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Abstract. While the definition of the revised widening for polyhedra
is defined in terms of inequalities, most implementations use the double
description method as a means to an efficient implementation. We show
how standard widening can be implemented in a simple and efficient way
using a normalized H-representation (constraint-only) which has become
popular in recent approximations to polyhedral analysis. We then detail
a novel heuristic for this representation that is tuned to capture linear
transformations of the state space while ensuring quick convergence for
non-linear transformations for which no precise linear invariants exist.

1 Introduction

The lattice of convex polyhedra is a popular abstract domain [7] for inferring
linear relations between variables. Implementations of the full domain [1] and its
many approximations [14,17,21] were used to infer program properties (such as
list sizes [16] and variable ranges) or to analyze models (such as hybrid automata
[12]). The infinite ascending chains in the lattice of polyhedra require that the
inferred states are widened to ensure that the fixpoint computation terminates.
To this end, a widening operator extrapolates the changes between two (or more)
iterates of a fixpoint computation to a state that likely includes all future iter-
ates. Standard widening for polyhedra [10] is defined in terms of the so-called
H-representation of polyhedra (a set of linear constraints), and its straightfor-
ward implementation requires a quadratic number of entailment checks [5]. In
this paper, we introduce normal widening that implements standard widening
using only simple syntactic checks, based on a normalized H-representation. It
avoids the creation of redundant inequalities which, as we show, is inherent in
the original definition [10]. These redundancies are avoided in classic polyhedra
libraries that store a double description of a polyhedron consisting of constraints
(equalities and inequalities) and generators (vertices, rays, and lines). Thus, our
algorithm benefits novel implementations that only use constraints [5,18,19].

Since standard widening is often too imprecise, various heuristics have been
proposed to improve the prediction of the state space growth. Most of these
heuristics rely on the double description of polyhedra which makes them ill-
suited to implementations using H-polyhedra. We therefore seek new heuristics
that only require the H-representation and take advantage of the normal form.

⋆ The work was supported by the DFG Emmy Noether Programme SI 1579/1.
⋆⋆ NSFC 60725206 and INRIA project “Abstraction” common to CNRS and ENS.
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Fig. 1. Comparing the evolving-points heuristic with our method.

To this end, consider the first diagram of Fig. 1 which shows how the “evolv-
ing point” heuristic [1] widens the polyhedron P1 with respect to the next iterate
P2: The vertices v1, v2, v3 in P1 are subtracted from vertices that are new in P2

(here only v4) and the resulting extreme rays r1 = v4 − v2 and r2 = v4 − v1
are added to P2 thereby defining the resulting polyhedron P3. The second dia-
gram illustrates our heuristic that rotates inequalities i1 in P1 and i2 in P2 to
i∞ which has the same distant to the evolving vertices v3 and v4. Performing
the analog rotation for j1, j2 to j∞ yields the state P3. This result is indeed
an invariant for loops that contain the statement if (y==5) {x=x+2;y=y-1;}.
Extrapolating with the assumption that transformations are linear means that
our heuristic can widen rapidly when a non-linear transformation is observed.
This is illustrated in the third diagram where the polyhedra Pn show the evalu-
ation of the loop body x=x+1;y=2*y; with P1 = {⟨1, 1⟩}. The exact values ⟨x, y⟩
are indicated by crosses. The Parma Polyhedra Library [1] delays widening1

until both polyhedra have the same dimension. Then P3 is widened with some
heuristic to give P4 which has to be widened to P5 which is observed to be a fix-
point in the 6th iteration. In contrast, our heuristic is able to widen P2, yielding
P ′
3 = {x ≤ y, x ≥ 1} which is confirmed as a fixpoint in the 4th iteration. Thus,

in case of non-linear transformations, polyhedra are unable to express a precise
invariant (e.g. 2x = y) so that performing two additional iterations is likely to
be a waste of time. In summary, this paper makes the following contributions:

– It presents an implementation of standard widening for H-polyhedra that
requires only syntactic operations rather than expensive entailment checks.

– We present a heuristic that requires only the H-representation and which
tries to guess linear transformations based on the observed changes.

– We show that our heuristic often terminates faster than classic heuristics.

The remainder of the paper is organized as follows. The next section intro-
duces required notation. Section 3 presents the well-known standard widening
and our implementation for normalized polyhedra. Section 4 details our novel
heuristic which Sect. 5 evaluates. Section 6 presents related work and concludes.

1 when given one token; without any tokens, the PPL library discards all inequalities.



2 Preliminaries

Let x = ⟨x1, . . . xn⟩ denote an ordered set of variables, let Ineqn denote the
set of linear inequalities a · x ≤ c where a ∈ Rn and c ∈ R. Moreover, let
e.g. 6x3 ≥ x1 − 5 abbreviate ⟨1, 0,−6, 0, . . . 0⟩ · x ≤ 5. Define Eqn to denote the
set of equalities of the form a ·x = c ∈ Eqn. Given an equality set E ⊆ Eqn, we
use E≤ := {a · x ≤ c,a · x ≥ c | a · x = c ∈ E} to denote the corresponding set
of inequalities. Each inequality a · x ≤ c ∈ Ineqn induces a half-space [[a · x ≤
c]] = {x ∈ Rn | a ·x ≤ c}. Each finite set of inequalities I = {ι1, . . . ιm} ⊆ Ineqn
induces a closed, convex polyhedron [[I]] =

∩m
i=1[[ιi]]. Let Polyn = {[[I]] | I ⊆

Ineqn, |I| ∈ N} denote the set of all (finitely generated) polyhedra. The tuple
⟨Polyn,⊆,∩, g ⟩ is a lattice with P1 gP2 = cl(hull(P1 ∪ P2)) where cl denotes
topological closure and hull is the convex hull operation on sets of points. This
lattice can serve as abstract domain in a program analysis where a bifurcation
with condition c ∈ Ineqn in the control flow graph is modeled using the meet
operation P ∩ [[c]] and a merge of control flow edges is modeled by the join
P1 gP2 [7]. However, the lattice contains infinite chains P1 ⊂ P2 ⊂ P3 . . . so
that standard Kleene iteration may not converge onto a fixpoint in finite time.
To guarantee convergence, a widening operator ∇ : Polyn × Polyn → Polyn is
required, satisfying the following:

1. ∀x, y ∈ Polyn . x ⊆ x∇y
2. ∀x, y ∈ Polyn . y ⊆ x∇y
3. for all increasing chains x0 ⊆ x1 ⊆ . . ., the increasing chain defined by

y0 = x0 and yi+1 = yi∇xi+1 is ultimately stable.

All operations can be implemented by storing a set of constraints (equalities
and inequalities) for each polyhedron: Suppose that Pi = [[Ii]], i = 1, 2, then P1∩
P2 = [[I1∪I2]] and P1 ⊆ P2 iff for all a ·x ≤ c ∈ I2 it holds that c ≥ max (a ·x, I1)
wheremax : Linn×P(Ineqn) → (Q∪{∞}) infers the maximum that a·x can take
on in [[I1]]. Note that max (a · x, I) can be inferred using the Simplex algorithm
for linear programming. Internally, this algorithm searches for a positive linear
combination λ ∈ Qk of k ≤ n inequalities {a1 · x ≤ c1, . . .ak · x ≤ ck} ⊆ I such
that λ · (a1 . . .ak) = a and c = λ · (c1 . . . ck) maximizes a · x in [[I]]. We use
⟨λ, c⟩ = maxExt(a ·x, I) to calculate λ. Linear programming has also been used
to approximate the calculation of P1 gP2 [18,19]. In this context, it is mainly
used to remove redundant inequalities. An inequality ι ∈ I is redundant in I if
[[I \ ι]] ⊆ [[I]]. Throughout this paper, we assume that the representation I of a
polyhedron P = [[I]] contains no redundant inequalities (“I is non-redundant”).

The advent of approximate join operators that are solely based on constraints
[18,19] raises the question how other operations, e.g., the widening, can be im-
plemented in a constraint-only representation. The following section presents a
simple constraint-only based implementation of the standard widening operator
before Sect. 4 addresses the question of additional heuristics that, so far, have
only been implemented using the double description method which is a repre-
sentation that uses both, constraints (equalities and inequalities) and generators
(vertices, rays, and lines).
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Fig. 2. Illustrating standard widening.

3 Widening for Polyhedra

The presence of infinite ascending chains requires a widening to accelerate and
guarantee convergence of the fixpoint computation. The original widening op-
erator on polyhedra proposed in [7] was intuitive in that all inequalities that
were new are abandoned. Its improvement, presented in [10], refines this idea by
making this process resilient to different representations of the same state space.
The latter algorithm has specialized implementations based on the double de-
scription method and has become known as the standard widening. We restate
the standard widening based on the constraint-only representation and present
an efficient and simple implementation that does not need generators.

Definition 1 (Standard widening). Given two polyhedra P1 = [[J1]] and P2 =
[[J2]] satisfying P1 ⊆ P2 where J1, J2 ⊆ Ineqn are non-redundant, we define

P1▽P2
def
= [[C1 ∪ C2]]

where
C1 = { ι1 ∈ J1 | [[J2]] ⊆ [[ι1]] },
C2 = { ι2 ∈ J2 \ J1 | ∃ ι1 ∈ J1, [[(J1 \ ι1) ∪ ι2]] = [[J1]] }.

The first set C1 contains all inequalities of P1 that are not violated by the
larger P2 and corresponds to the original widening. Standard widening adds
C2, consisting of inequalities of J2 that can be exchanged with an inequality
of J1 without changing the represented state. This set ensures that the result
is independent of the representation of P1 and P2. In order to illustrate this,
consider Fig. 2. The first two diagrams depict the two inputs to the widening
operator. Suppose that the first polyhedron P1 is represented by I1 = {1 ≤ x, x ≤
1, 1 ≤ y, y ≤ 1} whereas P2 is represented by I2 = {1 ≤ x, y ≤ x, x ≤ y, x ≤ 2}.
Only C1 = {1 ≤ x, 1 ≤ y} is satisfied by P2, thus the original widening returns the
state depicted in the third diagram. Standard widening adds C2 = {y ≤ x, x ≤ y}
since these can be exchanged with x ≤ 1, y ≤ 1 ∈ J1 without changing [[J1]].
However, each of the |J1||J2| entailment checks [5] requires a Simplex query.
Thus, we propose to store a polyhedron in a normal form and show how this
can refine the problem of making widening resilient to the representation of
polyhedra.



Listing 1 Inlining equalities into an inequality.

procedure inline(E,a · x ≤ c) where E ⊆ Eqn,a · x ≤ c ∈ Ineqn,a ≡ ⟨a1, . . . an⟩
1: for a= · x = c= ∈ E where a= ≡ ⟨a=

1 , . . . a
=
n ⟩ do

2: i← min{i | a=
i ̸= 0} /* find the index of the first non-zero coefficient */

3: if ai = 0 then continue; /* skip loop if inequality does not contain xi */
4: a · x ≤ c← (a=

i a− aia
=) · x ≤ (a=

i c− aic
=)

5: end for
6: return ⟨a · x ≤ c⟩

3.1 Normalizing the Constraint Representation

Given J ⊆ Ineqn, we construct a canonical representation for P = [[J ]] as follows:

1. We compute the affine space that P lies in by calculating c′ = −max (−a ·
x, J) for each a · x ≤ c ∈ J . If c′ = c then a · x = c holds in P . By
performing Gaussian elimination on these equalities, we obtain an equality
system in reduced row echelon form, which we denote as E.

2. For each ι ∈ J , we apply a function inline(E, ι), presented as Listing 1, that
eliminates those variables in ι that are leading variables in E.

3. Finally, we normalize each inequality such that the leading coefficient is
either 1 or −1 and remove constraints that are redundant. We get a new set
of inequalities, which we denote as I.

The above steps calculate a canonical representation ⟨E, I⟩ of any P ∈ Polyn,
see e.g. [15]. For the remainder of the paper, we assume that polyhedra are
represented as normalized sets of equalities and inequalities.

3.2 Standard Widening on Normalized Constraints

Given that the input constraints [[Ei, Ii]] = Pi, i = 1, 2 of the widening operator
are normalized, the pre-condition P1 ⊆ P2 implies that [[E1]] ⊆ [[E2]]. Since the
affine space common to E1 and E2 is by definition stable, it suffices to widen
the two systems E≤ ∪ I1 and I2 where E ⊆ Eqn describes the affine space of
P1 without that of P2. For example, if E1 = {x = 0, y = 0} and E2 = {x = y}
then EC = {x = y} is the common affine space and E = {y = 0}. In general,
after normalization and omission of EC , the constraint sets E1, I1, and I2 can
be written as follows:

E1: Iv + AEw = cE
I1 : A1w ≤ c1
I2 : Av

2v + Aw
2 w ≤ c2

Here, I denotes the identity matrix and ⟨v,w⟩ span the variable set x. Re-
stricting the input constraints to the systems above not only improves efficiency
of the widening operator but also allows its implementation to be much simpler
than in the definition of standard widening presented in Sect. 3. Before we show
this, we observe that an inequality can be modified by inlining equalities without
changing the polyhedron. The following refers to the inline function in Listing 1.
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Fig. 3. Non-trivial applications of standard widening. Each letter is written on the
infeasible side of the facet it denotes (i.e. the outside of the polyhedron). Lower case
letters denote the constraints of the first polyhedron, capital letters those of the second.

Lemma 1. Let ι′ = inline(E, ι) then [[I ∪ {ι} ∪ E≤]] = [[I ∪ {ι′} ∪ E≤]].

Proof. In Listing 1, at line 4, we have a=i xi+Σk>ia
=
k xk = c=, which is equivalent

to xi = (c= − Σk>ia
=
k xk)/a

=
i . Thus a · x ≤ c, that is, aixi + Σk ̸=iakxk ≤ c, is

equivalent to ai(c
=−Σk>ia

=
k xk)/a

=
i +Σk ̸=iakxk ≤ c. Hence, a·x ≤ c is equivalent

to (a=i a− aia
=) · x ≤ (a=i c− aic

=) w.r.t. the affine space E. ⊓⊔

We now show how standard widening can be implemented using the normal
representation. To this end, suppose that the two inputs to the widening are
J1 = E≤

1 ∪ I1 and J2 = I2 with I1, E1, I2 in normal form as described above.
First, we calculate C2 (defined in Definition 1) syntactically and call this set

ISC . The principle is depicted on the left of Fig. 3. Here the second polyhedron

I2 = {A,B,C,D} is widened with respect to I1 = {a, c}, E≤
1 = {b, d}. The

resulting set according to Definition 1 is C1 = ∅ and C2 = {C,D} since [[I1 \
{c} ∪ {C}]] = [[I1]] and [[I1 \ {c} ∪ {D}]] = [[I1]]. The set ISC ⊆ I2 is defined to be
all ι ∈ I2 such that inline(E, ι) is in I1 or a tautology:

Lemma 2. Given J1 = E≤
1 ∪ I1 and J2 = I2 with E1 in reduced row echelon

form, I1 = {inline(E1, ι) | ι ∈ I1} and I1, I2 normalized, then C2 = ISC where

ISC = {ι2 ∈ J2 \ J1 | inline(E1, ι2) ∈ I1 ∨ inline(E1, ι2) ≡ 0 · x ≤ 0}.

Proof. For any ι2 ∈ J2 \ J1 we show that ∃ ι1 ∈ J1, [[(J1 \ ι1) ∪ {ι2}]] = [[J1]] if
and only if inline(E1, ι2) ∈ I1 ∨ inline(E1, ι2) ≡ 0 · x ≤ 0. We specialize this

property into two separate cases depending on whether ι1 ∈ E≤
1 or ι1 ∈ I1:

ι1 ∈ E≤
1 : Show that [[I1 ∪ (E≤

1 \ ι1) ∪ {ι2}]] = [[J1]] iff inline(E1, ι2) = 0 · x ≤ 0:

Since ι1 ∈ E≤
1 , we have [[I1 ∪ (E≤

1 \ ι1)∪ {ι2}]] = [[J1]] iff [[(E≤
1 \ ι1)∪ {ι2}]] =

[[E≤
1 ]]. We will show next that [[(E≤

1 \ ι1) ∪ {ι2}]] = [[E≤
1 ]] iff inline(E1, ι2) ≡

0 · x ≤ 0. Given any ι2 with inline(E1, ι2) ≡ 0 · x ≤ 0 then ι2 + λ1e1 +

. . . λkek ≡ 0 · x ≤ 0 for some λ1, . . . λk > 0 where {e1, . . . ek} ∈ E≤
1 but

ēi /∈ {e1, . . . ek} for all i ∈ [1, k] where ēi denotes the inequality in E≤
1 that

opposes ei. In other words, ι2 = λ1ē1 + . . . λkēk. On the other hand, choose
i ∈ [1, k] such that ι1 = ēi. Then [[ι1]] = [[λiēi]] = [[ι2 + λ1e1 + . . . λi−1ei−1 +

λi+1ei+1 + . . . λkek]]. It follows that [[(E
≤
1 \ ι1) ∪ {ι2}]] = [[E1]].



ι1 ∈ I1: Show that [[(I1 \ ι1)∪E≤
1 ∪{ι2}]] = [[J1]] iff inline(E1, ι2) = ι1: Again, we

partition x into v,w as described previously. Then let ι2 ≡ avv+aww ≤ c.
Suppose that av = 0 and thus inline(E1, ι2) = ι2. Due to normalization

[[ι2]] = [[ι1]] iff ι2 = ι1 and thus [[(I1\ι1)∪E≤
1 ∪{ι}]] = [[J1]] holds iff ι ≡ ι1. Now

suppose that av ̸= 0 and that inline(E1, ι) = ι′ where ι′ ≡ a′vv+a′ww ≤ c′.

Then a′v = 0. Using Lemma 1, we obtain the equivalent [[(I1 \ ι1) ∪ E≤
1 ∪

{ι′}]] = [[J1]] and, since a′v = 0 this is equivalent to [[(I1 \ ι1) ∪ {ι′}]] = [[I1]]
which, due to normalization, holds iff ι′ ≡ ι1. ⊓⊔

As far as we know, it is not widely known that the definition of standard
widening generates redundant constraints although it has been shown that these
have to be removed for the correctness of future widening applications [1]. The
second diagram of Fig. 3 presents an example where redundancies are produced.
Here, the set I2 = {A,B,C} is widened with respect to I1 = {a, c}, E≤

1 = {b, d}.
Since C1 = {a, b, c} and C2 = {A,C}, the inequalities a and c are redundant in

C1 ∪ C2. We will now show that the common constraints IC = (I1 ∪ E≤
1 ) ∩ I2

corresponds to C1 without such redundant inequalities, in other words, we show
that [[IC ∪ ISC ]] = [[C1 ∪ C2]]. We first characterize every inequality ι ∈ C1 \ IC
with respect to ISC :

Lemma 3. For any ι ∈ C1 \ IC , [[IC ∪ ISC ]] ⊆ [[ι]].

Proof. By definition of C1 and the fact that [[J1]] ⊆ [[J2]], there exist λj > 0
with ι = λ1ι1 + . . . λnιn where ιj ∈ I2, j = 1, . . . n. Note that ISC ⊆ J2 \ J1 =

I2 \ (I1 ∪ E≤
1 ) and hence ISC ∩ IC = ∅. Hence, without loss of generality, let

ι1, . . . ιk ∈ I2 \ IC and ιk+1, . . . ιn ∈ IC . We show that ιi ∈ ISC for all i ≤ k. Let
ι ≡ a · x ≤ c. Consider ι′i = inline(E1, ιi). Note that ιi is not only entailed by
J1 but also touches J1 and so does ι′i. Hence, if ι

′
i ≡ 0 · x ≤ c′ for some c′ ∈ R

then c′ = 0 and ι′i ∈ ISC . Now assume ι′i ≡ a′ · x ≤ c′ with a′ ̸= 0 but a′ ̸= a.
Observe that inline(E1, ι) = ι can be defined as a positive linear combination
of some inline(E1, ιj), j = 1, . . . n. This positive linear combination involves ι′i
and therefore cannot define ι, since J1 entails ι′i which would mean that ι ∈ J1
is redundant. Hence a′ = a. Since ιi touches J1, c

′ = c and thus ιi ∈ ISC . Hence,
for all i ≤ k, ιi ∈ ISC and thus ι is redundant in [[IC ∪ ISC ]]. ⊓⊔

Based on Lemma 2 and 3, standard widening can be implemented as follows:

Theorem 1. Let I1, E1 and I2 be in normal form. Then [[C1 ∪ C2]] = [[IC ∪ ISC ]].

Proof. By Lemma 2, [[C1 ∪ C2]] = [[C1 ∪ ISC ]]. By Lemma 3, any ι ∈ C1 \ IC is
redundant with some inequalities in IC ∪ ISC . Thus, with C1 = IC ∪ (C1 \ IC), it
follows that [[C1 ∪ ISC ]] = [[IC ∪ (C1 \ IC) ∪ ISC ]] = [[IC ∪ ISC ]]. ⊓⊔

The above exercise of expressing standard widening on a normalized H-
representation, which we call “normal widening”, is beneficial not only to sim-
plify an actual implementation: Standard widening still leads to certain impre-
cisions that are illustrated in the next section. The normalized H-representation
forms the basis for heuristics that improve upon standard widening without
requiring the generators of a polyhedron.
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4 Improving Precision Through Additional Heuristics

The standard widening algorithm is very precise when the state changes in a
way that adds new inequalities. In certain situations, however, the number of
inequalities does not change, but their slopes change in that they rotate via some
vertex of the polyhedron. In these cases standard widening removes the inequal-
ity, which may often cause loss of bounds on the variables in that direction.
One technique is to check which upper and lower bounds of variables are the
same between two iterations and to add these stable bounds back in if widening
makes the polyhedron unbounded. In this section we are concerned with more
sophisticated techniques that anticipate the way inequalities rotate. As far as
we know, our proposal is the first heuristic that does not require the double
description of a polyhedron. Furthermore, in contrast to previous heuristics [1],
we are interested in extrapolating to a space that can possibly be a precise linear
invariant. If this likely invariant turns out to an incorrect guess, we aim to widen
quickly while retaining stable upper and lower bounds on variables.

In order to illustrate a possible precision loss of standard widening, consider
Fig. 4 which shows the polyhedra Pi = [[{x ≥ 1, y ≥ 1, ji}]] that present con-
secutive iterations of a fixpoint computation. Standard widening identifies the
inequalities ji as unstable and thus return P ′ = [[{x ≥ 1, y ≥ 1} as fixpoint.
This example is reasonable since the states are the result of Pi =

∪
i F

i(P0)
where P0 = [[{x = 1, 1 ≤ y ≤ 3}]] and the transfer function F (P ) = (P ∩ {y =
1})[x/x − 1] where F implements the program fragment if (y==1) x:=x+1.
Given that the crucial statement does not change any values in the area where
y = 3, the loss of the upper bound y ≤ 3 is unexpected and often unaccept-
able. While re-adding stable bounds would fix this particular case, it cannot
help when the state space development is rotated slightly which would be the
case for if (x==y) { x:=x+1; y:=y+1 }. It is tempting to “guess” that ji may
evolve until it is anti-parallel to y ≥ 1, however, as the next section will demon-
strate, a reasonable opposing inequality does not always exist nor is it evident
that a loop in a program should lead to opposing inequalities. The next section
therefore considers the more general case of two evolving inequalities.
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4.1 Widening in the Presence of Several Changing Inequalities

Defining a heuristic based on rotating inequalities is a tempting approach since
these inequalities rotate because they connect a stable part of the state space
with the evolving part. However, it is difficult to know how to capture rotation
and how far to rotate. A rotation is defined as a multiplication with a matrix
whose determinant is one which is impossible to implement with exact rational
arithmetic. Instead, the difference between coefficients could be tracked which is
demonstrated in Fig. 5. Here, the initial state P0 = [[{y ≥ −2, y ≤ 4, x = 0}]] is
repeatedly transformed by F (P ) = P g ((P∩[[{x+2y = 6}]])[x/(x+4), y/(y+2)])
which implements the program fragment if (x+2y==6) { x:=x-4; y:=y-2; }.

The polyhedra P1, . . . P3 can be described by the inequality sets {y ≥ −2, y ≤
4, x ≥ 0, ji, ki}. The inequalities ji and ki are as follows:

j0 ≡ k0 ≡ x ≤ 0
j1 ≡ x+ y ≤ 4 k1 ≡ x− 1

2y ≤ 1
j2 ≡ x+ 3

2y ≤ 6 k2 ≡ x− 3y ≤ 6
j3 ≡ x+ 5

3y ≤ 20
3 k3 ≡ −y ≤ 2

j4 ≡ x+ 7
4y ≤ 7 k4 ≡ −x− 7y ≤ 14

j∞ ≡ x+ 2y ≤ 8 k∞ ≡ −x− 2y ≤ 4

While certain sequences of inequalities have a constant difference between
their fractions of corresponding variables (e.g., the fractions of x and y in
j1, j2, j3, j4), this difference is occasionally disrupted due to normalization (c.f.
k3). Furthermore, it is not clear how to infer j∞ and k∞. Thus, rather than an-
ticipating how inequalities change that connect the evolving to the stable parts
of the polyhedron, we try to identify the trajectory of the evolving parts and
calculate new inequalities that do not obstruct this trajectory. To this end, we
first partition the inequalities of the two polyhedra using split in Listing 2 that,
unlike the standard widening, partitions the inequality sets into stable inequali-
ties IC and unstable inequalities I∆i of Pi for i = 1, 2. The set I∆2 is furthermore
reduced to those inequalities I∆2,t ⊆ I∆2 that have changed but which still touch



Listing 2 Separating inequalities according to stability

procedure split(E1, I1, I2) where E1 ⊆ Eqn, I1 ⊆ Ineqn, I2 ⊆ Ineqn

IC ← (I1 ∪ E≤
1 ) ∩ I2

I∆1 ← (I1 ∪ E≤
1 ) \ IC

I∆2 ← I2 \ IC
I∆2,t ← {ι2 ∈ I2 \ (I1 ∪ E≤

1 ) | inline(E1, ι2) ∈ I1 ∨ inline(E1, ι2) ≡ 0 · x ≤ 0}
for a · x ≤ c ∈ I∆2 do

c′ ← max (a · x, E1 ∪ I1)
if c′ = c then

I∆2,t ← I∆2,t ∪ {a · x ≤ c}
end if

end for
return ⟨IC , I∆1 , I∆2 , I∆2,t⟩

1
0

4

-1

1

5 1
0

4

-1

1

5

j1 j2
k1

k2

j∞

x

y

1
0

4

-1

1

5

j1 j2
k1

k2

j∞

x

y

j'2

j'1

❶ ❷ ❸

j1 j2
k1

k2

j∞

x

y

l1

l2

Fig. 6. Extrapolating the evolving area of the polyhedron using linear programming.

the polyhedron P1. The idea is that inequalities in I∆2,t connect the stable with

the evolving part of the polyhedron whereas I∆2 \ I∆2,t only touch the evolving
part and can thus not be used to reason about how the Pi will change.

Given these sets, the idea of our heuristic is illustrated in Fig. 6 which shows
a modified version of the previous example. Here, IC = {x ≥ 0} is the only
common inequality and I∆i = {ji, ki, li}. In particular, I∆2,t = {j2, k2} contains
the set of inequalities that we can use to reason about the change in state. We
commence by maximizing j2 in P1. Although we know that j2 touches P1 (that
is, we know that the maximum is the right-hand side of j2), the Simplex solver
returns a set of inequalities whose combination is j2. From the first diagram in
Fig. 6 it can be seen that j2 is a linear combination of x ≥ 0 ∈ IC and j1 ∈ I∆1 .
Hence, we know (or assume) that j2 has evolved from j1 as both are unstable
and touch the stable part of the state space at (at least) one vertex.

The second diagram shows how we now infer an evolving vertex that lies in
j2. Specifically, we maximize the inequality j1 ≡ a1 · x ≤ c1 in P2 which yields
a new constant c′1 at which the displaced inequality j′1 touches the evolving
vertex. This vertex is shown as white cross in the second diagram. We store
this displacement as δ1 = c′1 − c1. Diagram three now shows how we find a
vertex in P1 from which this vertex originated. In particular, we reduce P1 to
the boundary of j1 by adding a1 ·x = c1 to its inequality set. The resulting space



Listing 3 Directed widening.

procedure widen(IC , I
∆
1 , I∆2 , I∆2,t) where IC , I

∆
1 , I∆2 ⊆ Ineqn, I

∆
2,t ⊆ I∆2

1: R← ∅
2: ID ← IC
3: A1x ≤ c1 ← IC ∪ I∆1
4: A2x ≤ c2 ← IC ∪ I∆2
5: for a2 · x ≤ c2 ∈ I∆2,t do
6: ⟨λ1, c2⟩ ← maxExt(a2 · x, A1x ≤ c1)

7: λ∆
1 ← ⟨f1, . . . fm⟩ where fi =

{
κi · λ1 if (κiA) · x ≤ (κic) ∈ I∆1
0 otherwise

8: a1 · x ≤ c1 ← (λ∆
1 A1) · x ≤ (λ∆

1 · c1)
9: c′2 ← −max (−a2 · x, IC ∪ I∆1 ∪ {a1 · x = c1})
10: c′1 ← max (a1 · x, IC ∪ I∆2 ∪ {a2 · x = c2})
11: if c′1 <∞∧ c′2 > −∞∧ c′1 > c1 ∧ c2 > c′2 then
12: δ1 ← c′1 − c1
13: δ2 ← c2 − c′2
14: a3 ← δ2a1 − δ1a2

15: c3 ← max (a3 · x, IC ∪ I∆2 )
16: ID ← ID ∪ {a3 · x ≤ c3}
17: else
18: r1 ← calcRay(a1,a2) /* Calculate ray with a1 · r = 0 and a2 · r ≤ 0. */
19: r2 ← calcRay(−a2,−a1)
20: R← R ∪ {evolveRay(r1, r2)}
21: end if
22: end for
23: for r ∈ R do
24: ID ← addRay(ID, r)
25: end for
26: return ID

P1∩[[a1 ·x = c1]] is indicated as thick line in the third diagram. We then minimize
j2 ≡ a2 · x ≤ c2 in this space, yielding the white vertex in the third diagram.
From the inferred minimum c′2, we calculate the displacement δ2 = c2 − c′2. The
inequality (δ2a1 − δ1a2) · x ≤ δ2c1 − δ1c2 is now the sought after inequality j∞
that is rotated around the intersection of j1 and j2 and has a slope that could
connect the two white crosses. A similar calculation can be performed to find
k∞. Based on this general idea, the next section details the general algorithm
that also works for possibly unbounded polyhedra in higher dimensions.

4.2 Implementation

Algorithm 3 implements our heuristic which we call “directed widening”. The
shown function takes the constraint sets describing P1 and P2 after they have
been partitioned by Alg. 2. In terms of general structure, it calculates a set of
rays R and a set of output constraints ID. By default, line 23 will add the rays
R to [[ID]], and this process is detailed in Listing 5 for self-containedness.



Listing 4 Calculating a ray that is normal to v1.

procedure calcRay(v1,v2) where v1,v2 ∈ Qn

1: return (v2 · v1)v1 − (v1 · v1)v2

Listing 5 Adding a ray r to an H-polyhedron.

procedure addRay(I, r) where I ⊆ Ineqn, r ∈ Qn

1: I ′ ← {κn+1 · x′ ≤ 0} /* Let x′ be an n+ 1-dimensional vector of variables. */
2: for a · x ≤ c ∈ I do
3: a′ ← ⟨a1, . . . an,a · r⟩ where ⟨a1, . . . an⟩ = a
4: I ′ ← I ′ ∪ {a′ · x′ ≤ c}
5: end for
6: return ∃xn+1(I

′) /* ∃x(·) is a function that projects out x */

The algorithm itself converts the constraint system representing P1 into ma-
trix format (line 3) which is necessary to extract a facet of P1 that an inequality
a2 ·x ≤ c2 ∈ I∆2,t has evolved from. In particular, the facet of P1 that a2 ·x ≤ c2
has evolved from might be a linear combination of the unstable inequalities in
I∆1 rather than a single inequality. In order to find this linear combination, line 6
runs an extended linear program. The maximum c2 in the result is ignored and
only the vector of multipliers λ1 is kept which obeys λ1A1 = a2. However, λ1

combines inequalities from I∆1 and IC whereas we are only interested in a linear
combination of the unstable inequalities I∆1 . To this end, line 7 sets all coeffi-
cients of λ∆

1 to zero that correspond to a stable inequality in IC . Here, κi denotes
a vector that contains a one in the ith position and is zero otherwise.

Note that λ∆
1 is non-zero since otherwise λ1 would only combine inequalities

in IC and thus [[IC ]] ⊆ [[a2 · x ≤ c2]]. In this case, since the inequalities IC also
describe P2, the constraint a2 · x ≤ c2 ∈ I∆2 would be redundant in IC ∪ I∆2
which contradicts our assumption of a non-redundant representation.

The resulting λ∆
1 is now used in line 8 to calculate a virtual inequality a1 ·x ≤

c1 from I∆1 which may be linear combination of several inequalities of I∆1 . As
explained, we assume that ι2 ≡ a2 · x ≤ c2 has evolved from ι1 ≡ a1 · x ≤ c1.
We now measure the distance that ι2 can be moved inwards on the boundary
of ι1 in line 9. Analogously, we measure how much ι1 can be moved outwards
on the boundary of ι2 in line 10. Note that, in order to ensure that we find a
maximum on ι2 and not on a different facet, also restrict the polyhedron P2 to
the boundary of ι2. As an example for why this is necessary, consider adding an
inequality m2 to the system in Fig 6 whose slope is between j2 and l2. Simply
maximizing j1 in P2 may find the maximum at the intersection of l2 and m2.

If both, ι1 and ι2 can be translated a finite amount within the other inequality,
the two distances δ1 and δ2 are used to calculate the slope of the new inequality
ι∞ ≡ a3 ·x ≤ c3. However, rather than calculating c3, line 15 infers the constant
c3 using a linear program. This is necessary, since ι∞ has a slope that may
cut off some state of the current state space. By maximizing constant of ι∞ in
I2 = IC ∪ I∆2 we ensure that it entails the current state.



t

0
1

2

3

4

timed1 cl
DW PPL FP

14 0.03 27 0.09 =
14 0.03 43 0.15 =
= =
26 0.06 63 0.23 =
= =
42 0.11 80 0.29 =
= =
62 0.17 95 0.35 =

timed2 cl
DW PPL FP

19 0.05 27 0.09 ̸=
19 0.05 43 0.16 ̸=
̸= =
25 0.06 59 0.23 ̸=
= =
41 0.11 73 0.32 ̸=
= =
55 0.17 85 0.37 ̸=

timed2
DW PPL FP

14 0.02 20 0.05 ⊒
14 0.02 26 0.06 ⊒
̸= =
19 0.03 29 0.08 =
= =
25 0.04 29 0.08 =
= =
28 0.05 29 0.08 =

initializedRect
DW PPL FP

26 0.07 33 0.11 ⊑
26 0.07 42 0.15 =
= =
34 0.10 51 0.19 =
= =
43 0.12 60 0.23 =
= =
52 0.15 69 0.27 =

t

0
1

2

3

4

multirate cl
DW PPL FP

19 0.04 27 0.08 ⊒
19 0.04 43 0.12 ⊒
̸= ̸=
25 0.05 63 0.19 =
= =
41 0.08 87 0.26 =
= =
61 0.12 115 0.34 =

multirate
DW PPL FP

14 0.02 20 0.04 ⊒
14 0.02 26 0.06 ⊒
̸= ̸=
19 0.03 32 0.07 =
= =
25 0.03 38 0.07 =
= =
31 0.04 44 0.09 =

initializedSingular cl
DW PPL FP

26 0.16 51 0.34 ⊒
26 0.16 83 0.55 ⊒
̸= ̸=
50 0.28 123 0.81 =
= =
82 0.45 171 1.15 =
= =

122 0.65 227 1.50 =

rectangular
DW PPL FP

14 0.07 14 0.07 ⊑
14 0.07 26 1.33 ⊒
̸= ̸=
26 1.30 42 5.50 =
= =
42 5.45 58 10.75 =
= =
58 10.67 73 15.81 =

Table 1. Counting the widening applications and comparing the precision of fixpoints.

In case ι1 can be relaxed without ever touching a vertex in P2, then P2

contains a ray. The task, therefore, is to calculate a ray towards a different
direction. Line 18 calculates a ray that is orthogonal to the normal vector a1

of inequality ι1 and which lies on the feasible side of inequality ι2. Analogously,
line 19 infers a ray that is orthogonal to ι2 but which lies on the infeasible side of
inequality ι1. Thus, r1 is contained in P1 whereas P2 contains both, r1 and r2.
A new ray is needed that anticipates the evolution of these two rays. This task
is delegated to a heuristic evolveRay which checks in which elements the ray is
changing (modulus scaling) and sets these indices to zero. For each index i that is
set to zero, the corresponding variable xi receives a lower or upper bound. Since
this heuristic has already been presented in [1] we omit it here. The resulting ray
is then added to the constraint set using projection as implemented by addRay
in Fig 5. Projection on constraints can be implemented using Fourier-Motzkin
variable elimination. We now proceed to evaluate our heuristic.

5 Evaluation

Implementing standard widening by our normal widening algorithm of Sect. 3.2
refines the quadratic number of entailment checks of [5] to a few syntactic checks.
Each entailment check requires a different linear program to be run and is thus
rather expensive. Replacing the costly entailment checks with normal widening
reduces the total analysis time from 0.210s to 0.149s in one of our larger tests.
Since the speed-up is only 40%, we conclude that the analysis time is dominated
by the evaluation of the instructions in the loop body rather than by the widening



algorithm itself. Thus, in order to assess the merit of a widening, it is more
informative to count the number of iterations that are required to find a fixpoint.

To this end, we compared directed widening of Sect. 4 against the BHRZ03
widening [1] of the Parma Polyhedra Library which is implemented based on the
double description method and combines several heuristics. A direct comparison
is hampered by the use of tokens. The idea is that the user assigns a number
of tokens to a widening point which can be used up to perform heuristics that
may not terminate. Once all tokens are used, only heuristics may be applied
that eventually terminate, e.g. standard widening. Choosing the right number
of tokens is often considered “black magic”. Since our directed widening tries to
find linear translations in the loop body, it needs to observe the effect of two
translations, say between P0, P1 and P1, P2, in order to extrapolate the change
between them. Thus, the right number of tokens for our algorithm is always
two. Note that tokens do not directly relate to the number of iterations required
to reach a fixpoint: tokens do not have to be used when applying a heuristic
that eventually terminates. For instance, the number of equalities that hold in
a polyhedron can only decrease, thus, one could perform any non-terminating
extrapolation while the number of equalities decreases without using up tokens.

In order to assess how quickly the widenings enforce termination and how pre-
cise the obtained fixpoint is, we picked eight example systems from the timed/hy-
brid automata literature [11,13], each containing several nested loops. Table 1
shows the number of tokens (column “t”) that the widening was allowed to use
at each loop. For each number of tokens, the double columns directed widening
“DW” and BHRZ03 widening “PPL” show the number of calls to the widening
operator required to reach a fixpoint and the total analysis time (measured in
seconds). The running time of the analyses is roughly proportional to the num-
ber of calls to the widening operator which, in turn, corresponds to the number
of times a loop body is evaluated. We thus address after how many iterations
our directed widening obtains a fixpoint that is as precise as that of the PPL.

To this end, we decorated the table with =, ̸=,⊑,⊒ to compare the precision
of the obtained fixpoints. Specifically, the column “FP” contains ⊑ if the fixpoint
was better in the directed widening, and ⊒ if it was better in the PPL. Fixpoints
can also be equal = or incomparable ̸=. For comparisons between the fixpoints of
the same algorithm running with different tokens, we use ̸= to indicate that the
fixpoint changed. As predicted, our directed widening obtains its best fixpoint
with two tokens, which is sufficient to identify linear translations. Interestingly,
both heuristics obtain similar precision given enough tokens. However, the num-
ber of iterations needed to obtain this precision is always lower for our directed
widening, thereby leading to a faster analysis. For instance, in the seventh table
“initializedSingular”, both algorithms obtain their best fixpoint with two tokens.
However, the PPL requires 123 evaluations of loop bodies whereas our directed
widening only requires 50, yielding a considerable speed-up in the overall analy-
sis time. Thus, even if our heuristic cannot infer more precise invariants than the
combined heuristics gathered in the BHRZ03 widening of the Parma Polyhedra
Library, our directed widening performs better by finding the fixpoints faster.



6 Conclusion and Related work

We have presented a simple implementation of standard widening [10] and a
precise heuristic that finds fixpoints quickly. Moreover, our heuristic operates on
H-polyhedra which, to our knowledge, make it the first heuristic that does not
rely on the double description. This makes our directed widening particularly
interesting to implementations of polyhedra that only use constraints [18,19].

The first widening operator for the polyhedra domain was proposed in [7]
and corresponds to the set C1 as defined in Sect. 3. Halbwachs proposed the
revised widening or standard widening [10] and already provided an efficient
implementation based on the double description of polyhedra. Benoy [2] showed
that the above two widenings coincide when the affine spaces of the two argument
polyhedra are stable. Chen et al. [5] showed that standard widening can be
implemented on constraints only by using linear programming.

A wider field is the area of defining heuristics to improve standard widening.
Besson et al. [3] propose a heuristic based on the generator representation that
terminates since it guarantees a decreasing number of vertices and an increas-
ing number of extreme rays. In the context of the analysis of timed automata,
several heuristics have been proposed [8,12,13]. Bagnara et al. [1] compile sev-
eral heuristics, such as combining constraints, evolving points, evolving rays, etc.
Their heuristics require the generator representation as well as constraints.

Mostly orthogonal to improving the widening operator directly are attempts
to limit the state space after widening. Besides classic narrowing [7], an es-
tablished technique is widening with thresholds [4] which uses a finite set of
user-specified values (thresholds) on individual variables up to which the state
space is extrapolated. Similar to the thresholds strategy, Halbwachs et al. [11,13]
propose widening up-to technique to improve the widening by adding additional
constraints from a fixed and finite set of constraints. Chen et al. [6] lift the thresh-
olds strategy to relational domains in order to guess the slope (i.e. the variable
coefficients) to obtain possibly stable constraints. Simon et al. [20] propose
widening with landmarks which refines widening with thresholds by collecting
unsatisfiable inequalities (called landmarks) and extrapolating polyhedra to the
closest landmark during widening. Gopan et al. [9] propose lookahead widening,
which improve the precision by a tuple of polyhedra in which the first deter-
mines which branches of a program are enabled while the second polyhedron is
widened and narrowed. The net effect of both methods is that no new branches
are enabled as the result of widening.

References

1. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise Widening Operators
for Convex Polyhedra. Science of Computer Programming, 58(1–2):28–56, 2005.

2. F. Benoy. Polyhedral Domains for Abstract Interpretation in Logic Programming.
PhD thesis, Computing Lab., University of Kent, Canterbury, UK, January 2002.

3. F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral Analysis for Synchronous
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