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Motivation

• Resources: any abstractions offered to a process by system calls
• typical resources: heap/stack memory, sockets, file descriptors, threads,

database connections, gas in smart contracts, etc.
• user-defined application-dependent resources: buffers, memory pools, 

number of licenses consumed, etc.

• Resource usage: via APIs

Resource Pool

Program

alloc() dealloc()



Motivation

• Worst-case resource usage 
• a useful guidance in the design, configuration and deployment of 

software
• especially when the software runs with limited amount of resources, 

e.g., in modern CPSs, mobile systems and IoT devices, etc. 

resource	pool



Motivation

• Unexpected or uncontrolled resource usage may degrade program 
performance, or even lead to CWE vulnerabilities
• CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')
• CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')
• CWE-404: Improper Resource Shutdown or Release
• CWE-405: Asymmetric Resource Consumption (Amplification)
• CWE-410: Insufficient Resource Pool
• CWE-674: Uncontrolled Recursion
• CWE-769 File Descriptor Exhaustion
• CWE-770: Allocation of Resources Without Limits or Throttling
• CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime
• CWE-789: Uncontrolled Memory Allocation 
• CWE-920 Improper Restriction of Power Consumption
• …



Related Work

• Static resource-bound analysis [Gulawani et al. POPL09] [Albert et al, TCS12] [Carbonnneaux et al. PLDI15]

+provide sound upper bounds of worst-case resource usage
-may provide too conservative, even unbounded, results
- complex syntactic constructs in programs are usually being abstracted 

away
- the actual usage amount of resources may depend on the running 

system environment (e.g., malloc())



Related Work

• Dynamic methods [Antunes et al. ISSRE08] [Lemieux et al. ISSTA18] [Petsios et al. CCS17] [Weiet al. FSE18]

- not sound 
+useful for estimating resource bounds and detecting vulnerability
+practical for realistic software

• MemLock [Wen et al. ICSE20]
• technique: memory usage guided fuzzing
• use default branch coverage together with memory consumption to guide

fuzzing
• consider only memory resources (heap, stack)



Main Idea

• Resource-usage-aware fuzzing 
• goal: to estimate worst-case resource usage for general resources
• including memory, file descriptors, socket connections, user-defined 

resources, etc.

• approach: employ resource-usage amount and resource-usage-
aware coverage to guide fuzzing
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Step 1: Static analysis and instrumentation

• 1.1: Identifying and modeling resource-usage operations
• 1.2: Identifying functions involving resource usage
• 1.3: Identifying control-flow branches where resource-usage locates
• 1.4: Instrumentation



Step 1: Static analysis and instrumentation
• 1.1: Identifying and modeling resource-usage operations
• resource-usage operations: APIs provided by systems/libraries, programmer-

defined APIs
• modeling via two unified functions

• __RAlloc(int n): to model allocating n number of resources
• __ RDealloc(int n): to model deallocating n number of resources

Resource	operation Resource	modeling	statements
pFile = fopen(…); pFile = fopen(…);

__RAlloc( pFile !=		NULL?	1	:		0	);
fclose(pFile); __RDealloc( pFile !=		NULL?	1	:		0	);

fclose(pFile);
p = malloc(…); p = malloc(…);

__RAlloc(malloc_usable_size(p) );
free(p); __RDealloc( malloc_usable_size(p) );

free(p);

The fuzzer will track and
capture the parameters 
of __RAlloc/__RDealloc() 
to maintain the amount 
of resource usage



Step 1: Static analysis and instrumentation

• 1.2: Identifying functions involving resource usage
• insight: many functions and basic blocks in the 

program are not relevant to resource usage
• goal: guide fuzzing to cover functions and basic 

blocks that are relevant to resource usage
• use call graph to identify all functions that directly 

or indirectly invoke resource-usage operations
• instrument coverage-label function __covl()

before the invocation of these functions

main()

__RAlloc() __RDealloc()

Function	call	graph__covl(): to label basic blocks 
that involve resource usage



Step 1: Static analysis and instrumentation

• 1.3: Identifying control-flow branches where 
resource-usage locates
• for each program block containing invocations of 

__RAlloc(), __RDealloc(), __covl () or exit(), we 
instrument label function __covl () 
• before the control-flow branch where this 

block locates in (e.g., in the then branch) and 
• at the beginning of the block in the other 

branch (e.g., the else branch).

+	__covl ();
if	(…){
…
__RAlloc(…);

}
else{

+	 __covl ();
…

}	
…



Step 1: Static analysis and instrumentation

• 1.4: Instrumentation
• use program transformation tool Coccinelle, to automatically instrument 

statements invoking resource-usage modeling functions __RAlloc/_RDealloc()
as well as coverage-label function __covl () into the original program

• Coccinelle
• a program matching and transformation engine 
• providing the language SmPL (Semantic Patch

Language) for specifying desired matches and 
transformations in C code

https://coccinelle.gitlabpages.inria.fr/website/



Step 1: Static analysis and instrumentation

1		static	SVCXPRT	*makefd_xprt(int	fd,		u_int sendsize,
2 u_int recvsize)
3		{
4					.	.	.
5					if	(fd >=	FD_SETSIZE)	{	.	.	.	;	return	NULL;	}
6					.	.	.	
7					return	(xprt);
8		}
9
10			static	bool	rendezvous_request(SVCXPRT	*xprt)
11	{
12				.	.	.	
13				if	((sock	=	accept(xprt->xp_fd,	(struct	sockaddr *)
14													(void	*)&addr,	&len))			<	0)	{.	.	.	;	return	false;	}
15				.	.	.	
16				newxprt =	makefd_xprt(sock,	r->sendsize,	r->recvsize);
17				if	(newxprt==NULL){
18									raise(SIGSEGV); //simulating	CVE-2018-14622
19					}
20					.	.	.	
21	}

(a)	Original	Program	(extracted	from	libtirpc) (c)	Instrumented	Program

1			@	accept	@
2			type	T;
3			expression	E;
4			identifier	id;
5			@@
6			(
7			if	((E	=	accept(...))	<	0){	...	}
8			+					__covl();
9			+					__RAlloc(1);
10			|
11	 …
12	)	

(b)	Semantic	Patch

1		static	SVCXPRT	*makefd_xprt(int	fd,		u_int sendsize,
2 u_int recvsize)
3		{
4					.	.	.
5					if	(fd >=	FD_SETSIZE)	{	.	.	.	;	return	NULL;	}
6					.	.	.	
7					return	(xprt);
8		}
9
10			static	bool	rendezvous_request(SVCXPRT	*xprt)
11	{
12					.	.	.
13				if	((sock	= accept(xprt->xp_fd,	(struct	sockaddr *)
14													(void	*)&addr,	&len))			<	0)	{.	.	.	;	return	false;	}
15				__covl();
16				__RAlloc(1);
17			.	.	.
18				newxprt =	makefd_xprt(sock,	r->sendsize,	r->recvsize);
19				__covl();
20				if	(newxprt==NULL){
21									__covl();
22									raise(SIGSEGV);	//simulating	CVE-2018-14622
23					}
24					.	.	.
25	}

Example illustration



Step 2: Fuzzing loop

• Similar to the process of traditional coverage-based grey-box fuzzers
(e.g., AFL)
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Step 2: Fuzzing loop

• Resource-usage aware coverage
• traditional coverage-based grey-box fuzzers capture basic block transitions, 

and log edge coverage information during runtime
• insight: many basic blocks in the program are not relevant to resource usage
• idea: resource-usage-aware edge coverage

• log only transitions between those basic blocks that contain resource-usage modeling 
functions, coverage-label function __covl () and exit() function

B1r B2 Bn-1 Bnr… B1r Bnr

logged transitions execution trace



Step 2: Fuzzing loop

• Resource-usage amount guidance
• the fuzzer collects resource-usage amount, by maintaining
• resc_cur: the current amount
• resc_peak: the historical peak amount of resource usage

• the fuzzer captures the parameters of __RAlloc/__RDealloc(n), and 
updates resc_cur and resc_peak

Resource	operation resource-usage	amount	change
__RAlloc(n); resc_cur +=	n;

if(	resc_cur >	resc_peak )	resc_peak =	resc_cur;
__RDealloc(n); resc_cur -=	n;



Step 2: Fuzzing loop

• Workflow
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Experiment

• Implementation: ResFuz
• build on top of MemLock [Wen et al. ICSE20]
• use Coccinelle to conduct program instrumentation

• Benchmark
• for heap: jasper, openjpeg
• for stack: yara
• for socket connections: libtirpc_slice extracted from an old version of libtirpc
• for user-defined resources

• jasper: jas_malloc(), jas_free() to manage a heap memory pool with a user-configurable size
• openjpeg: opj_malloc();  opj_free() to manage a specic type of heap memory

• Baseline fuzzers:
• AFL [AFL 2.52b]
• MemLock [Wen et al. ICSE20]



Preliminary Experimental Results
general heap                         general heap                           stack depth

The	growth	trend	of	resource	usage

• ResFuz performs stably well
• MemLock uses default branch coverage and memory consumption to guide fuzzing
• ResFuz uses resource-usage-aware coverage and resource-usage amount to guide fuzzing
• AFL uses default branch coverage to guide fuzzing



Preliminary Experimental Results

The	growth	trend	of	resource	usage

• ResFuz performs much better results than MemLock and AFL
• MemLock uses default branch coverage and memory consumption to guide fuzzing
• ResFuz uses resource-usage-aware coverage and resource-usage amount to guide fuzzing
• AFL uses default branch coverage to guide fuzzing

user-defined OPJ heap      user-defined JAS heap socket connections
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Summary
• Approach: Resource-Usage-Aware Fuzzing
• leverage semantic patch to make use of static analysis information 

for instrumentation
• employ resource-usage amount and resource-usage-aware coverage 

to guide fuzzing
Static Analysis

& Instrumentation
Guided Fuzzing

• Tool: ResFuz
• https://doi.org/10.5281/zeno

do.5894821

• Experiments



Future Work

• More real-world programs and more kinds of resources

• Compare with more state-of-the-art fuzzing tools

• Evaluate our approach in detecting resource-usage bugs and 
vulnerabilities in real-world programs
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Thank you 
Any Questions?


