The International Conference on Fundamental Approaches to Software Engineering
(FASE 2022)

Estimating VWorst-case Resource Usage
by Resource-usage-aware Fuzzing

Ligian Chen, Renjie Huang, Dan Luo, Chenghu Ma, Dengping Wei, |i Wang

National University of Defense Technology, Changsha, China

2022-04-04

Overview

* Motivation
* Approach
* Experiment

 Conclusion

Motivation

* Resources: any abstractions offered to a process by system calls

* typical resources: heap/stack memory, sockets, file descriptors, threads,
database connections, gas in smart contracts, etc.

* user-defined application-dependent resources: buffers, memory pools,
number of licenses consumed, etc.

* Resource usage: via APIs

.
==

b

!
i Resource Pool

alloc() dealloc()

Program

Motivation

* Worst-case resource usage

* a useful guidance in the design, configuration and deployment of
software

* especially when the software runs with limited amount of resources,
e.g.,in modern CPSs, mobile systems and loT devices, etc.

N NN \A R
\\\\\\ ///;/ ﬁ
YuWN s, o«
@ &
resource pool

Motivation

* Unexpected or uncontrolled resource usage may degrade program
performance, or even lead to CWE vulnerabilities

« CWE-400: Uncontrolled Resource Consumption (‘Resource Exhaustion')

* CWE-401: Improper Release of Memory Before Removing Last Reference (‘Memory Leak’)
* CWE-404: Improper Resource Shutdown or Release

* CWE-405: Asymmetric Resource Consumption (Amplification)

* CWE-410: Insufficient Resource Pool

¢ CWE-674: Uncontrolled Recursion

* CWE-769 File Descriptor Exhaustion

* CWE-770:Allocation of Resources Without Limits or Throttling

* CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime

* CWE-789: Uncontrolled Memory Allocation

* CWE-920 Improper Restriction of Power Consumption

Related Work

* Static resource-bound analysis
+provide sound upper bounds of worst-case resource usage
- may provide too conservative, even unbounded, results

- complex syntactic constructs in programs are usually being abstracted
away

- the actual usage amount of resources may depend on the running
system environment (e.g., malloc())

Related Work

* Dynamic methods
- not sound
+useful for estimating resource bounds and detecting vulnerability

+practical for realistic software

* MemLock
* technique: memory usage guided fuzzing

* use default branch coverage together with memory consumption to guide
fuzzing

* consider only memory resources (heap, stack)

Main ldea

* Resource-usage-aware fuzzing

* goal: to estimate worst-case resource usage for general resources

* including memory, file descriptors, socket connections, user-defined
resources, etc.

* approach: employ resource-usage amount and resource-usage-
aware coverage to guide fuzzing

Overview

* Motivation
* Approach
* Experiment

 Conclusion

Workflow

Automated Program Transformation

Static Analysis

C R C N\ (Identifying Control- R a R
Target |dentifying Identifying Functions flow Branches where Inst e
—— Resource-Usage » Involving Resource R *» Instrumentation F— nstrumente
Program . Operations Usage ot | Program
NG J _ J J \. J !

: Resource i Seed
: Usage ii: Updater

Bounds i

.
.
*

[
.......

]._

Resource-usage-aware
Coverage

A 4

Resource Usage
Amount

—[Feedback H

Execution
Engine

a

__

Step 1: Static analysis and instrumentation

1.1:
°1.2:
¢ 1.3:
* 1.4:

dentifying and modeling resource-usage operations
dentifying functions involving resource usage
dentifying control-flow branches where resource-usage locates

nstrumentation

Step 1: Static analysis and instrumentation

* 1.1: ldentifying and modeling resource-usage operations
* resource-usage operations: APIs provided by systems/libraries, programmer-

defined APIs

* modeling via two unified functions

* __ RAlloc(int n): to model allocating n number of resources
* _ RDealloc(int n): to model deallocating n number of resources

Resource operation

Resource modeling statements

pFile = fopen(...);

pFile = fopen(...);
__RAlloc(pFile = NULL?1: 0);

fclose(pFile);

__RDealloc(pFile = NULL?1: 0);
fclose(pFile);

The fuzzer will track and\

capture the parameters
| of _RAlloc/_RDealloc()

p = malloc(...);

p = malloc(...);
__RAlloc(malloc_usable_size(p));

to maintain the amount
of resource usage J

free(p);

__RDealloc(malloc_usable_size(p));
free(p);

Step 1: Static analysis and instrumentation

* 1.2: Identifying functions involving resource usage

* insight: many functions and basic blocks in the
program are not relevant to resource usage

* goal: guide fuzzing to cover functions and basic
blocks that are relevant to resource usage

* use call graph to identify all functions that directly
or indirectly invoke resource-usage operations

main()

* instrument coverage-label function __ covl()
before the invocation of these functions

__RAlloc()

}{ RDealloc()

___covl(): to label basic blocks
that involve resource usage

Function call graph

Step 1: Static analysis and instrumentation

* 1.3: Identifying control-flow branches where +__covl ();
resource-usage locates if (.1

* for each program block containing invocations of -
__RAlloc(), _RDealloc(), __covl () or exit(), we __RAlloc(...);
instrument label function __ covl () }

* before the control-flow branch where this else{
block locates in (e.g., in the then branch) and + _ covl ();

* at the beginning of the block in the other
branch (e.g., the else branch). }

Step 1: Static analysis and instrumentation

e 1.4: Instrumentation

* use program transformation tool Coccinelle, to automatically instrument
statements invoking resource-usage modeling functions _ RAlloc/ RDealloc()
as well as coverage-label function _ covl () into the original program

* Coccinelle
* a program matching and transformation engine
* providing the language SmPL (Semantic Patch
Language) for specifying desired matches and
transformations in C code

All together is better!!

C CC"‘":—,',-J[‘E

https://coccinelle.gitlabpages.inria.fr/website/

Step 1: Static analysis and instrumentation

Example illustration

1 static SVCXPRT *makefd_xprt(int fd, u_int sendsize,
2 u_int recvsize)

3 {

4 ...

5 if (fd >=FD_SETSIZE) {...; return NULL; }

6 ...

7 return (xprt);

8 }

9

10 static bool rendezvous_request(SVCXPRT *xprt)
11 {

12 ...

13 if ((sock = accept(xprt->xp_fd, (struct sockaddr *)
14 (void *)&addr, &len)) <0){...; return false; }
15 ...

16 newxprt = makefd xprt(sock, r->sendsize, r->recvsize);
17 if (newxprt==NULL){

18 raise(SIGSEGV); //simulating CVE-2018-14622
19 }

20 ...

21}

(a) Original Program (extracted from libtirpc)

>

1
2
3
4
5
6
7
8
9

@ accept @

type T,

expression E;

identifier id;

@@

(

if ((E = accept(...)) <0){...}
+ _ covl();

+ _ RAlloc(1);

10 |

11
M

(b) Semantic Patch

1 static SVCXPRT *makefd_xprt(int fd, u_int sendsize,
2 u_int recvsize)

3 {

4 ...

5 if (fd >=FD_SETSIZE) {. . .; return NULL; }

6 ...

7 return (xprt);

8 }

9

10 static bool rendezvous_request(SVCXPRT *xprt)

11

12 ...

13 if ((sock = accept(xprt->xp_fd, (struct sockaddr *)
14 (void *)&addr, &len)) <0){...; return false; }
15 _ covl();

16 _ RAlloc(1);

17 ..

18 newxprt = makefd xprt(sock, r->sendsize, r->recvsize);
19 _ covl();
20 if (newxprt==NULL){

21 __covl();

22 raise(SIGSEGV); //simulating CVE-2018-14622
23}

24 ...

25}

(c) Instrumented Program

Step 2: Fuzzing loop

* Similar to the process of traditional coverage-based grey-box fuzzers
(e.g.,AFL)

Instrumented
Program

Resource-usage

aware Coverage : i
: Resource : ! Seed _[Feedback Execu.tlon ! Initial
: Usage 5 Updater ' ' Engine l ; Seeds

3 Bounds :_ Resource Usage 1 |

Amount

{ Seed Selector&Mutator]—{New Seeds]— I

iy
»

=

,":"l

~T

N, |

=

—

O

QO 1

o !

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

I B

|

|

|

|

> K

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

:

|

—

|

|

|

|

|

|

|

|

_

Step 2: Fuzzing loop

* Resource-usage aware coverage

* traditional coverage-based grey-box fuzzers capture basic block transitions,
and log edge coverage information during runtime

insight: many basic blocks in the program are not relevant to resource usage
* idea: resource-usage-aware edge coverage

* log only transitions between those basic blocks that contain resource-usage modeling
functions, coverage-label function __ covl () and exit() function

» Blr Bnr

logged transitions

oo
[y
—
\ 4

B, [— - By

\ 4
oo
>S5
—

execution trace

Step 2: Fuzzing loop

* Resource-usage amount guidance

* the fuzzer collects resource-usage amount, by maintaining
* resc_cur: the current amount
* resc_peak: the historical peak amount of resource usage

* the fuzzer captures the parameters of _ RAlloc/ RDealloc(n), and
updates resc_cur and resc_peak

Resource operation | resource-usage amount change

__RAlloc(n); resc_cur +=n;
if(resc_cur > resc_peak) resc_peak =resc_cur;

__RDealloc(n); resc_cur -=n;

Step 2: Fuzzing loop

If leading to new resource-
usage aware coverage, add
the input into the seed pool

* Workflow

e 1
| .

' Fuzzing Loop

! Resource-usage-aware

|

| Coverage) I
I Seed L —[Feedback H Execu_tlon]‘—_
| Updater | Engine |

| Resource Usage
! Amount

- : | ’
|f Ieadlng to more 4{ Seed Selector&Mutator]—{New Seeds]—

resource usage, add the
_input into the seed pool

Overview

* Motivation
* Approach
* Experiment

 Conclusion

Experiment

* Implementation: ResFuz
* build on top of MemLock
* use Coccinelle to conduct program instrumentation

* Benchmark
* for heap: jasper, openjpeg
* for stack:yara
* for socket connections: libtirpc_slice extracted from an old version of libtirpc

* for user-defined resources
* jasper:jas_malloc(), jas_free() to manage a heap memory pool with a user-configurable size

* openjpeg: opj_malloc(); opj_free() to manage a specic type of heap memory
* Baseline fuzzers:

 AFL
e MemLock

memory peak (byte)

)

Preliminary Experimental Results

1le9

general heap

openjpeg

—— ResFuz
—— MemLock
AFL

T
5000

T T T
10000 15000 20000

time(s)

memory peak (byte)

-
=]
1

o
@

o
=

=]
'S
1

=]
~

=
=)

general heap

1e9 Jasper

—— ResFuz
4 —— MemLock
AFL

,

T T T
10000 15000 20000

time(s)

T T
0 5000

The growth trend of resource usage

* ResFuz performs stably well

MemLock uses default branch coverage and memory consumption to guide fuzzing

ResFuz uses resource-usage-aware coverage and resource-usage amount to guide fuzzing
AFL uses default branch coverage to guide fuzzing

stack depth

stack depth

yara

10000 A

8000

6000

4000

2000

|

—— ResFuz
—— MemLock
AFL

T T T T T
10000 12500 15000 17500 20000

time(s)

T T T T
0 2500 5000 7500

Preliminary Experimental Results

user-defined memory peak (byte)

user-defined OP] heap user-defined JAS heap socket connections
1e9 openjpeg (user-defined OP] heap memory) 1e9 jasper (user-defined JAS heap memory) libtirpc_slice
—— ResF — — Resfuz 16 1 — ResFuz
1 — Mesmlli;k 20d — MemLock I —— MemLock
AFL AFL 14 4 AFL
o
_% ~ 12
: 15 - 8
e e 10
& S
5 g
£ 2 8
g 10 §
J: g
= [=]
5 RS
- é 05
r'_,_,_li g _JJ"—‘ 24 M
| oo | ,——J’_'_'—l_ of | | | | |
0 5000 10000 15000 20000 0 5000 10000 15000 20000 ’ e 200time(s) . .
time(s) time(s)

The growth trend of resource usage

* ResFuz performs much better results than MemLock and AFL
* MemlLock uses default branch coverage and memory consumption to guide fuzzing
* ResFuz uses resource-usage-aware coverage and resource-usage amount to guide fuzzing
* AFL uses default branch coverage to guide fuzzing

Overview

* Motivation
* Approach
* Experiment

 Conclusion

Summary

* Approach: Resource-Usage-Aware Fuzzing

* leverage semantic patch to make use of static analysis information
for instrumentation

* employ resource-usage amount and resource-usage-aware coverage

to guide fuzzing
{ Static AnaIyS|§ } $ {Guided Fuzzing}
& Instrumentation

* Tool: ResFuz * Experiments

°
e https://doi.org/10.5281/zeno
. : : 2 esfuz Resuz 15— Resfuz
" - Memlock o) — vemlock mlock
AFL AFL
g g
[] M

nnnnnn

Future Work

* More real-world programs and more kinds of resources
* Compare with more state-of-the-art fuzzing tools

* Evaluate our approach in detecting resource-usage bugs and
vulnerabilities in real-world programs

Thank you
Any Questions!

