
Estimating Worst-case Resource Usage
by Resource-usage-aware Fuzzing

Liqian Chen, Renjie Huang, Dan Luo, Chenghu Ma, Dengping Wei, Ji Wang

National University of Defense Technology, Changsha, China

The International Conference on Fundamental Approaches to Software Engineering
(FASE 2022)

2022-04-04

Overview

• Motivation

• Approach

• Experiment

• Conclusion

Motivation

• Resources: any abstractions offered to a process by system calls
• typical resources: heap/stack memory, sockets, file descriptors, threads,

database connections, gas in smart contracts, etc.
• user-defined application-dependent resources: buffers, memory pools,

number of licenses consumed, etc.

• Resource usage: via APIs

Resource Pool

Program

alloc() dealloc()

Motivation

• Worst-case resource usage
• a useful guidance in the design, configuration and deployment of

software
• especially when the software runs with limited amount of resources,

e.g., in modern CPSs, mobile systems and IoT devices, etc.

resource	pool

Motivation

• Unexpected or uncontrolled resource usage may degrade program
performance, or even lead to CWE vulnerabilities
• CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')
• CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')
• CWE-404: Improper Resource Shutdown or Release
• CWE-405: Asymmetric Resource Consumption (Amplification)
• CWE-410: Insufficient Resource Pool
• CWE-674: Uncontrolled Recursion
• CWE-769 File Descriptor Exhaustion
• CWE-770: Allocation of Resources Without Limits or Throttling
• CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime
• CWE-789: Uncontrolled Memory Allocation
• CWE-920 Improper Restriction of Power Consumption
• …

Related Work

• Static resource-bound analysis [Gulawani et al. POPL09] [Albert et al, TCS12] [Carbonnneaux et al. PLDI15]

+provide sound upper bounds of worst-case resource usage
-may provide too conservative, even unbounded, results
- complex syntactic constructs in programs are usually being abstracted

away
- the actual usage amount of resources may depend on the running

system environment (e.g., malloc())

Related Work

• Dynamic methods [Antunes et al. ISSRE08] [Lemieux et al. ISSTA18] [Petsios et al. CCS17] [Weiet al. FSE18]

- not sound
+useful for estimating resource bounds and detecting vulnerability
+practical for realistic software

• MemLock [Wen et al. ICSE20]
• technique: memory usage guided fuzzing
• use default branch coverage together with memory consumption to guide

fuzzing
• consider only memory resources (heap, stack)

Main Idea

• Resource-usage-aware fuzzing
• goal: to estimate worst-case resource usage for general resources
• including memory, file descriptors, socket connections, user-defined

resources, etc.

• approach: employ resource-usage amount and resource-usage-
aware coverage to guide fuzzing

Overview

• Motivation

• Approach

• Experiment

• Conclusion

Workflow

Target	
Program

Instrumented	
Program

Resource	
Usage	
Bounds

Identifying	
Resource-Usage	
Operations

Identifying	Control-
flow	Branches	where	

Resource-usage	
Locates	

Automated Program	Transformation

Feedback

Resource-usage-aware	
Coverage

Resource	Usage	
Amount

Seed	
Updater

Seed	Selector&Mutator New	Seeds

Fuzzing Loop

Identifying	Functions
Involving	Resource	

Usage
Instrumentation

Execution	
Engine

Static	Analysis

Initial	Seeds

Step 1: Static analysis and instrumentation

• 1.1: Identifying and modeling resource-usage operations
• 1.2: Identifying functions involving resource usage
• 1.3: Identifying control-flow branches where resource-usage locates
• 1.4: Instrumentation

Step 1: Static analysis and instrumentation
• 1.1: Identifying and modeling resource-usage operations
• resource-usage operations: APIs provided by systems/libraries, programmer-

defined APIs
• modeling via two unified functions

• __RAlloc(int n): to model allocating n number of resources
• __ RDealloc(int n): to model deallocating n number of resources

Resource	operation Resource	modeling	statements
pFile = fopen(…); pFile = fopen(…);

__RAlloc(pFile !=		NULL?	1	:		0);
fclose(pFile); __RDealloc(pFile !=		NULL?	1	:		0);

fclose(pFile);
p = malloc(…); p = malloc(…);

__RAlloc(malloc_usable_size(p));
free(p); __RDealloc(malloc_usable_size(p));

free(p);

The fuzzer will track and
capture the parameters
of __RAlloc/__RDealloc()
to maintain the amount
of resource usage

Step 1: Static analysis and instrumentation

• 1.2: Identifying functions involving resource usage
• insight: many functions and basic blocks in the

program are not relevant to resource usage
• goal: guide fuzzing to cover functions and basic

blocks that are relevant to resource usage
• use call graph to identify all functions that directly

or indirectly invoke resource-usage operations
• instrument coverage-label function __covl()

before the invocation of these functions

main()

__RAlloc() __RDealloc()

Function	call	graph__covl(): to label basic blocks
that involve resource usage

Step 1: Static analysis and instrumentation

• 1.3: Identifying control-flow branches where
resource-usage locates
• for each program block containing invocations of

__RAlloc(), __RDealloc(), __covl () or exit(), we
instrument label function __covl ()
• before the control-flow branch where this

block locates in (e.g., in the then branch) and
• at the beginning of the block in the other

branch (e.g., the else branch).

+	__covl ();
if	(…){
…
__RAlloc(…);

}
else{

+	 __covl ();
…

}	
…

Step 1: Static analysis and instrumentation

• 1.4: Instrumentation
• use program transformation tool Coccinelle, to automatically instrument

statements invoking resource-usage modeling functions __RAlloc/_RDealloc()
as well as coverage-label function __covl () into the original program

• Coccinelle
• a program matching and transformation engine
• providing the language SmPL (Semantic Patch

Language) for specifying desired matches and
transformations in C code

https://coccinelle.gitlabpages.inria.fr/website/

Step 1: Static analysis and instrumentation

1		static	SVCXPRT	*makefd_xprt(int	fd,		u_int sendsize,
2 u_int recvsize)
3		{
4					.	.	.
5					if	(fd >=	FD_SETSIZE)	{	.	.	.	;	return	NULL;	}
6					.	.	.	
7					return	(xprt);
8		}
9
10			static	bool	rendezvous_request(SVCXPRT	*xprt)
11	{
12				.	.	.	
13				if	((sock	=	accept(xprt->xp_fd,	(struct	sockaddr *)
14													(void	*)&addr,	&len))			<	0)	{.	.	.	;	return	false;	}
15				.	.	.	
16				newxprt =	makefd_xprt(sock,	r->sendsize,	r->recvsize);
17				if	(newxprt==NULL){
18									raise(SIGSEGV); //simulating	CVE-2018-14622
19					}
20					.	.	.	
21	}

(a)	Original	Program	(extracted	from	libtirpc) (c)	Instrumented	Program

1			@	accept	@
2			type	T;
3			expression	E;
4			identifier	id;
5			@@
6			(
7			if	((E	=	accept(...))	<	0){	...	}
8			+					__covl();
9			+					__RAlloc(1);
10			|
11	 …
12)	

(b)	Semantic	Patch

1		static	SVCXPRT	*makefd_xprt(int	fd,		u_int sendsize,
2 u_int recvsize)
3		{
4					.	.	.
5					if	(fd >=	FD_SETSIZE)	{	.	.	.	;	return	NULL;	}
6					.	.	.	
7					return	(xprt);
8		}
9
10			static	bool	rendezvous_request(SVCXPRT	*xprt)
11	{
12					.	.	.
13				if	((sock	= accept(xprt->xp_fd,	(struct	sockaddr *)
14													(void	*)&addr,	&len))			<	0)	{.	.	.	;	return	false;	}
15				__covl();
16				__RAlloc(1);
17			.	.	.
18				newxprt =	makefd_xprt(sock,	r->sendsize,	r->recvsize);
19				__covl();
20				if	(newxprt==NULL){
21									__covl();
22									raise(SIGSEGV);	//simulating	CVE-2018-14622
23					}
24					.	.	.
25	}

Example illustration

Step 2: Fuzzing loop

• Similar to the process of traditional coverage-based grey-box fuzzers
(e.g., AFL)

Instrumented	
Program

Resource	
Usage	
Bounds

Feedback

Resource-usage-
aware	Coverage

Resource	Usage	
Amount

Seed	
Updater

Seed	Selector&Mutator New	Seeds

Fuzzing Loop

Execution	
Engine

Initial	
Seeds

Step 2: Fuzzing loop

• Resource-usage aware coverage
• traditional coverage-based grey-box fuzzers capture basic block transitions,

and log edge coverage information during runtime
• insight: many basic blocks in the program are not relevant to resource usage
• idea: resource-usage-aware edge coverage

• log only transitions between those basic blocks that contain resource-usage modeling
functions, coverage-label function __covl () and exit() function

B1r B2 Bn-1 Bnr… B1r Bnr

logged transitions execution trace

Step 2: Fuzzing loop

• Resource-usage amount guidance
• the fuzzer collects resource-usage amount, by maintaining
• resc_cur: the current amount
• resc_peak: the historical peak amount of resource usage

• the fuzzer captures the parameters of __RAlloc/__RDealloc(n), and
updates resc_cur and resc_peak

Resource	operation resource-usage	amount	change
__RAlloc(n); resc_cur +=	n;

if(resc_cur >	resc_peak)	resc_peak =	resc_cur;
__RDealloc(n); resc_cur -=	n;

Step 2: Fuzzing loop

• Workflow

Feedback

Resource-usage-aware	
Coverage

Resource	Usage	
Amount

Seed	
Updater

Seed	Selector&Mutator New	Seeds

Fuzzing Loop

Execution	
Engine

If leading to more
resource usage, add the
input into the seed pool

If leading to new resource-
usage aware coverage, add
the input into the seed pool

Overview

• Motivation

• Approach

• Experiment

• Conclusion

Experiment

• Implementation: ResFuz
• build on top of MemLock [Wen et al. ICSE20]
• use Coccinelle to conduct program instrumentation

• Benchmark
• for heap: jasper, openjpeg
• for stack: yara
• for socket connections: libtirpc_slice extracted from an old version of libtirpc
• for user-defined resources

• jasper: jas_malloc(), jas_free() to manage a heap memory pool with a user-configurable size
• openjpeg: opj_malloc(); opj_free() to manage a specic type of heap memory

• Baseline fuzzers:
• AFL [AFL 2.52b]
• MemLock [Wen et al. ICSE20]

Preliminary Experimental Results
general heap general heap stack depth

The	growth	trend	of	resource	usage

• ResFuz performs stably well
• MemLock uses default branch coverage and memory consumption to guide fuzzing
• ResFuz uses resource-usage-aware coverage and resource-usage amount to guide fuzzing
• AFL uses default branch coverage to guide fuzzing

Preliminary Experimental Results

The	growth	trend	of	resource	usage

• ResFuz performs much better results than MemLock and AFL
• MemLock uses default branch coverage and memory consumption to guide fuzzing
• ResFuz uses resource-usage-aware coverage and resource-usage amount to guide fuzzing
• AFL uses default branch coverage to guide fuzzing

user-defined OPJ heap user-defined JAS heap socket connections

Overview

• Motivation

• Approach

• Experiment

• Conclusion

Summary
• Approach: Resource-Usage-Aware Fuzzing
• leverage semantic patch to make use of static analysis information

for instrumentation
• employ resource-usage amount and resource-usage-aware coverage

to guide fuzzing
Static Analysis

& Instrumentation
Guided Fuzzing

• Tool: ResFuz
• https://doi.org/10.5281/zeno

do.5894821

• Experiments

Future Work

• More real-world programs and more kinds of resources

• Compare with more state-of-the-art fuzzing tools

• Evaluate our approach in detecting resource-usage bugs and
vulnerabilities in real-world programs

28

Thank you
Any Questions?

