
Estimating Worst-case Resource Usage by
Resource-usage-aware Fuzzing⋆

Liqian Chen1(�), Renjie Huang1,2, Dan Luo1, Chenghu Ma1,2,

Dengping Wei1(�), and Ji Wang1,2

1 College of Computer Science, National University of Defense Technology,
Changhsha, China

{lqchen,renjiehuang,luodan,machenghu,dpwei,wj}@nudt.edu.cn
2 State Key Laboratory of High Performance Computing, Changhsha, China

Abstract. Worst-case resource usage provides a useful guidance in the
design, configuration and deployment of software, especially when it runs
under a context with limited amount of resources. Static resource-bound
analysis can provide sound upper bounds of worst-case resource usage
but may provide too conservative, even unbounded, results. In this paper,
we present a resource-usage-aware fuzzing approach to estimate worst-
case resource usage. The key idea is to guide the fuzzing process using
resource-usage amount together with resource-usage relevant coverage.
Moreover, we leverage semantic patch to make use of static analysis in-
formation (including control-flow, function-call, etc.) to instrument the
original program, for the sake of aiding the subsequent fuzzing. We have
conducted experiments to estimate worst-case resource usage of various
resources in real-world programs, including heap memory, stack depths,
sockets, user-defined resources, etc. The preliminary experimental results
show the promising ability of our approach in estimating worst-case re-
source usage in real-world programs, compared with two state-of-the-art
fuzzing tools (AFL and MemLock).

Keywords: Fuzzing · Resource Usage · Static Analysis

1 Introduction

Resources refer to any abstractions offered to a process by system calls, apart
from the process itself. Typical resources in practice include heap/stack memory,
sockets, file descriptors, threads, database connections, gas consumed in Solidity
smart contracts, etc. In addition, there exist a variety of user-defined application-
dependent resources in applications, such as buffers, memory pools, number of
licenses consumed, etc. Worst-case resource usage provides a useful guidance
in the design, configuration and deployment of software, especially when the
software runs with limited amount of resources, e.g., under the context of modern

⋆ This work is supported by the National Key R&D Program of China (No.
2017YFB1001802), and the NSFC (Nos. 61872445, 62032024).

2 L. Chen et al.

cyber-physical systems, mobile systems and IoT devices, etc. Unexpected or
uncontrolled resource usage may degrade program performance, or even leads to
CWE (Common Weakness Enumeration) vulnerabilities (such as uncontrolled-
resource-consumption, file-descriptor-exhaustion, etc.).

Static resource-bound analysis can provide sound upper bounds of worst-
case resource usage but may provide too conservative, even unbounded, results.
Moreover, most of existing static resource-bound analysis techniques [1,2,4,5,8,
9, 14] focus on deriving the upper-bound number of accesses to a given control
location or simply the bound of iterations of a loop (or recursion). The programs
under analysis are often of small-scale, and complex syntactic constructs are
usually being abstracted away for simplicity.

In real-world programs, resources are often manipulated via specific APIs
which may involve complex structures. Moreover, the usage amount of resources
often depends on not only such parameters, but also the running system environ-
ment. For example, considering malloc(n) in C programs, its actual allocation
amount of heap memory depends on the running environment (due to factors
such as alignment, the current first available free slot, etc.) and is somehow non-
deterministic before execution. The allocation may fail or may allocate memory
with size larger than n (e.g., due to alignment). In such cases, dynamic analysis
methods are highly desired.

In this paper, we present a resource-usage-aware fuzzing approach to estimate
worst-case resource usage. We use resource-usage amount together with resource-
usage relevant coverage to guide the fuzzing process, so as to generate inputs
triggering large resource-usage amount. More clearly, we use a different defini-
tion of branch coverage and additionally add resource-usage amount to guide the
fuzzing process. Moreover, we also leverage semantic patch [11] to make use of
static analysis information (including control-flow, function-call, etc.) to instru-
ment the original program. Such information is helpful in aiding the subsequent
fuzzing during runtime. We have conducted experiments to estimate worst-case
resource usage of various resources in real-world programs, including heap mem-
ory, stack depths, sockets, user-defined resources, etc. Preliminary experimental
results show the promising ability of our approach in estimating worst-case re-
source usage in real-world programs, compared with two state-of-the-art fuzzing
tools (AFL and MemLock).

2 Approach

In this section, we describe the basic process of our approach (shown in Fig. 1).

2.1 Static analysis and instrumentation

For the target program, we first identify all program locations (i.e., program
points) of the calls to resource-usage operations in the program. Such resource-
usage operations can be APIs provided by systems or libraries, as well as applica-
tion programmer-defined APIs. From the point of view of increasing/decreasing

Estimating Worst-case Resource Usage by Resource-usage-aware Fuzzing 3

Target	
Program

Instrumented	
Program

Resource	
Usage	
Bounds

Identifying	
Resource-Usage	
Operations

Identifying	Control-
flow	Branches	where	

Resource-usage	
Locates	

Automated Program	Transformation

Feedback

Resource-usage-aware	
Coverage

Resource	Usage	
Amount

Seed	
Updater

Seed	Selector&Mutator New	Seeds

Fuzzing Loop

Identifying	Functions
Involving	Resource	

Usage
Instrumentation

Execution	
Engine

Static	Analysis

Initial	Seeds

Fig. 1. Workflow of resource-usage-aware fuzzing

resource-usage amount, all operations changing resource-usage can essentially
be reduced into allocation (i.e., increasing) and deallocation (i.e., decreasing)
operations. To this end, we define two basic modeling functions

• RAlloc(int n), to model allocating n number of resources, and
• RDealloc(int n), to model deallocating n number of resources.

We will instrument invocations of these two basic modeling functions to explicitly
model the resource usage for each resource-usage operation in the original pro-
gram, according to its semantics. For example, to model pFile = fopen(. . .), we
will instrument (afterwards) RAlloc(pFile != NULL?1 : 0). To model free(p),
we will instrument (beforehand) RAlloc(malloc usable size(p)), wherein the
malloc usable size(p) function (which is a C library function) returns the num-
ber of usable bytes in the block pointed to by p. To model the change of call-
stack depths, we instrument RAlloc(1) and RDealloc(1), respectively at the
entry and exit (before return statement) of each function. Note that each time
of resource-usage fuzzing, we consider only one type of resources. The fuzzing
engine will track the invocations of RAlloc(int n) and RDealloc(int n) and
capture their parameters to maintain the current amount and the historical peak
amount of resource usage at runtime.

On the other hand, many functions and basic blocks in the program are useful
for implementing functionality of the program but not relevant to resource usage.
Based on this insight, we propose to guide the fuzzing process to cover functions
and basic blocks that are relevant to resource usage.

– First, we make use of the call graph of the target program to identify the list
of all functions that directly or indirectly invoke resource-usage operations.3

3 Specially, to track stack depth, we first collect a set FSet of functions that directly or
indirectly call recursive functions. For other functions, we calculate for each function
the depth from the main() function to that function according to the call graph, and
add into FSet the top-K percent (e.g., top 30%) functions with large depths.

4 L. Chen et al.

Then we instrument coverage-label function covl() before the invocation of
these functions. We use covl() to identify basic blocks that involve resource
usage, which will be further used to define resource-usage-aware coverage.

– Second, for each program block containing invocations of resource-usage
modeling functions (i.e., RAlloc(), RDealloc()), label function covl() or
exit function exit() (as well as similar functions such as raise()), we instru-
ment label function covl() before the control-flow branch where this block
locates in (e.g., in the then branch) and also at the beginning of the block
in the other branch (e.g., the else branch). We conduct instrumentations of
covl() in a bottom-up manner, i.e., from inside to outside blocks.

We leverage program transformation tool Coccinelle [12], to automatically
instrument statements invoking resource-usage modeling functions as well as
coverage-label function covl() into the original program. Coccinelle is a pro-
gram matching and transformation engine which allows us to write so-called
semantic patches [11] for specifying desired code matches and transformations.
Particularly, the transformation engine of Coccinelle is defined in terms of con-
trol flow, and thus it fits well to instrument coverage-label functions for desired
control-flow branches where resource-usage locates.

1		static	SVCXPRT	*makefd_xprt(int	fd,		u_int sendsize,
2 u_int recvsize)
3		{
4					.	.	.
5					if	(fd >=	FD_SETSIZE)	{	.	.	.	;	return	NULL;	}
6					.	.	.	
7					return	(xprt);
8		}
9
10			static	bool	rendezvous_request(SVCXPRT	*xprt)
11	{
12				.	.	.	
13				if	((sock	=	accept(xprt->xp_fd,	(struct	sockaddr *)
14													(void	*)&addr,	&len))			<	0)	{.	.	.	;	return	false;	}
15				.	.	.	
16				newxprt =	makefd_xprt(sock,	r->sendsize,	r->recvsize);
17				if	(newxprt==NULL){
18									raise(SIGSEGV); //simulating	CVE-2018-14622
19					}
20					.	.	.	
21	}

(a)	Original	Program (c)	Instrumented	Program

1			@	accept	@
2			type	T;
3			expression	E;
4			identifier	id;
5			@@
6			(
7			if	((E	=	accept(...))	<	0){	...	}
8			+					__covl();
9			+					__RAlloc(1);
10			|
11	 …
12)	

(b)	Semantic	Patch

1		static	SVCXPRT	*makefd_xprt(int	fd,		u_int sendsize,
2 u_int recvsize)
3		{
4					.	.	.
5					if	(fd >=	FD_SETSIZE)	{	.	.	.	;	return	NULL;	}
6					.	.	.	
7					return	(xprt);
8		}
9
10			static	bool	rendezvous_request(SVCXPRT	*xprt)
11	{
12					.	.	.
13				if	((sock	= accept(xprt->xp_fd,	(struct	sockaddr *)
14													(void	*)&addr,	&len))			<	0)	{.	.	.	;	return	false;	}
15				__covl();
16				__RAlloc(1);
17			.	.	.
18				newxprt =	makefd_xprt(sock,	r->sendsize,	r->recvsize);
19				__covl();
20				if	(newxprt==NULL){
21									__covl();
22									raise(SIGSEGV);	//simulating	CVE-2018-14622
23					}
24					.	.	.
25	}

Fig. 2. Example illustration

Example illustration Fig. 2 illustrates the above process via an example
(named libtirpc slice) extracted from an old version of libtirpc (that is a Transport-
Independent RPC library for Linux) which contains a known CVE vulnerabil-
ity 4. The cause of this CVE is that the return value of makefd xprt() was
not checked in all instances, which could lead to a crash when the server ex-
hausted the maximum number of available file descriptors. Fig. 2(a) shows the
slice extracted from the original code of libtirpc. Fig. 2(b) shows part of the se-
mantic patch applied for instrumentation. The instrumented program is shown

4 https://ubuntu.com/security/CVE-2018-14622

Estimating Worst-case Resource Usage by Resource-usage-aware Fuzzing 5

in Fig. 2(c). This program consumes socket connections, e.g., by calling accept()
as shown on Line 13 in Fig. 2(a). We use semantic patch shown in Fig. 2(b),
to instrument resource-usage modeling function RAlloc(1) as well as coverage-
label function covl() at the program location when a connection is established
successfully. The instrumented code is highlighted in Fig. 2(c).

2.2 Fuzzing loop

Algorithm 1 Resource-usage Aware Fuzzing
Require: an instrumented program P , and a set of initial seeds I0
Ensure: (max res,BuggyS) where max res is the found largest resource usage amount, and BuggyS

is a set of test cases triggering resource-usage bugs
1: max res← 0
2: BuggyS ← ∅
3: SeedQueue← I0
4: while time not expire do
5: s← select(SeedQueue)
6: s′ ← mutate(s)
7: trace← execute(s′)
8: n res← resPeak(trace)
9: if n res > max res then
10: max res← n res
11: SeedQueue← SeedQueue ∪ s′

12: else
13: if find new path(trace) then
14: SeedQueue← SeedQueue ∪ s′

15: end if
16: end if
17: if trigger crash(trace) then
18: BuggyS ← BuggyS ∪ s′

19: end if
20: end while
21: return (max res,BuggyS)

Algorithm. 1 shows the main procedure of our resource-usage aware fuzzing.
The algorithm first selects an input s from the seed pool SeedQueue, mutates it
and generates a mutant s′. Then, the fuzzer runs the mutant input and moni-
tors its execution. If the mutant input consumes more resources or leads to new
resource-usage-aware coverage, it will be added to the seed pool as an interest-
ing input. This process is similar to the process of traditional coverage-based
grey-box fuzzers (e.g., AFL). The main difference lies in that resource-usage
aware fuzzer uses a different definition of branch coverage and adds resource
consumption guidance to retain interesting inputs. Now we give the details.

Resource-usage aware coverage Traditional coverage-based grey-box fuzzers
use instrumentation to capture basic block transitions, and log edge coverage in-
formation during runtime. For example, AFL uses a random number to represent
each basic block, and each transition from one basic block to another is marked
by the Exclusive-OR (and right shift) result of the two random values. The iden-
tifier of each transition is considered as an address and each time of triggering
will increment the count of hits at that address. During runtime, AFL records
edge coverage information, including whether the edge has been visited, and the
count of hits.

6 L. Chen et al.

In this paper, we concentrate only on resource usage in a program, while
many basic blocks in the program are useful for implementing functionality of
the program but not relevant to resource usage. Based on this insight, we log
only transitions between those basic blocks that contain resource-usage modeling
functions (i.e., RAlloc(), RDealloc()), coverage-label function covl() and
exit() function. E.g., consider an execution trace Br

1 ,B2 , . . . ,Bn−1 ,B
r
n wherein

only Br
1 ,B

r
n contain aforementioned resource-usage relevant functions. We will

log it as a transition from Br
1 to Br

n , and increase the count of hits of this
transition. Resource-usage-aware edge coverage is more delicate and sensitive
than traditional edge coverage in identifying different resource usage.

Resource-usage amount guidance When resource-usage aware fuzzer runs
an input on the instrumented program, it collects not only the resource-usage
aware coverage information, but also resource-usage amount. The fuzzing engine
maintains two variables, resc cur and resc peak , to track respectively the cur-
rent amount and the historical peak amount of resource usage. It captures the
parameters of RAlloc(n) and RDealloc(n), and updates the current amount
as well as the historical peak amount of resource usage.

Overall guidance mechanism As shown in Algorithm. 1, after execution
over an input s′, we collect the peak resource usage amount of the running trace
through resPeak(trace) (Line 8). If this input leads to more resource usage, it is
added into the seed pool for further mutation (Lines 9-11). Besides, if it leads to
new resource-usage aware coverage, it is also added into the seed pool for further
mutation (Lines 13-14). In addition, if the input triggers a crash, it is added into
BuggyS which collects the set of test cases triggering resource-usage bugs.

3 Experiments

We have implemented our approach in a prototype fuzzer named ResFuz 5, based
on MemLock [16] which is built on top of AFL [17]. We employ Coccinelle [12]
to conduct program instrumentation.

We conduct preliminary experiments on several open-source software, includ-
ing jasper, openjpeg and yara, which are also part of the benchmark used in [16],
as well as the small example libtirpc slice explained in Fig. 2. More specifically,
jasper and openjpeg contain many heap resource operations, while yara contains
recursive functions. Moreover, jasper and openjpeg contain many user-defined
application-specific resource-usage operations. E.g., jasper uses operations like
jas malloc(), jas free() to manage a heap memory pool with a user-configurable
size. Similarly, openjpeg uses operations like opj malloc(), opj free() to manage
a specific type of heap memory. The small program libtirpc slice contains socket
operations, as explained in Sect. 2.1. We compare ResFuz against other two
state-of-the-art fuzzers, namely AFL and MemLock [16]. All our experiments

5 The artifact is available at https://doi.org/10.5281/zenodo.5894821.

Estimating Worst-case Resource Usage by Resource-usage-aware Fuzzing 7

(a) (b) (c)

(d) (e) (f)

Fig. 3. The growth trend of resource usage

have been performed on machines with an Intel (R) Core (TM) i9-10940X CPU
(3.30GHz) and 32GB of RAM under 64-bit Ubuntu LTS 20.04. We run each
fuzzer for 6 hours (except 10 minutes for libtirpc slice) each time, perform each
experiment for 3 times, and use their average statistical performance as result.

Fig. 3 depicts the growth trend of the found resource peaks over time through
the plots. The vertical axis shows the amount of the peak resource consumed
(heaps for jasper and openjpeg, stack depths for yara, sockets for libtirpc slice).
Fig. 3 shows that ResFuz outperforms the two baseline fuzzers in finding large re-
source consumption for almost all the cases (except for japser shown in Fig. 3(b),
for which MemLock performs a little bit better than ResFuz). In particular, as
shown in Figs. 3(d-f), for user-defined resources in openjpeg and jasper as well as
sockets in libtirpc slice, ResFuz provides much better results than the other two
tools. This is because the guidance mechanism in ResFuz is based on resource-
usage amount and resource-usage aware coverage information, which accelerates
the process of adding inputs triggering large resource usage into the seed pool.
Note that for these user-defined resources and sockets, MemLock uses the con-
sumption of the general heap to guide the fuzzing process, while ResFuz uses
respectively the consumption of the specific OPJ heap (in openjpeg), JAS heap
(in japser), sockets (in libtirpc slice) to guide the fuzzing process.

4 Related Work

Using dynamic analysis or fuzzing to find resource-usage relevant bugs has re-
ceived much attention in recent years. PREDATOR [3] is an automated black
box testing tool for detection and identification of local resource-exhaustion vul-

8 L. Chen et al.

nerabilities in network servers, which computes resource usage profiles for pre-
dicting the utilization of every monitored resource for test inputs. Radmin [7]
confines the resource usage of a target program from its benign executions to
the learned automata and then uses it to detect resource usage anomalies. Both
PREDATOR and Radmin do not use fuzzing. MemFuzz [6] uses memory access
(rather than memory consumption) instrumentation as addition to branch cover-
age to guide evolutionary fuzzing. Recently, researchers have drawn attention to
the algorithmic complexity vulnerabilities such as SlowFuzz [13], Singularity [15]
and PerfFuzz [10]. The basic idea behind is to use the number of executed in-
structions as the guidance for fuzzing. However, all these works consider time
complexity issues.

The most relevant work to our technique is MemLock [16], which uses mem-
ory usage guided fuzzing to generate the excessive memory consumption inputs
and trigger uncontrolled memory consumption bugs. MemLock also uses mem-
ory consumption information to guide the fuzzing process and considers two
kinds of memory resources, i.e., stack memory and heap memory. Compared
with MemLock, we consider the usage of general resources, including memory,
file descriptors, socket connections, user-defined resources, etc. Moreover, Mem-
Lock uses default branch coverage of AFL (which considers transitions of all
basic blocks) to guide the fuzzing process, while our approach adopts resource-
usage-aware coverage (which considers transitions between basic blocks that are
relevant to resource usage). In addition, we employ semantic patch to make use of
resource-usage relevant call graph and control-flow graph to conduct instrumen-
tation at source code level, while MemLock uses control-flow graph in the same
way as AFL (to define branch coverage) and uses call graph only to determine
stack memory usage (by instrumenting at the entry and exit of functions).

5 Conclusion and Future Work

In this paper, we present a resource-usage-aware fuzzing approach to estimate
worst-case resource usage. It employs resource-usage amount and resource-usage-
aware coverage to guide the fuzzing process, for the sake of generating inputs
to triggering massive resource usage. Moreover, we employ semantic patches to
make use of resource-usage relevant call graph and control-flow graph informa-
tion to conduct instrumentation, for the sake of aiding the subsequent fuzzing
process. We have conducted experiments to estimate worst-case resource usage of
various resources in real-world programs, including heap memory, stack depths,
sockets, user-defined resources, etc. Preliminary experimental results show its
promising ability to estimate worst-case resource usage in real-world programs,
compared with two state-of-the-art fuzzing tools.

For future work, we plan to conduct experiments on more real-world pro-
grams and over more kinds of resources. We also plan to conduct evaluation
comparison with more state-of-the-art fuzzing tools. Furthermore, we will eval-
uate our approach in detecting resource-usage bugs and security-critical vulner-
abilities in real-world programs.

Estimating Worst-case Resource Usage by Resource-usage-aware Fuzzing 9

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoretical Computer Science 413(1), 142–
159 (2012)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Proceedings
of the 17th International Static Analysis Symposium (SAS). pp. 117–133. Lecture
Notes in Computer Science, Springer (2010)

3. Antunes, J., Neves, N.F., Veŕıssimo, P.J.: Detection and prediction of resource-
exhaustion vulnerabilities. In: Proceedings of the 19th International Symposium
on Software Reliability Engineering (ISSRE). pp. 87–96. IEEE (2008)

4. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Analyzing runtime
and size complexity of integer programs. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 38(4), 1–50 (2016)

5. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). pp. 467–478. ACM (2015)

6. Coppik, N., Schwahn, O., Suri, N.: Memfuzz: Using memory accesses to guide
fuzzing. In: Proceedings of the 12th IEEE Conference on Software Testing, Vali-
dation and Verification (ICST). pp. 48–58. IEEE (2019)

7. Elsabagh, M., Barbará, D., Fleck, D., Stavrou, A.: On early detection of
application-level resource exhaustion and starvation. Journal of Systems and Soft-
ware 137, 430–447 (2018)

8. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Proceedings of the 12th Asian Symposium on Programming Lan-
guages and Systems (APLAS). pp. 275–295. Lecture Notes in Computer Science,
Springer (2014)

9. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). pp. 127–139. ACM (2009)

10. Lemieux, C., Padhye, R., Sen, K., Song, D.: Perffuzz: Automatically generating
pathological inputs. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA). pp. 254–265. ACM (2018)

11. Muller, G., Padioleau, Y., Lawall, J.L., Hansen, R.R.: Semantic patches considered
helpful. ACM SIGOPS Oper. Syst. Rev. 40(3), 90–92 (2006)

12. Padioleau, Y., Lawall, J.L., Hansen, R.R., Muller, G.: Documenting and automat-
ing collateral evolutions in linux device drivers. In: Proceedings of the 2008 EuroSys
Conference (EuroSys). pp. 247–260. ACM (2008)

13. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS). pp. 2155–2168. ACM (2017)

14. Sinn, M., Zuleger, F., Veith, H.: Difference constraints: An adequate abstraction
for complexity analysis of imperative programs. In: Proceedings of the 2015 Formal
Methods in Computer-Aided Design (FMCAD). pp. 144–151. IEEE (2015)

15. Wei, J., Chen, J., Feng, Y., Ferles, K., Dillig, I.: Singularity: pattern fuzzing for
worst case complexity. In: Proceedings of the 2018 ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/SIGSOFT FSE). pp. 213–223. ACM (2018)

10 L. Chen et al.

16. Wen, C., Wang, H., Li, Y., Qin, S., Liu, Y., Xu, Z., Chen, H., Xie, X., Pu, G., Liu,
T.: Memlock: Memory usage guided fuzzing. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (ICSE). pp. 765–777 (2020)

17. Zalewski, M.: American fuzzy lop 2.52b. http://lcamtuf. coredump. cx/afl (2017)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

