
Identifying Supplementary Bug-fix Commits
Tao Ji Jinkun Pan Liqian Chen Xiaoguang Mao

College of Computer
National University of Defense Technology, Changsha 410073, China

Email: taoji@nudt.edu.cn, pan jin kun@163.com, {lqchen, xgmao}@nudt.edu.cn

Abstract—Real-world bugs and the bug-fix activities are essen-
tial in many fields such as bug prediction and automatic program
repair. Identifying bug-fix commits from version histories has
received much recent attention. Linking commits to bug reports
and analyzing the commits individually are common practice.
However, considering the one-to-many relationship between the
bug report and the bug-fix commits, analyzing commits indi-
vidually will miss the relevance between commits, since several
commits might fix the same bug together. In addition, some
supplementary bug-fix commits which supplement or correct the
identified bug-fix commit may be neglected. For empirical studies
on bug-fix commits, it is important to study all the relevant
commits as a whole, otherwise we will fail to understand the
complete real bug-fix activities. In this paper, we investigate the
relevance between bug-fix commits that are linked to the same
bug-fix pull request, and utilize machine learning techniques to
determine supplementary bug-fix commits for an identified bug-
fix commit. Experimental results show that there indeed exist
supplementary bug-fix commits (i.e., 19.8% on average) that are
neglected when analyzing commits individually. The performance
of our tool SupBCFinder is much better than that of using a
sliding window of one hour and that of analyzing the local change.
Moreover, inspired by our learning-based approach and extracted
features, we propose one effective heuristic as an alternative for
the cases when there are not enough pull requests for training.

I. INTRODUCTION

Mining software repositories has provided valuable insights
for developing and improving software. In the fields of bug
prediction and automatic program repair, real-world bugs and
the fixes are desired. For example, one can use historical
bugs to build prediction models for predicting if the software
contains bugs that have appeared in history and to fix them by
reusing existing fix operations. However, the biases in bug-fix
datasets may affect the results of such studies [1]. Much effort
has been devoted to identifying bug-fix commits precisely and
completely.

In general, there are two main categories of techniques for
identifying bug-fix commits: analyzing the bug-fix character-
istics of commits (without considering bug reports) [2] [3]
and analyzing the links between commits and bug reports
[4] [5]. Considering that the links between commits and bug
reports may be missing and developers might fix bugs that are
not reported in bug tracking systems, the remaining commits
that are not linked to bug reports still need to be analyzed.
To conduct a comprehensive study, these two categories of
techniques are often used together to identify bug-fix commits
[6] [7]. For example, Zhong and Su [6] first pick out those
commits whose messages contain the numbers of bug reports,
and then identify more bug-fix commits by matching keywords

such as “bug” and “fix”. According to their statistics on bug
reports and bug-fix commits, one reported bug may have more
than one bug-fix commit. It means that a bug-fix commit may
have some supplementary bug-fix commits which supplement
or correct the initial fix attempts [8]. Considering this one-to-
many relationship between the bug report and bug-fix commits,
some of those commits identified by keywords may be relevant
(which means they may fix the same bug together) and other
supplementary bug-fix commits may be still missing. It is
important to study all these relevant bug-fix commits as a
whole. For example, when we need to repair a buggy program
by reusing fix operations from historical bug fixes [9], we may
fail if we do not reuse supplementary bug fixes together.

Existing works [10] [11] on grouping related commits use
some heuristics such as using the sliding window of a fixed
time interval and determining if the authors are the same.
Sliwerski et al. [12] and Yin et al. [13] find related changes
if there is source code change overlap between two changes.
These heuristics do not consider the characteristics of different
projects and may lose some hidden relevance between relevant
commits. We believe that the relevance between existing
relevant bug-fix commits could help find those neglected bug-
fix commits, which are supplementary to those identified
individually by matching keywords.

Thanks to Git, a popular distributed version control system,
relevant bug-fix commits tend to be locally gathered in the
same branch and the relevance between them can be obtained
easily. GitHub is a famous collaborative code hosting site built
on top of Git. Based on the git-request-pull utility of Git, the
“Fork & Pull” development model of GitHub becomes popular.
A pull request that adds new features or fixes bugs may be
accepted once the core team members agree, and the merged
commits can be obtained easily from the pull request. Those
commits in the same pull request always achieve the same
goal and thus they are relevant. Moreover, developers tend to
commit small changes with Git because of the distributed char-
acteristics [14]. It means that developers may commit different
changes several times for fixing a complicated bug. Based on
these observations, we have an intuition that supplementary
bug-fix commits are common and they could be identified by
learning characteristics between the relevant commits of the
same pull request.

In this paper, we propose a learning-based approach called
SupBCFinder (Supplementary Bug-fix Commits Finder) to
identify more bug-fix commits, as a supplement to the existing
approaches. First, we identify those bug-fix pull requests and

extract their commits. For those commits from the same pull
request, we assume that they are relevant. The relevance
between commits indicates that they share the same goal. Sec-
ond, we add some irrelevant commits as the negative samples
to build a training dataset. Third, we extract features from
these commits and compute the feature values for each pair of
commits. Feature values reflect two commits’ difference with
respect to a certain feature. After that, we leverage machine
learning techniques to build a discriminative classification
model to predict whether two commits are relevant or not.
Finally, we couple the identified bug-fix commits and their
adjacent subsequent commits, and use the trained model to
predict if these adjacent subsequent commits are supplemen-
tary to the identified bug-fix commits.

We have evaluated SupBCFinder on six software projects
hosted on GitHub. The results indicate that SupBCFinder
performs well on identifying supplementary bug-fix commits.
Kalliamvakou et al. point out that some projects do not often
use pull requests [15]. Thus, we further propose one heuristic
to identify supplementary bug-fix commits, when there are not
enough pull requests.

In short, this paper makes the following contributions:
• We make use of the relevance between adjacent commits

in the same bug-fix pull request, and propose a learning-
based approach to identify supplementary bug-fix com-
mits;

• Experimental results show that the performance of our
approach is much better than that of using a sliding
window of one hour and that of analyzing the local
changes;

• Our proposed heuristic outperforms the local change
approach on most repositories (5/6) after limiting the time
interval. We recommend to use this heuristic when there
are not enough pull requests available.

The rest of this paper is organized as follows. Section
II shows motivating examples. Then, Section III describes
SupBCFinder in detail. Next, we conduct experiments and
evaluate experimental results in Section IV. We discuss related
work in Section V. Finally, Section VI concludes.

II. MOTIVATING EXAMPLES

In this section, we illustrate two motivating examples.
Zhong and Su [6] classify bugs into two types: reported

bugs and on-demand bugs. A reported bug is linked to a
set of bug-fix commits that refer to the same issue number,
while an on-demand bug is linked to one bug-fix commit
identified by matching keywords such as “bug” or “fix”. In
their empirical study, they analyze these two kinds of bugs
respectively. Fig. 1 shows four commits of Aries whose bug-
fix commits have been analyzed by Zhong and Su [6]. These
four commits appear in the same main branch “Trunk” and
two other branches are created for other different purposes.
Because these four commits do not refer to any issue number,
they have been classified into on-demand bugs. However,
according to their descriptions, it is obvious that the developer
was trying to fix the same bug. If we analyze them individually,

the links between these four commits will be missing and the
analysis results will fail to reflect the real fix operations of
one bug. Imagine that, when we reuse one of those bug-fix
commits to repair a similar bug in other software, we will fail
to repair the bug correctly because of the loss of supplementary
bug fixes.

As we can see, these four relevant commits in Fig.
1 can still be identified as bug-fix commits by matching
the keyword “fix”. However, in practice, some supplemen-
tary bug-fix commits may be neglected by matching key-
words. Fig. 2 shows two adjacent commits of “wordpress-
mobile/WordPress-Android”1 which is the Android client of
WordPress. The top commit fixes a bug explained by the mes-
sage and the bottom commit modifies that fix. The message of
the bottom commit does not contain any words indicating that
the commit fixes a bug. However, we find that this commit is
a supplementary patch of the top one. The bug will fail to be
eliminated without it.

The above two examples show the importance of group-
ing related bug-fix commits. Although these changes of two
motivating examples are respectively committed by the same
author, we fail to group them together when using a sliding
window of 200 seconds [10]. After inspecting these commits,
we find that these relevant ones often refer to the same nouns
or contain the same lines in code changes. Hence, we think
that the relevance between existing relevant bug-fix commits
may help us to identify supplementary bug fixes for identified
bug-fix commits. Then, there is a further question we need to
consider: where are those supplementary bug-fix commits? If
we analyze all subsequent commits of a given bug-fix commit,
the time and space consumption will be high. As shown in
Fig. 1 and Fig. 2, the supplementary bug-fix commits are
adjacent to the initial bug-fix commits and they are locally
gathered. Moreover, considering the following two reasons, we
propose to find supplementary bug fixes from those adjacent
subsequent commits.

1) Git: Working with Git, developers are able to create
independent branches for adding new features or fixing bugs
in a very convenient way. Obviously, these commits in the
same branch are relevant because of the same goal. In addition,
an empirical study [14] shows that Git’s commits are smaller
than SVN’s in the size of changes, and developers tend to split
one task into more commits when using Git. Although these
commits have been split, they are adjacent in the same branch.
These insights motivate us to find supplementary bug fixes by
examining the adjacent subsequent commits.

2) Reopened Bugs: Developers may submit sets of commits
to fix one bug when the bug report is reopened. In this
case, the relevant sets of commits may appear far away in
different locations of the Git graph. However, reopened bugs
just comprise 4-7.25% of all bugs in three projects studied by
[16]. Additionally, for reopened issues, we cannot just group
all those commits together for analyzing the fixes of a bug,

1https://github.com/wordpress-mobile/WordPress-Android. Repositories
hosted on GitHub can be found by concating “https://github.com/” with their
names, so we won’t give these links in the following throughout the paper.

Graph Description Commit Author Date

should be able to fix the Jenkins this time:(690564b Emily Jiang <ejiang@apache.org> Mar 29, 2012, 5:56 PM

fix the build break: revert to use the simple debug method 3002360 Emily Jiang <ejiang@apache.org> Mar 29, 2012, 6:54 AM

fix the build break - trying:) 6eef48b Emily Jiang <ejiang@apache.org> Mar 29, 2012, 5:49 AM

fix the build break e021d37 Emily Jiang <ejiang@apache.org> Mar 28, 2012, 11:43 PM

Fig. 1. Aries’s four adjacent commits that fix the same bug

commit 3af2f6ba391e6266ab4359dfcf490b5d6678b64b
Author: Mario Zorz<mariozorz@gmail.com>
Date: Wed Jul 6 11:40:36 2016 -0300

 fixed checking connection and showing toast after text validation

index: …/org/wordpress/android/ui/people/PeopleInviteFragment.java
@@ -317,6 +317,12 @@
 …
 if (usernamesToCheck.size() > 0) {
+
+ if (!NetworkUtils.checkConnection(getActivity())) {
+ enableSendButton(true);
+ return;
+ }
 …
==
commit 157eca164ab2029dcf80487af4ad9a9cd4700148
Author: Mario Zorz <mariozorz@gmail.com>
Date: Thu Jul 7 08:24:02 2016 -0300

 moved network connection check to only be made when the user
hits SEND as suggested by @hypes

Index: …/org/wordpress/android/ui/people/PeopleInviteFragment.java
@@ -318,11 +318,6 @@

 if (usernamesToCheck.size() > 0) {

- if (!NetworkUtils.checkConnection(getActivity())) {
- enableSendButton(true);
- return;
- }
-
 …
@@ -423,6 +418,11 @@
 …
+ if (!NetworkUtils.checkConnection(getActivity())) {
+ enableSendButton(true);
+ return;
+ }
+
 …

Fig. 2. WordPress-Android’s two adjacent commits that fix the same bug

because the running context of this reopened bug may have
been changed during the evolution. Although the issue may
be reopened once the bug reappeared with more test cases,
previous bug-fix commits are able to relieve development
pressure temporarily. Besides, from the view of automatic
program repair, these previous bug-fix commits are valuable.

Based on the consideration above, we hypothesize that
relevant bug-fix commits are locally gathered and supplemen-
tary bug-fix commits may be identified by learning from the
relevance between existing relevant bug-fix commits.

III. PROPOSED APPROACH

This section describes our approach called SupBCFinder in
detail.

A. Overall Framework

Bug-fix commits of reported bugs may be grouped directly
from bug reports. The remaining bug-fix commits of on-
demand bugs may have supplementary bug fixes just as shown
in Sect. II. We think that the relevance hidden in these commits
of the same bug-fix pull requests can help recover missing

Pull

Requests

Ground

Truth

Labels

Feature
Extraction

Model
Learning

Pairs
Extraction

Bug-fix

Commits
Feature

Extraction
Missing Link

Recovery
Pairs

Extraction

Prediction

Model

Relevant

Bug

Fixes

Fig. 3. Overall Framework

links between adjacent commits and the bug-fix commit of
on-demand bugs. Our tool SupBCFinder consists of two main
phases: Training Phase and Predicting Phase. Fig. 3 shows
the overall framework of our approach.

During the training phase, SupBCFinder extracts relevant
commits and irrelevant commits by analyzing the pull requests
from the repository. Please note that we do not extract relevant
commits from issues. As shown in the Algorithm 1 (Line 5),
we select pull requests that contain bug-fix keywords and own
N commits or less. Then we make pairs of commits, and
each pair is labeled as relevant or irrelevant. After sorting
the commits into an ordered list {C0, C1, ..., Cn} (where
C0 is the oldest commit and Cn is the newest commit) in
a bug-fix pull request, we form each two neighbor commits
Ci and Ci+1 (where i∈[0,n)) as a pair, which is then labeled
as relevant. With Git, developers often create another branch
for adding new features or fixing bugs. If tasks are relevant,
developers may not create another branch. Based on these
intuitions, we choose the ancestor commits P of the pull
request to form the irrelevant pair (Pj , C0) (where Pj ∈ P).
Note that, we limit the size of P to prevent the imbalance
between relevant and irrelevant pairs (Line 7). The feature
extraction component then extracts feature values from these
pairs. After that, extracted features are provided to a model
learning algorithm to build a model that discriminates relevant
bug-fix commits from irrelevant commits.

During the predicting phase, SupBCFinder makes a pair (Ci,
Cj) between a bug-fix commit Ci and one of its adjacent sub-
sequent commits Cj . Next, the feature extraction component
extracts features from pairs of commits and then provides them
to the model. Finally, after predicting by the model, we obtain
the supplementary bug-fix commits.

Please note that tangled commits [17] may affect the
effectiveness of our approach. A study [18] on 10 open-
source CVS and SVN projects shows that 8.4% of inspected
code changes seem to be tangled. The proportion of tangled
changes is small and we have an intuition that tangled commits

Algorithm 1 Training Set Creation
Input: PR is a set of all merged pull requests, K is a set of

keywords to identify bug fixes, N is the parameter
Output: V = {((Ci, Cj), label)} is a set of commit pairs with

labels
1: function CREATETRAINSET(PR, K, N)
2: V⇐ ∅
3: for all PR ∈ PR do
4: size = |PR.commits|
5: if 1 < size ≤ N and K ∩ tokenize(PR.doc) then
6: C⇐ sort(PR.commits)
7: P⇐ GETANCESTORS(C0)[0 : size-1]
8: for all i∈ [0, | C |-1) do
9: V⇐ V ∪ {((Ci, Ci+1), 1)} /*relevant*/

10: end for
11: for all Pj∈ P do
12: V⇐ V ∪ {((Pj , C0), 0)} /*irrelevant*/
13: end for
14: end if
15: end for
16: return V
17: end function
18:
19: function GETANCESTORS(C)
20: for all parent∈C.parents do
21: if ! isMerging(parent) then
22: return {parent}
23: end if
24: end for
25: P⇐ ∅
26: for all parent∈C.parents do
27: P⇐ P ∪ GETANCESTORS(parent)
28: end for
29: return P
30: end function

may appear more rarely because developers prefer to commit
smaller changes when working with Git [14].

B. Training Data Acquisition

Issues is the bug tracking system of GitHub, which works
like Bugzilla. Users report problems or bugs to developers
by creating an issue. Developers will fix the bug or enhance
existing function according to this issue. After finishing it,
developers may refer the issue number in the commit message.
However, not all of the relevant commits refer to the issue
number. For example, the pull request #41382 of WordPress-
Android says that it fixes the issue #4137, but only one
commit of this pull request refers to this issue number while
the other commit does not. It means if we pick out only those
commits that refer to the issue numbers, we will still neglect
some commits that are in fact relevant. To this end, we collect
relevant commits from pull requests instead of issues.

2https://github.com/wordpress-mobile/WordPress-Android/pull/4138

TABLE I
LIST OF EXTRACTED FEATURES

Feature Type Description
T1 Float Ratio of the same nouns
D1 Int Time interval between two commits (in hours)

C1 Bool The second commit removes some lines that were
added by the first commit

C2 Float Ratio of added-removed lines

C3 Bool The second commit adds some lines that were
removed by the first commit

C4 Float Ratio of removed-added lines

C5 Bool The second commit adds or removes lines that also
have been added or removed by the first commit

C6 Float Ratio of added-added and removed-removed lines

Pull Requests provides opportunities for other developers
to make contributions to the repository. Once a pull request is
accepted by core developers, its corresponding commits will
be merged into the main branch of the repository. The infor-
mation from pull requests about tasks (adding new features
or fixing bugs) together with their corresponding commits is
a valuable source of data for empirical studies. Commits in
the same pull request are relevant and adjacent in the same
branch. Therefore, if a pull request is put forward to fix a
bug, the relevance between its bug-fix commits is helpful to
build a discriminative model.

There are two problems that we need to solve: identifying
bug-fix pull requests and ensuring that the pull request com-
pletes one single task. Multi-task pull requests may increase
the burden of reviewing and lead to rejection [19]. However,
we still need filter out those multi-task pull requests as many as
possible to reduce the negative effect of the irrelevant groups
of commits. In our approach, we first identify bug-fix pull
requests by matching keywords (e.g., “fix”, “bug”, “error”,
“fault”, “crash”, “failure” and “fail”) in titles and bodies of pull
requests. Then, we control the number (e.g., we set the number
< 5 in our experiments) of a bug-fix pull request’s commits
(Line 5 in Algorithm 1), because empirical studies show
that bug-fix changes are smaller than that of adding features
changes [20] and about 80% of pull requests own less than 3
commits [21]. Moreover, we have an intuition that multi-task
pull requests tend to own more commits. After identifying
single-task bug-fix pull requests, we generate training sets
from them.

C. Feature Extraction

Once we get pairs of relevant and irrelevant commits, our
feature extraction tool extracts features from those pairs of
commits. The extracted features are listed in Table I.

A commit log message often illustrates the purpose of these
changes or summarizes them. For example, the messages of
those two commits in Fig. 2 show that changes are working
on “connection”. To automatically extract information from
commits’ messages, we utilize the natural language processing
tool nltk3 to extract and stem nouns which represent the
working objects. If two commits’ messages contain the same

3http://www.nltk.org

nouns, the probability of their working towards the same goal
will be high [22]. Thus, we compute the ratio of the same
nouns among all nouns as the feature T1. In our tool, we
have filtered some nouns such as “issue”, “bug” and “error”,
because they are frequently used in commits’ messages and
do not reflect the working objects.

The time interval between two commits can also reflect
the hidden relevance. Existing approaches consider commits
relevant when the difference of their timestamps is below a
certain threshold (e.g., 200 seconds). However, an empirical
study shows that most of related commits cannot be grouped
using the common sliding time window of 300 seconds and
more than a half of related commits are committed over one
hour apart [23]. Considered time intervals may reflect the
working habit of developers, and thus we compute the time
interval (in hours) between two commits as the feature D1.

To better understand the content of a commit, we have also
extracted features from code changes. Supplementary bug fixes
may propagate changes of the initial bug fix into different
locations of different files, revert the initial bug fix or modify
some initial changes. As a result, there are some identical lines
between commits’ removed lines and added lines. Considering
the order relation between two commits in the same pair in
training sets or testing sets, we classify these cases into three
categories: (1) The second commit removes some lines that are
added by the first commit; (2) The second commit adds some
lines that are removed by the first commit; (3) The second
commit adds some lines that have been added by the first
commit, or removes some lines that have been removed. These
three categories correspond to the boolean features C1, C3 and
C5. We also compute the ratio of these lines as the features
C2, C4 and C6 by using the equations (1), (2) and (3).

C2 =
2× |set(A1) ∩ set(R2)|
|set(A1)|+ |set(R2)|

(1)

C4 =
2× |set(R1) ∩ set(A2)|
|set(R1)|+ |set(A2)|

(2)

C6 =
2× |(set(A1) ∩ set(A2)) ∪ (set(R1) ∩ set(R2))|
|set(A1)|+ |set(A2)|+ |set(R1)|+ |set(R2)|

(3)

where set() represents the function that extracts the set of
all different lines from the collection of lines, A1 and R1

represent those added lines and removed lines respectively in
the first commit, A2 and R2 represent those added lines and
removed lines respectively in the second commit, |·| represents
the size of the set. In our tool, some lines are neglected
when considering the characteristic of different programming
languages. For example, “else” often appears in one single line
without any other tokens, and it is used in many completely
different and irrelevant code changes.

Note that, we just analyze the adjacent commits of the
bug-fix commits and these commits often appear in the same
branch, which means that they may co-change because of the
same goal such as adding new features. As shown in Fig.
4, a bug-fix commit may appear in the process of adding

bug fix bug fix

new features

master

Fig. 4. A simple Git graph. The red circles represent bug-fix commits.

a new feature because a previous commit introduces a bug
and its subsequent commit goes on adding the new feature.
They are relevant due to the same goal of adding the new
feature instead of fixing a bug. Our early experimental results
show that more false positives will be produced if we add
these features extracted from the authors, the association or
the dependency of changed files. As a result, we do not use
these features in SupBCFinder.

D. Model Learning

After extracting features from training pairs, we leverage
the Support Vector Machine (SVM) algorithm to build a
prediction model which is capable of differentiating relevant
pairs from irrelevant pairs. Our problem is a classical binary
classification problem. Existing classification algorithms such
as Decision Tree and Bayesian Logistic Regression (BLR)
also can be utilized in our framework. Considering that SVM
is a high performance algorithm and has been widely used
across different classification applications, we utilize the scikit-
learn’s4 implementation of SVM in SupBCFinder to conduct
experiments.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
effectiveness of SupBCFinder.

A. Dataset

Considering that our approach does not target projects
written in particular languages, we collect six popular soft-
ware repositories hosted on GitHub with a large number
of issues and pull requests: “wordpress-mobile/WordPress-
Android” (we use “WP-A” as its abbreviation), “atom/atom”,
“moby/moby”, “opencv/opencv”, “kubernetes/kubernetes” and
“apple/swift”. They are written in different popular program-
ming languages and they are involved in different areas.

Table II describes the details of our dataset. The column
“HEAD” represents the first ten digits of the latest commit’s
SHA number, demonstrating the version of the project we
adopt. By calling the APIs of GitHub, we are able to download
the pull requests of each repository. The subcolumn “All” of
the column “Pull Requests” represents the number of all pull
requests downloaded from GitHub before the date of the latest
commit. Note that some pull requests are in the state of “open”,
which means that they have not been accepted. The subcolumn
“Merged” represents the number of pull requests that have
been merged into the repository. We identify bug-fix pull
requests by matching their titles and bodies with keywords. To

4http://scikit-learn.org

TABLE II
SIX PROJECTS STUDIED IN EXPERIMENTS

Projects Language HEAD Pull Requests Commits
All Merged Size=2 Size=3 Size=4 All Bug-Fix SupBC

WordPress-Android Java 2a35d280ca 2,379 2,110 323 182 81 18,844 1,677 19(/100)
Atom JavaScript, CoffeeScript 9a42f82895 3,710 2,514 157 83 59 31,728 2,018 22(/100)
Moby Go 916e9ad754 17,294 13,742 572 161 52 32,521 3,926 28(/100)

OpenCV C++ 03aa69da99 6,202 4,821 261 100 40 21,197 4,621 17(/100)
Kubernetes Go b58c7ec456 26,912 22,358 761 255 114 48,920 4,673 16(/100)

Swift C++, Swift 72a1176d7b 10,279 9,118 464 210 91 54,221 11,378 17(/100)

reduce the noise from multi-task pull requests, we select those
pull requests that contain less than 5 commits. The subcolumn
“Size=N” represents the number of those bug-fix pull requests
that contain N commits.

The subcolumn “All” of the column “Commits” represents
the number of all commits and the subcolumn “Bug-Fix”
represents the number of bug-fix commits that do not appear
in a bug-fix pull request which contains less than 5 commits,
because these pull requests will be used to generate the training
sets in our experiments. We identify bug-fix commits by
matching keywords that have been used to identify bug-fix pull
requests. Then by matching the keyword “squashed”, we filter
out those commits that are squashed from many other commits.
And we also filter out those owning two parent commits, which
means they complete the task of merging other commits into
the branch. Considering that issues are not always about fixing
bugs, we do not match the issue numbers for identifying bug-
fix commits.

As Table II shows, the number of each project’s identified
bug-fix commits is huge (more than 1600). Because we have
to manually identify their supplementary bug fixes at first,
we decide to randomly pick out 100 bug-fix commits from
each project. Among these 100 bug commits, the number of
commits that have supplementary bug-fix commits is shown in
the subcolumn “SupBC”. To get the testing sets, we select the
adjacent subsequent commit which is the direct child of the
selected bug-fix commit as the candidate supplementary bug-
fix commit. In practice, each bug-fix commit may have more
than one supplementary bug-fix commit, but the difficulty
that we manually identify supplementary bug fixes will also
increase when more commits are involved. Thus, to trade off,
we make pairs between the identified bug-fix commits and
their direct child commits to conduct experiments. Over testing
sets, we find that the number of bug-fix commits that actually
have supplementary bug fixes account for 19.8% on average.
This ratio shows the importance of finding Supplementary bug
fixes in practice.

B. Experimental Settings
After generating training sets, we extract features from

them. However, different projects have their own character-
istics. In our experiments, we have considered more details
while computing the code features C1-C6. For example, we
have neglected some lines such as “end” and “endif” while
computing those code features for OpenCV, because they may
appear in different structures meaninglessly.

During the training phase, we use the linear kernel SVM to
produce discriminative models and we set its parameter C to
the default value 1.0. Different values of this parameter may
produce different hyperplanes of the SVM.

C. Research Questions

Our experimental evaluation seeks to address the following
research questions:

1) RQ1: How effective is SupBCFinder in identifying
supplementary bug-fix commits?

Considering that the sliding window approach has been
widely used in grouping related commits, we compare Sup-
BCFinder with it. And we also compare SupBCFinder with
the strategy that considers the local change.

2) RQ2: Which of the extracted features best discriminate
true supplementary bug-fix commits from the others?

In this question, we examine which of the extracted features
are most helpful in differentiating true samples from others.
We use Fisher score which has been used to estimate how
discriminative the features are in the fields of both machine
learning and software engineering [3].

3) RQ3: Are there any other general heuristics that are able
to achieve similar performance?

Some repositories hosted on GitHub do not own enough pull
requests to generate training sets for SupBCFinder. What’s
worse, some popular projects even do not support the pull-
requests-based development at all [15]. In these cases, Sup-
BCFinder will fail to work while some general heuristics will
be still helpful.

D. Experimental Results

To evaluate the effectiveness of SupBCFinder, we compute
precision, recall and F-measure that have been widely used in
machine learning.

1) RQ1: Effectiveness of the Proposed Approach
The parameter N of SupBCFinder is used to control the

generation of training sets from different sizes of pull requests.
For example, if we set N to 3, we will get the training
set generated from bug-fix pull requests that contain 2 or 3
commits just as shown in the algorithm (Line 5). As a result,
we can use SupBCFinder (N=2) to predict the training set
without generating from pull requests contain 2 commits. To
assess the effectiveness of our approach, we use SupBCFinder
with different parameters to cross validate its effectiveness.
As shown in Fig. 5, we use SupBCFinder (N=2) to predict
those commit pairs generated from bug-fix pull requests that

contain 3 or 4 commits and use SupBCFinder (N=3) to predict
those commit pairs from bug-fix pull requests that contain 4
commits. When we use SupBCFinder (N=2) to predict the set
of commit pairs generated from the pull requests contain 4
commits, we achieve the worst results. However, when we
include the commit pairs from the pull requests contain 3
commits to guide our learning-based approach, our approach
works better just as shown in the third subgraph of Fig. 5.

Furthermore, we use a sliding window of one hour and the
local change approach to perform comparative experiments
on the labeled testing sets. An empirical study [23] shows
that most related commits cannot be grouped using the sliding
window of 300 seconds and more than half of related commits
are committed over one hour. Therefore, we set the time
interval of the sliding window to one hour so that the sliding
window approach is able to achieve high recall. For the
local change approach, we treat a subsequent commit as the
supplementary bug-fix commit if it changes the code that
appears nearby (+/-25 lines, which is used by Yin et al. [13])
the changes introduced by the previous commit.

We use different N to investigate the effectiveness of Sup-
BCFinder. As shown in Fig. 6, SupBCFinder achieves higher
precision and recall than the sliding window approach and
the local change approach over all six projects. The weak
performance of the sliding window approach indicates that
we cannot group the bug-fix commit with its subsequent com-
mits just by considering the time interval. The local change
approach also outperforms the sliding window approach. We
compute the p-value of Mann-Whitney-Wilcoxon test between
the F-measures of the local change approach and the Sup-
BCFinder (N=2), and get the p-value 0.004998. Given the 0.05
significance level, the improvement of SupBCFinder over the
local change approach is statistically significant. SupBCFinder
(N=2) achieves the best performance in experiments. When
the N increases, the effectiveness decreases slightly. We rec-
ommend to set N to 2 when using SupBCFinder.

However, comparing the prediction results of SupBCFinder
shown in Fig. 5 and Fig. 6, we find that SupBCFinder
achieves low precision and high recall while predicting the
testing sets. There are two main reasons for this phenomenon.
After inspecting the training sets, we find that the relevant
commits are always in the same branch of Git while irrelevant
commits are not. Appearing in different branches brings a big
difference, which is easy to be discriminated by the prediction
model. However, the irrelevant commits in the testing set
sometimes appear in the same branch which is often forked
for some particular goals such as adding new features or fixing
bugs. And this will increase the difficulty of discriminating and
lead to a relatively low precision. Note that the testing sets are
labeled by ourselves manually, some supplementary bug-fix
commits may still be neglected because of the unawareness
of software background knowledge. This will lead to the
relatively high recall achieved by SupBCFinder.

The analysis above shows that our approach can effectively
identify supplementary bug-fix commits.

2) RQ2: Important Features

TABLE III
RANKED FEATURES

WP-A Atom Moby OpenCV Kubernetes Swift
1 C1 C1 T1 C1 T1 T1

2 C2 T1 C1 C2 C1 C1

3 T1 C2 C2 T1 C5 C2

4 C5 C5 C5 C5 C2 C5

5 C6 C6 C6 C3 C6 C3

6 C3 C3 C3 C6 D1 C6

7 C4 C4 C4 C4 C3 D1

8 D1 D1 D1 D1 C4 C4

Table III presents the features in descending order of their
Fisher scores computed over the training sets constructed by
those pull requests that contain two commits. From this table,
we see C1 is the most discriminative feature in WordPress-
Android, Atom and OpenCV. In Moby, Kubernetes and Swift,
it is also in the top two features. C1 is a code feature which
represents whether the subsequent commit removes a line
which is added in the previous commit. Other code features
such as C2 and C5 are also important features that are always
ranked in the first half of all features. The text feature T1 also
achieves high fisher scores. The feature D1 which represents
the time interval, fails to be ranked in the top. This explains
why we fail to achieve high precision and recall in prediction
experiments above when just considering the time interval.

During the implementation of SupBCFinder, we have tried
to extract some other features to improve the effectiveness
of our approach. Similar messages of different commits may
reflect similar work goals just like the three bottom commits in
Fig.1. We compute the Levenshtein distance ratio [24] between
two commits’ messages as a feature. Although this feature
ranks well in the training sets, it fails to improve the prediction
results over testing sets. We also examine the features such
as Latent Semantic Analysis (LSA) [25] and File Association
Distance [26] to get a predictive model. These models with
different parameters N work better on predicting other training
sets, but achieve lower F-measure on predicting testing sets.

3) RQ3: General Heuristics
As shown in Table III, the text feature T1 and the code

features C1 and C5 achieve high rankings among all features.
Inspired by this result, we wonder if there are some heuristics
that are able to be used to find supplementary bug-fix commits.
By combining the features T1, C1, C3 and C5, we propose one
simple heuristic:

Heuristic: If two commits refer to the same nouns or the
same lines existing in the diff contents of each commit, we
consider them as relevant, otherwise irrelevant.

We use this heuristic to perform prediction experiments
on the testing sets. As shown in Table IV, most relevant
commits are identified correctly (the recall ranges from 87.5%
to 100%), but more false positives have been produced (the
precision ranges from 30.2% to 54.2%). Although this heuris-
tic always outperform the sliding window approach, it achieves
worse effectiveness than the local change approach over the
projects OpenCV and Swift.

WP-A Atom
Moby

OpenCV

Kubernetes
Swift

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SUP-2(set(|PR|==3))

WP-A Atom
Moby

OpenCV

Kubernetes
Swift

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SUP-2(set(|PR|==4))

WP-A Atom
Moby

OpenCV

Kubernetes
Swift

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SUP-3(set(|PR|==4))

Precision Recall F-measure

Fig. 5. Precision, recall and F-measure of SupBCFinder with different parameters on different training sets. “SUP-N” represents the SupBCFinder with the
parameter N. “set(|PR|)==N” represents the set of labeled commit pairs generated from the pull requests that contain N commits.

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0
WordPress-Android

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0
Atom

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0
Moby

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0
OpenCV

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0
Kubernetes

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0
Swift

SW Local SUP-2 SUP-3 SUP-4

Fig. 6. Precision, recall and F-measure of three different approaches on different projects. “SW” represents the sliding window approach. “Local” represents
the local change approach. “SUP-N” represents the SupBCFinder with the parameter N.

TABLE IV
PRECISION, RECALL AND F-MEASURE ACHIEVED BY OUR HEURISTIC

Projects Precision Recall F-measure
WordPress-Android 50.0% 100.0% 66.7%

Atom 52.6% 90.9% 66.7%
Moby 54.2% 92.9% 68.4%

OpenCV 42.9% 88.2% 57.7%
Kubernetes 45.2% 87.5% 59.6%

Swift 30.2% 94.1% 45.7%

Although the date feature D1 fails to achieve a high ranking
among all features, we wonder if it can help improve the
effectiveness of this proposed heuristic. We set the D1 to
different numbers (in hours) to analyze the results of our
proposed heuristic. As shown in Fig. 7, the precision achieved
on OpenCV and Swift increase after limiting the time in-
terval between two commits to smaller numbers. The time-
limit heuristic (e.g., 100 hours) is able to outperform the
local change approach on most projects (5/6). In the case

that the number of pull requests is not large enough for
training a prediction model, SupBCFinder may fail to work
well. However, this proposed heuristic still works in such
a case, outperforming the sliding window approach and the
local change approach in identifying supplementary bug-fix
commits. Thus, we recommend to use this heuristic when there
are not enough pull requests available.

E. Threats to Validity
Internal validity threats correspond to the construction of

training sets. We identify bug-fix pull requests just by match-
ing keywords, which may introduce false positives. We control
the number of each pull request’s commits to exclude those
multi-task ones. However, some multi-task pull requests may
still exist in our training sets.

External validity threats correspond to the generalization of
our proposed approach. To our knowledge, there is no existing
work on identifying supplementary bug-fix commits without
matching issue numbers. For each studied repository, we ran-
domly pick out 100 bug-fix commits by matching keywords,

0 50 100
0.2
0.4
0.6
0.8
1.0

WordPress-Android

0 50 100
0.2
0.4
0.6
0.8
1.0

Atom

0 50 100
0.2
0.4
0.6
0.8
1.0

Moby

0 50 100
0.2
0.4
0.6
0.8
1.0

OpenCV

0 50 100
0.2
0.4
0.6
0.8
1.0

Kubernetes

0 50 100
0.2
0.4
0.6
0.8
1.0

Swift

Precision Recall F-measure

Fig. 7. Precision, recall and F-measure achieved after setting different time
intervals (in hours showed on x-axis) to our proposed heuristic. The dash line
of each subgraph is the F-measure achieved by the local change approach.

and then we construct the testing set. Before predicting, we
manually put labels on all commit pairs. Although we have
checked the labels many times, some wrong labels may exist
due to the unawareness of field background knowledge.

Construct validity threats correspond to the appropriateness
of our evaluation metrics (i.e. precision, recall and F-measure).
These metrics are widely used in many different studies and
we believe the construct validity threats have been reduced.

V. RELATED WORK

In this section, we describe related work on identifying bug-
fix commits, grouping related commits and supplementary bug
fixes.

A. Identifying Bug-fix Commits

Bird et al. [1] point out that the biases in bug-fix datasets
can reduce the effectiveness of studies.

Mockus and Votta [2] classify a change as “corrective”
if the commit message contains one of following keywords:
“fix”, “bug”, and “error”. Tian et al. [3] extract features from
commits and integrate two classification algorithms to predict
if a commit fixes a bug. Martinez and Monperrus [20] define
different bags of commits according to the change size because
they assume small transactions are very likely to contain a bug
fix instead of a new feature.

Linking commits to bug reports helps us identify bug-fix
commits. However, the links may be missing when developers
do not refer to the bug report ID [27]. ReLink [4] learns
criteria of features such as time interval, bug owner and change
committer and text similarity from explicit links to recover

missing links. Also based on learning techniques, FRlink [5]
utilizes non-source documents in commits and discards those
files containing no similar code terms as those in bug reports
to reduce data noise.

However, considering the complexity and the effectiveness,
[7] [6] prefer to identify bug-fix commits in two steps. First,
they find those commits whose messages contain the issue
numbers. After that, they determine a commit as a bug fix by
matching keywords such as “bug” or “fix”. As a supplement
to this approach, SupBCFinder is able to find supplementary
bug-fix commits that may be neglected.

B. Grouping Related Commits

Canfora et al. [28] point out that it is useful to consider
changes related to the same development/maintenance activity
as a whole when performing historical analysis.

Zeller proposes six different criteria to group related
changes and he group commits of the same date to reduce
the number of unresolved test cases in delta debugging [29].
Zimmermann et al. [10] group the individual per-file changes
by using the sliding window approach: if the authors are
the same and the time interval is smaller than 200 seconds.
Kagdi et al. [11] use the committer, the time interval and
the combination of them to group related commits to recover
traceability links. However, an empirical study conducted by
Miura et al [23] shows that 83% of related revisions cannot be
grouped using the common sliding window of 300 seconds.

Yamauchi et al. [30] generate feature vectors by extracting
identifiers from code changes and use the Repeated Bisection
to cluster commits. This clustering-based approach is able to
group textual similar commits, but may fail to find related
commits that are totally dissimilar in textual representation.

C. Supplementary Bug Fixes

Sliwerski et al. [12] identify bug-fix commits and then
locate fix-inducing changes if they get undone by these bug-
fix commits. Gu et al. [16] propose an approach that com-
bines distance-bounded weakest precondition with symbolic
execution to evaluate fixes and detect bad ones that need
supplementary bug fixes. Yin et al. [13] use the local change
approach that we have used in this paper and the examining
the issue numbers to identity those partial fixes. An empirical
study of supplementary bug fixes conducted by Park et al. [8]
shows that only 7% to 14% of supplementary patches have a
content that has at least 5 lines similar to its initial patch. And
only 17% to 36% of supplementary patch locations have co-
changed with the initial patch locations within 50 days after
the date of the initial patch. Little overlap occurred among
code clone, structural dependency and historical co-change
analyses. And the remaining supplementary patch locations do
not have direct dependence on nor do they overlap the initial
patch locations. An et al. [31] study the relationship between
supplementary bug fixes and reopened bugs. They find that
21.6% to 33.8% of supplementary bug fixes are related to
reopened bugs. Miura et al. [23] recommend that software
evolution studies should be performed at the work item level.

These works and their findings on supplementary bug fixes
motivate our work on identifying them.

VI. CONCLUSION

In this paper, we propose a learning-based approach that
leverages existing groups of relevant bug-fix commits to build
a discriminative model, and use this model to identify sup-
plementary bug-fix commits for those commits that have been
identified as bug-fix commits by matching keywords.

Our experiments on six open source projects hosted on
GitHub show that our approach SupBCFinder is able to find
most of the supplementary bug-fix commits with a few false
positives. Prediction results show that these discriminative
models can achieve the best performance (i.e., achieving an
average F-measure of 76.2%). Considering that many projects
do not have enough pull requests for training, our approach
may not work well in this case. To this end, after analyzing
the important features extracted in our approach, we propose
one simple heuristic to help us identify supplementary bug-
fix commits in more scenes. And the experimental results
show that the heuristic also outperforms the sliding window
approach with higher precision and recall. After limiting the
time interval, this heuristic is able to outperform the local
change approach on most repositories (5/6).

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2017YFB1001802) and the National Natural
Science Foundation of China (No. 61672529, 61502015).

REFERENCES

[1] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,” in
Proceedings of the 7th ESEC/FSE. ACM, 2009, pp. 121–130.

[2] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases.” in Proceedings of International Conference on
Software Maintenance. IEEE, 2000, pp. 120–130.

[3] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in Proceedings of the 34th International Conference on Software Engi-
neering. IEEE, 2012, pp. 386–396.

[4] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering
links between bugs and changes,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011, pp. 15–25.

[5] Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving the recovery of
missing issue-commit links by revisiting file relevance,” Information and
Software Technology, 2016.

[6] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in Pro-
ceedings of the 37th International Conference on Software Engineering-
Volume 1. IEEE, 2015, pp. 913–923.

[7] S. Kim, K. Pan, and E. Whitehead Jr, “Memories of bug fixes,” in
Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering. ACM, 2006, pp. 35–45.

[8] J. Park, M. Kim, and D.-H. Bae, “An empirical study of supplementary
patches in open source projects,” Empirical Software Engineering,
vol. 22, no. 1, pp. 436–473, 2017.

[9] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering. ACM,
2010, pp. 447–456.

[10] T. Zimmermann and P. Weißgerber, “Mining version histories to guide
software changes,” in Proceedings of the 26th International Conference
on Software Engineering. IEEE, 2004, pp. 563–572.

[11] H. Kagdi, J. I. Maletic, and B. Sharif, “Mining software repositories
for traceability links,” in Proceedings of the 15th IEEE International
Conference on Program Comprehension. IEEE, 2007, pp. 145–154.

[12] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in ACM sigsoft software engineering notes, vol. 30, no. 4. ACM,
2005, pp. 1–5.

[13] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
do fixes become bugs?” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 26–36.

[14] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 322–333.

[15] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[16] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been
fixed?” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering. ACM, 2010, pp. 55–64.

[17] K. Herzig and A. Zeller, “The impact of tangled code changes,” in
Proceedings of the 10th IEEE Working Conference on Mining Software
Repositories,. IEEE, 2013, pp. 121–130.

[18] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 351–360.

[19] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work
practices and challenges in pull-based development: the integrator’s
perspective,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE, 2015, pp. 358–368.

[20] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” Empirical
Software Engineering, vol. 20, no. 1, pp. 176–205, 2015.

[21] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
345–355.

[22] W. Maalej and H.-J. Happel, “Can development work describe itself?”
in Proceedings of the 7th IEEE Working Conference on Mining Software
Repositories. IEEE, 2010, pp. 191–200.

[23] K. Miura, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi, “The
impact of task granularity on co-evolution analyses,” in Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ACM, 2016, pp. 47:1–47:10.

[24] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” vol. 10, no. 8, pp. 707–710, 1966.

[25] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American society for information science, vol. 41, no. 6, p. 391, 1990.

[26] T. Dhaliwal, F. Khomh, Y. Zou, and A. E. Hassan, “Recovering commit
dependencies for selective code integration in software product lines,”
in Proceedings of the 28th IEEE International Conference on Software
Maintenance. IEEE, 2012, pp. 202–211.

[27] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 97–106.

[28] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and challenges
in software reverse engineering,” Communications of the ACM, vol. 54,
no. 4, pp. 142–151, 2011.

[29] A. Zeller, “Yesterday, my program worked. today, it does not. why?” in
ACM SIGSOFT Software Engineering Notes, vol. 24, no. 6. Springer-
Verlag, 1999, pp. 253–267.

[30] K. Yamauchi, J. Yang, K. Hotta, Y. Higo, and S. Kusumoto, “Clus-
tering commits for understanding the intents of implementation,” in
Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014, pp. 406–410.

[31] L. An, F. Khomh, and B. Adams, “Supplementary bug fixes vs. re-
opened bugs,” in Proceedings of the 14th International Working Con-
ference on Source Code Analysis and Manipulation. IEEE, 2014, pp.
205–214.

