is valid
if the relative errors during retesting become less than ¢ in the
input interval.

For the case of acrossing multiple blocks, we connect
adjacent blocks as a bigger block to generate patches. It is
worth noting that for the block includes a loop, currently,
we only optimize the body of a loop, and more general
methods could consider acrossing different loop iterations by
loop unrolling.

D. Program Synthesis and Simplification

In this phase, we apply the patch into the original program.
To be more clear, we insert a new branch for the patch to make
sure that the program executes the code of patch only in the
input interval identified by the detecting phase. For example,
in Fig.5(a), the patch is inserted in the program under the
condition (z > —1.0042)&&(z < —0.9982). We could fur-
ther simplify the synthesized program by trying to remove the
branch condition restriction. In other words, we try to replace
the original program slice with the new synthesized patch
without creating a new branch. E.g., in Fig. 5(b), we remove
the branch condition (x > —1.0042)&&(x < —0.9982) which
appears in Fig. 5(a). However, to validate this simplification,
we need to retest over the whole input domain and make sure
no high-inaccuracy are introduced by this simplification. Note
that retesting the patched program on the whole input domain
is time-consuming.

V. EXPERIMENTS
A. Tool and Experimental Setup

Based on the framework described in Section IV, we
have developed a prototype tool, called AutoFP, for repairing
high inaccuracies in numerical programs. The tool employs
FPDebug [10] to perform the shadow value execution and
Herbie [14] to transform the floating point expressions. For
detecting the high-inaccuracy bugs, we choose the BGRT [11]
algorithm to search inputs that will trigger high-inaccuracy

TABLE I
EXPERIMETAL RESULTS OF EVALUATING AUTOFP ON THE PROGRAMS
FROM FPBENCH

Max. Relative Error

Program Domain  TI1(s) T2(s) T3(s) BR R
frac2 (0,1e5]  120.22 5.06 12529 1.38E-11 9.33E-17
frac3 (1,200] 75.54  14.87 90.41  4.80E-12 1.46E-16
sqrt2 (0,1e7]  123.71 5.04 12876  1.43E-09 1.53E-16
sqr2 (0,1e10] 217.94 3.11  221.05 7.87E-07  0.00E+00
rsqrt (0,700] 93.76 9.58 103.35 2.33E-13 2.64E-16

bugs. We have conducted experiments on the programs from
FPBech [9], which is a benchmark for floating point analysis.

B. Experimental Results

Table I shows the experimental results. The ‘“Domain”
column indicates the input domain of each program. The
“T1” column shows the time consumption of detecting high-
inaccuracy bugs, “T2” shows the time consumption of gener-
ating and validating patches, and “T3” shows the total time.
The “Max. Relative Error” includes two sub-columns that
respectively show the detected maximum relative error in the
numerical program before repair (BR) and after repair (AR).

The results show that the maximum relative error is signif-
icantly reduced after repair. The maximum relative error of
program sqr2 becomes zero after repair is due to the fact that
the outputs of repaired program have 64-bit significant digits,
which makes the value of relative error (also 64-bit floating
point represent) become zero. We also note that the process
of detecting high-inaccuracy bugs is time-consuming as shown
in “T1” column. This is because the shadow value execution
which uses high-precision computation is slow. And a more
efficient search algorithm can improve a lot the efficiency of
detecting high-inaccuracy bugs. The time of detecting also
increases when the size of input domain increases. In the
future, we expect a more efficient algorithm to reduce largely
the time of detecting high-inaccuracy bugs especially for
programs with large input domain. In addition, the time cost
on generating and validating patches (i.e., the “T2” column)
is not closely related to the input domain and we find that it is
closely related to the complexity of the block to repair. More
complex blocks enable more kinds of transformation, which
means generating more candidate patches and making more
validations. Hence, more efficient transformations are desired
to quickly generate effective patches, and thereby shorten the
repair time.

C. Threats to Validity

Threats to internal validity are related to pervasive rounding
errors in our implementation and experiments. The FPDebug
tool that AutoFP used may introduce extra errors for some
precision-specific operations [12]. We have tried our best to
avoid executing those operations. Threats to external validity
are related to the generality of our findings. We have conducted
our experiments on the programs from FPBench. In the future,



we plan to extend our tool and evaluate our tool on real-
world numerical programs. Threats to construct validity corre-
spond to the suitability of our approach to measure the high-
inaccuracy bug. We currently use the relative error to measure
the high-inaccuracy bug. We would consider measuring the
high-inaccuracy bug in other ways, e.g., measure the high-
inaccuracy bug based on the unit in the last place (ULP).

VI. RELATED WORK

Martel [15] builds an abstract interpretation framework
to support the source-to-source transformation for numerical
programs. N. Damouche et al. [16][17] expanded his work
and developed a tool called Salsa [18], which can improve the
accuracy of numerical programs by automatic transformation.
Their work is based on static analysis and focuses more on
reducing the worst-case bounds of errors, while this paper
is based more on dynamic analysis and targets at automated
repair of only high-inaccuracies in numerical programs.

FPDebug [10], which is used in AutoFP, is a dynamic
analysis tool built on Valgrind for detecting floating-point
accurate problem. As a very recent work, Herbgrind [19]
extends the approach of FPDebug and can help developers find
the root causes of floating point error in numerical programs.
Herbgrind would be rather useful to help localizing the buggy
code for our approach, and hence in the future we will exploit
Herbgrind to enhance AutoFP.

Wang et al. [12] point out an interesting phenomenon
that when using shadow value execution to measure floating-
point errors, there are a sort of so-called precision-specific
operations, for which utilizing higher precision may not result
in more precise results. The authors propose an approach
to fix this problem by keeping using the original precision
(without lifting to higher precision) for those precision-specific
operations during the shadow value execution. In this paper,
we use their method to handle precision-specific operations
during the process of identifying high inaccuracies. Their
method focuses on fix the limitation problem of shadow value
execution for precision-specific operations, while our paper
focuses on automatically repairing programs to reduce high-
inaccuracies.

VII. CONCLUSION AND FUTURE WORK

The floating-point error in a numerical program is propa-
gating and accumulating during the execution and may lead
to high-inaccuracy results. It is tedious and also difficult
for developers to manually debug and fix high inaccuracies
in numerical programs. In this paper, we propose a novel
framework for automatically detecting, localizing, and re-
pairing high-inaccuracy bugs in numerical programs. Based
on this framework, we make use of the existing tools of
dynamic floating-point analysis and construct an automated
repair prototype tool called AutoFP. We evaluate AutoFP on
several benchmark programs and achieve promising results.

For future work, first, we plan to design a more efficient
algorithm, such as genetic algorithm [20], to detect high-
inaccuracies in numerical programs, especially for those with

large input domain. Also, we plan to improve AutoFP and
evaluate it on real-world scientific library functions, e.g., the
GNU Scientific Library (GSL).
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