
FPCC: Detecting Floating-Point Errors via Chain Conditions

XIN YI, National University of Defense Technology, China

HENGBIAO YU∗, National University of Defense Technology, China

LIQIAN CHEN, National University of Defense Technology, China

XIAOGUANG MAO, National University of Defense Technology, China

JI WANG, National University of Defense Technology, China

Floating-point arithmetic is notorious for its rounding errors, which can propagate and accumulate, leading to

unacceptable results. Detecting inputs that can trigger significant floating-point errors is crucial for enhancing

the reliability of numerical programs. Existing methods for generating error-triggering inputs often rely on

costly shadow executions that involve high-precision computations or suffer from false positives. This paper

introduces chain conditions to capture the propagation and accumulation of floating-point errors, using them

to guide the search for error-triggering inputs. We have implemented a tool named FPCC and evaluated it

on 88 functions from the GNU Scientific Library, as well as 21 functions with multiple inputs from previous

research. The experimental results demonstrate the effectiveness and efficiency of our approach: (1) FPCC

achieves 100% accuracy in detecting significant errors for the reported rank-1 inputs, while 72.69% rank-1

inputs from the state-of-the-art tool ATOMU can trigger significant errors. Overall, 99.64% (1049/1053) of the

inputs reported by FPCC can trigger significant errors, whereas only 19.45% (141/723) of the inputs reported by

ATOMU can trigger significant errors; (2) FPCC exhibits a 2.17x speedup over ATOMU in detecting significant

errors; (3) FPCC also excels in supporting functions with multiple inputs, outperforming the state-of-the-art

technique. To facilitate further research in the community, we have made FPCC available on GitHub at

https://github.com/DataReportRe/FPCC.
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and debugging.
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1 Introduction
Floating-point numbers have become the de facto standard for representing real numbers in

modern computers. Since floating-point numbers use a finite number of bits to represent real
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values, inaccuracy is unavoidable in floating-point computations. In fact, the rounding errors that

occur during these calculations can propagate and accumulate, leading to final results that may

be unacceptable. Particularly concerning are the inaccuracies that arise in safety-critical software

systems, which have resulted in catastrophic outcomes, such as the loss of human lives [Skeel 1992],

the failure of rocket launches [Wikipedia 2024], and disruptions in the stock market [Quinn 1983].

Detecting inputs that can trigger large floating-point errors is crucial for assessing the accuracy

of numerical programs. In addition to testing, these error-triggering inputs can help identify the

root causes of precision loss [Guo et al. 2020; Sawaya et al. 2017], enhance accuracy [Panchekha

et al. 2015; Zou et al. 2022], and optimize precision configurations [Guo and Rubio-González 2018;

Menon et al. 2018]. Unfortunately, considering only a small portion of the huge input space can

trigger large floating-point errors [Bao and Zhang 2013] and understanding the propagation of

rounding errors is often counterintuitive. Consequently, generating error-triggering inputs that

can trigger large floating-point errors remains a significant challenge.

Several approaches [Chiang et al. 2014; Guo and Rubio-González 2020; Yi et al. 2017, 2019; Zou et al.

2015] have been proposed to detect inputs that trigger large floating-point errors. These methods

identify error-triggering inputs through heuristic searches, such as binary guided search [Chiang

et al. 2014], condition number guided search [Yi et al. 2017, 2019], and genetic algorithm-based

search [Zou et al. 2015]. FPGen [Guo and Rubio-González 2020] reduces the problem of generating

error-triggering inputs to a code coverage problem and solves it through symbolic execution. How-

ever, these approaches heavily rely on oracles generated by expensive high-precision computations,

which require expert knowledge to manage precision-specific operations and significantly increase

computational overhead. ATOMU [Zou et al. 2019] conducts atomic condition-guided searches

for error-triggering inputs without relying on high-precision computations (a.k.a oracle-free). Its
strength lies in efficiently pinpointing inputs that trigger significant floating-point errors. However,

ATOMU’s focus on individual operations often leads to false positives, limiting its overall effec-

tiveness in identifying true error-triggering inputs. For the given function foo in Fig. 1, ATOMU

reports an error-triggering input “x=1.7320508075688770”. This is because the input can trigger

a large value of atomic condition (

�� 𝑎
1−𝑎

�� =“3.0023997515803315e+15” ) in the unstable subtraction

1.0−𝑎. The calculation “a = 3.0/(x*x)” results in “a = 1.0000000000000004” and the subtraction “(1.0 -

a) = -4.440892098500626e-16” introduce a absolute error around 7.1819e-17 which is relatively large

compared to -4.440892098500626e-16. However, the absolute error 7.1819e-17 is less than the machine

epsilon (around 2.22e-16) of 1.0 and is suppressed by the last operation “b + 1.0”, resulting in a

very small final relative error. Therefore, ATOMU reports a false positive input. Our experimental

results (see §5) also demonstrate that only 19.45% of the inputs reported by ATOMU can actually

trigger significant floating-point errors.

1 double foo ( double x ) {

2 double a = 3 . 0 / ( x ∗ x ) ;

3 double b = f a b s ( 1 . 0 − a ) ;

4 return b + 1 . 0 ;

5 }

Fig. 1. An example of atomic condition induced false positive.

As a step toward addressing these challenges, we propose a chain condition guided oracle-free
search to detect error-triggering inputs. Our key insight is that a numerical program can be regarded

as a sequence of arithmetic operations and the interactions of consecutive condition numbers
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capture the propagation of floating-point errors. Unlike atomic condition which only considers the

condition number of an individual floating-point operation, chain condition focuses on the transfer

flow of condition numbers. Actually, chain condition reflects how the input error is amplified by a

sequence of floating-point operations. It’s worth pointing out that chain condition deals successfully

with the false positives introduced by atomic condition. Let’s revisit the function foo. For the same

given input 𝑥 , the chain condition of the return value is 5.0 (according to formulas in §4.2). This

indicates a small value, suggesting that the result does not contain significant errors. Consequently,

the chain condition helps prevent false positives.

The main contributions of this paper are following:

• We introduce the concept of chain condition and demonstrate its utility in capturing the

propagation of floating-point errors. (See §4.2).

• We propose a chain condition guided search to detect inputs triggering large floating-point

errors and a error localization algorithm to localize the source code responsible for floating-

point errors. (See §4.3 and §4.4).

• We implement our approach in a tool named FPCC based on the insight of chain condition

and evaluate it on 88 functions from GNU Scientific Library. Compared to the state-of-the-art

approach ATOMU, FPCC tool identifies all rank-1 inputs that can cause significant floating-

point errors, in contrast to ATOMU which fails to detect errors in 27% of its rank-1 inputs.

Moreover, FPCC reports a higher percentage (99.64%) 1049 of 1053 inputs that can trigger

significant errors compared to ATOMU (19.45%) 141 of 723 inputs. Additionally, FPCC achieves

a 2.17X speedup over ATOMU and FPCC excels in supporting multiple inputs functions,

outperforming FPGen[Guo and Rubio-González 2020] (See §5).

To facilitate follow-up research in the community, we make FPCC and all relevant artifacts

publicly available at https://github.com/DataReportRe/FPCC. We have also created a Docker image

and user-friendly scripts to make it convenient for users to replicate our experiments.

The rest of this paper is organized as follows. Section 2 gives a brief background on floating-point

arithmetic. Section 3 illustrates FPCC on a representative example. Section 4 details the methodology

of our approach. Section 5 presents the implementation and evaluation of our approach. We discuss

related work in Section 7 and conclude in Section 8.

2 Background
This section presents the background on floating-point numbers, including floating-point format,

error measurement, and condition number.

2.1 Floating-Point Format
Modern computers use floating-point numbers to represent real numbers in an approximate manner.

With the development of new processors and accelerators, many new floating-point representations

have been proposed, such as Intel’s Bfloat16 and Nvidia’s TensorFloat32. Nevertheless, IEEE 754

standard [IEEE-754 2008] still remains as the most popular floating-point representation. In IEEE

754, a floating-point number can be represented as below.

(−1)𝑆 ×𝑀 × 2
𝐸

A floating-point number consists of three parts: a 1-bit sign 𝑆 (𝑆 ∈ {0, 1}), a n-bit significand
𝑀 (𝑀 =𝑚0 .𝑚1𝑚2 . . .𝑚𝑛 ,𝑚0 is the hidden bit), and a p-bit biased exponent 𝐸 (𝐸 = 𝑒 − (2𝑝−1 − 1)).
Notably, when all the exponent bits are one, the floating-point representation denotes special values,

i.e., ±∞ or 𝑁𝑎𝑁 (not a number).
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2.2 Floating-Point Error Measurement
Since floating-point numbers use finite bits to represent real numbers, only a subset of reals can be

represented. When a real number cannot be precisely encoded, IEEE 754 standard provides different

rounding modes (such as roundNearestTiesToEven) to convert a real number to a nearby floating-

point number. Let R and F represent real numbers and floating-point numbers, respectively. Given

a real number 𝑥 ∈ R and let 𝑥 𝑓 ∈ F denote its floating-point representation, the rounding error is

𝑥 − 𝑥 𝑓 .
Absolute error and relative error are two common indicators to measure floating-point error.

Given a floating-point program 𝑓 and an input 𝑥 , we use ˆ𝑓 (𝑥) to represent the ideal mathematical

result of program 𝑓 . The absolute error 𝐸𝑟𝑟𝑎𝑏𝑠 (𝑓 (𝑥), ˆ𝑓 (𝑥)) and the relative error 𝐸𝑟𝑟𝑟𝑒𝑙 (𝑓 (𝑥), ˆ𝑓 (𝑥))
are defined below.

𝐸𝑟𝑟𝑎𝑏𝑠 (𝑓 (𝑥), ˆ𝑓 (𝑥)) =
��� ˆ𝑓 (𝑥) − 𝑓 (𝑥)

��� 𝐸𝑟𝑟𝑟𝑒𝑙 (𝑓 (𝑥), ˆ𝑓 (𝑥)) =
����� ˆ𝑓 (𝑥) − 𝑓 (𝑥)

ˆ𝑓 (𝑥)

����� (1)

Unit in the last Place (a.k.a ULP) of a floating-point number 𝑥 is the distance between the two

consecutive floating-point numbers nearest to 𝑥 . ULP error has been widely used to measure the

floating-point error and can be defined as below.

𝐸𝑟𝑟𝑢𝑙𝑝 (𝑓 (𝑥), ˆ𝑓 (𝑥)) =
����� ˆ𝑓 (𝑥) − 𝑓 (𝑥)
𝑢𝑙𝑝 ( ˆ𝑓 (𝑥))

����� (2)

2.3 Condition Number
A function’s condition number [Higham 2002] measures its sensitivity to small perturbations of

the input. Condition number depends on the function’s functionality and input, but is independent

of the implementation.

Suppose input 𝑥 carries a small error Δ𝑥 , according to the Taylor series, we have

𝑓 (𝑥 + Δ𝑥) = 𝑓 (𝑥) + 𝑓 ′ (𝑥)Δ𝑥 + 𝑓 ′′ (𝑥)
2!

Δ𝑥2 + . . .

≈ 𝑓 (𝑥) + 𝑓 ′ (𝑥)Δ𝑥 (3)

Based on Equation 3, it’s obvious that 𝑓 (𝑥 +Δ𝑥) − 𝑓 (𝑥) ≈ 𝑓 ′ (𝑥)Δ𝑥 . Then, the relative error between
𝑓 (𝑥 + Δ𝑥) and 𝑓 (𝑥) can be defined as���� 𝑓 (𝑥 + Δ𝑥) − 𝑓 (𝑥)

𝑓 (𝑥)

���� ≈ ���� 𝑓 ′ (𝑥)Δ𝑥𝑓 (𝑥)

����
≈

����𝑥 𝑓 ′ (𝑥)𝑓 (𝑥)

���� · ����Δ𝑥𝑥 ���� (4)

The definition of condition number is given below. Apparently, condition number reflects how

much the input relative error |Δ𝑥/𝑥 | is amplified in the relative error of the output.

𝐶𝑓 (𝑥) =
����𝑥 𝑓 ′ (𝑥)𝑓 (𝑥)

���� (5)

Given a floating-point program 𝑓 , it’s not easy to obtain 𝑓 ′ (𝑥) unless its mathematical function-

ality is pre-given. ATOMU [Zou et al. 2019] introduces atomic condition, which corresponds to the

condition number of an atomic floating-point operation. An atomic operation could be elementary
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arithmetic (+,−,×,÷) or basic functions (such as sin and cos) and its atomic condition evaluates

its stability. ATOMU utilizes atomic conditions to guide the search for error-triggering inputs.

For example, given an operation 𝑜𝑝 (𝑥,𝑦) = 𝑥 + 𝑦, 𝐶+ (𝑥) =
��� 𝑥
𝑥+𝑦

��� and 𝐶+ (𝑦) = ��� 𝑦

𝑥+𝑦

���. It’s obvious
that the operation’s atomic condition could be very large if 𝑥 ≈ −𝑦. In other words, operation

𝑥 + 𝑦 could introduce large floating-point error when 𝑥 ≈ −𝑦, which agrees with the notorious

catastrophic cancellation.

3 Example
In this section, we first present a code snippet of a real-world numerical program from the GNU

Scientific Library. Through this example, we demonstrate how atomic operations can potentially

introduce false positives and highlight the effectiveness of using chain conditions to address this

issue.

Program P1 (𝑥) shown in Fig. 2 is from the GSL function 𝑔𝑠𝑙_𝑠 𝑓 _𝑎𝑖𝑟𝑦_𝐴𝑖 (line 680 in gsl/spec-

func/airy.c), where 𝑎 and 𝑏 come from previous Chebyshev polynomial evaluation and are regarded

as constants. Program P2 (𝑥) is a mutant of P1 (𝑥), i.e., replacing the last floating-point addition in

P1 (𝑥) with a multiplication operation. It is worth noting that the specific value of 𝑥 used in this

example is -7.7274027910331625e-2. ATOMU has identified this value as the most likely input that

triggers a significant floating-point error (i.e. the relative error is larger than 1e-3).

Each program can be regarded as a sequence of five floating-point operations. Fig. 2 shows

the operands, chain conditions, atomic conditions, operation results, and relative errors of the

five operations. The atomic conditions are calculated by ATOMU [Zou et al. 2019], while chain

conditions are calculated using the transition rules defined in Fig. 4.

Example program 1: P1 (𝑥) = 0.375 + (𝑎 − 𝑥 ∗ (0.25 + 𝑏))
Example program 2: P2 (𝑥) = 0.375 ∗ (𝑎 − 𝑥 ∗ (0.25 + 𝑏))

𝑷1(𝒙) Operand(s) Chain
condition

Atomic
condition

Operation result Relative
error

v1 = 0.25+b 0.25,

0.0088094517676206868934

𝐶+ (0.25) = 0.966,

𝐶+ (𝑏) = 0.034,

𝐶𝐶 (𝑣1) = 1.0

1.0 0.25880945176762071291 1.01e-16

v2 = x*v1 -0.077274027910331625,

0.25880945176762071291

𝐶∗ (𝑥) = 1.0,

𝐶𝐶 (𝑣1) ∗𝐶∗ (𝑣1) = 1.0,

𝐶𝐶 (𝑣2) = 2.0

2.0 -0.019999248799348751104 1.86e-16

v3 = a-v2 -0.019999248799348758043,

-0.019999248799348751104

𝐶− (𝑎) = 2.88𝑒+15,

𝐶𝐶 (𝑣2) ∗𝐶− (𝑣2) = 5.76𝑒+15,

𝐶𝐶 (𝑣3) = 8.64𝑒+15

5.76e+15 -6.9388939039072283776e-18 3.49e-1

v4 = 0.375+v3 0.375,

-6.9388939039072283776e-18

𝐶𝐶− (0.375) = 1.0,

𝐶𝐶 (𝑣3) ∗𝐶− (𝑣3) = 0.16

𝐶𝐶 (𝑣4) = 1.16

1.0 0.375 2.84e-17

return v4

𝑷2(𝒙)

v5 = 0.375*v3 0.375,

-6.9388939039072283776e-18

𝐶𝐶∗ (0.375) = 1.0,

𝐶𝐶 (𝑣3) ∗𝐶∗ (𝑣3) = 8.64𝑒+15

𝐶𝐶 (𝑣5) = 8.64𝑒+15

1.0 2.6020852139652106e-18 3.49e-1

return v5

Fig. 2. An motivation example with error propagation over operations.

• op1: v1=0.25+b
– Chain Condition: 𝐶𝐶 (𝑣1) = 𝐶+ (2.5) +𝐶+ (𝑏) =

�� 0.25

0.25+𝑏
�� + �� 𝑏

0.25+𝑏
�� ≈ 1.0

– Atomic Condition: 𝐶 (𝑣1) =
�� 0.25

0.25+𝑏
�� + �� 𝑏

0.25+𝑏
�� ≈ 1.0
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– Relative Error: 1.01 × 10
−16

, the error is introduced by the + operation and is less than 0.5

ULP.

• op2: v2=x*v1
– Chain Condition: 𝐶𝐶 (𝑣2) = 𝐶∗ (𝑥) +𝐶𝐶 (𝑣1) ∗𝐶∗ (𝑣1) = 1.0 + 1.0 = 2.0

– Atomic Condition: 𝐶 (𝑣2) ≈ 2.0

– Relative Error: 1.86 × 10
−16

, the error is slightly amplified by 𝐶 (𝑣2).
• op3: v3=a-v2
– Chain Condition: 𝐶𝐶 (𝑣3) = 𝐶− (𝑎) +𝐶𝐶 (𝑣2) ∗𝐶− (𝑣2) =

�� 𝑎
𝑎−𝑣2

�� + ��2.0 ∗ 𝑣2

𝑎−𝑣2

�� ≈ 8.64𝑒+15

– Atomic Condition: 𝐶 (𝑣3) =
�� 𝑎
𝑎−𝑣2

�� + �� 𝑣2

𝑎−𝑣2

�� ≈ 5.76𝑒+15

– Relative Error: 3.49 × 10
−1
, the error is further amplified by 𝐶 (𝑣3).

• op4: v4=0.375+v3
– Chain Condition:𝐶𝐶 (𝑣4) = 𝐶+ (0.375) +𝐶𝐶 (𝑣3) ∗𝐶+ (𝑣3) =

�� 0.375

0.375+𝑣3

��+ ��8.64𝑒+15 ∗ 𝑣3

0.375+𝑣3

�� ≈
1.16

– Atomic Condition: 𝐶 (𝑣4) =
�� 0.375

0.375+𝑣3

�� + �� 𝑣3

0.375+𝑣3

�� ≈ 1.0

– Relative Error: 2.84 × 10
−17

, the absolute error introduced by v3, approximately 2.42e-18, is

significantly smaller than the first operand 0.375 and can therefore be disregarded. As a

result, the error in the calculated results 𝑃1 (𝑥) is negligible.
• op5: v5=0.375*v3
– Chain Condition: 𝐶𝐶 (𝑣5) = 𝐶∗ (0.375) +𝐶𝐶 (𝑣3) ∗𝐶∗ (𝑣3) ≈ 8.64𝑒+15

– Atomic Condition: 𝐶 (𝑣5) ≈ 2.0

– Relative Error: 3.49 × 10
−1
, the error from 𝑣3 is propagated to 𝑣5, which is consistent with

the value of final chain condition value 8.65𝑒 + 15.

This example illustrates that

• A large atomic condition can result in a significant relative error for an atomic operation.

However, such an error may not propagate to the final result, as demonstrated by the relative

error of 𝑣4 in op4.
• A false positive of ATOMU occurs when an input triggers a large atomic condition but fails

to cause a significant floating-point error for the final output.

• The chain condition values consistently correspond to the relative errors, indicating the

potential effectiveness of the chain condition in avoiding false positives.

• Chain conditions can be used to do backward error tracing. By utilizing chain conditions, we

can locate the root causes of relative errors. In the example, we can observe that the error in

𝑣5 can be traced back to 𝑣3, where a catastrophic cancellation occurs in operation 𝑎 − 𝑣2.

Based on these observations, we propose a new oracle-free approach called FPCC (Floating-Point
ChainCondition). Unlike ATOMU,which relies on atomic conditions, FPCC utilizes chain conditions

to identify inputs that can potentially trigger significant floating-point errors. By leveraging the

ability of chain conditions to avoid false positives and accurately reflect error propagation, FPCC

eliminates the need to search for inputs that activate large atomic conditions for each floating-

point operation. Instead, FPCC focuses on identifying inputs that can lead to substantial final

chain conditions. Considering that numerical programs often consist of numerous floating-point

operations, the adoption of FPCC not only mitigates false positives but also improves the efficiency

of detecting significant errors in numerical programs. We detail FPCC in §4.

4 Error Analysis via Chain Conditions
In this section, we first provide the definition of the problem addressed by our approach and

the framework of the approach (§4.1). Then, we introduce chain condition and its corresponding

calculation method (§4.2). After that, we present a chain condition guided search method for finding
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Fig. 3. The framework of chain condition based error analysis.

inputs triggering significant floating-point errors (§4.3). Finally, we elucidate a chain condition

based backward error tracing method for localizing the root causes of errors (§4.4).

4.1 Problem Definition and Approach Overview
Given a numerical program P(𝑥), we aim to identify a set of error-triggering inputs (denoted

as X = {𝑥0, 𝑥1, . . . , 𝑥𝑘 }) from its input domain I. Specifically, suppose F (𝑥) denotes an ideal

implementation of P(𝑥), for 𝑥 ∈ X, 𝐸𝑟𝑟 (F (𝑥),P(𝑥)) > 𝜖 , where 𝜖 is a predefined error threshold.

Unfortunately, as discussed in §1, obtaining the ideal implementation F (𝑥) can be computation-

ally expensive and time-consuming due to the necessity of using higher precision to simulate P(𝑥).
We propose chain condition of P(𝑥) as a criterion to measure the final floating-point error of P(𝑥)
and utilize it to guide the search of X over I.
Fig. 3 shows the framework of our approach. We instrument the source code of a floating-

point program to compute the final chain condition. The input domain I is divided into many

subintervals, i.e., {𝑖1, 𝑖2, ..., 𝑖𝑛}, and a simple yet efficient search is employed to identify the input

set X = {𝑥1, 𝑥2, ..., 𝑥𝑘 } that can trigger large final chain conditions. Finally, we utilize the runtime

information and the calculated chain conditions to locate of the root causes of floating-point errors.���� 𝑓 (𝑥,𝑦)−𝑓 (𝑥 + Δ𝑥,𝑦 + Δ𝑦)𝑓 (𝑥,𝑦)

���� =

���� 𝑓 (𝑥,𝑦)−𝑓 (𝑥,𝑦 + Δ𝑦)+𝑓 (𝑥,𝑦 + Δ𝑦)−𝑓 (𝑥 + Δ𝑥,𝑦 + Δ𝑦)𝑓 (𝑥,𝑦)

����
=

���� 𝑓 (𝑥,𝑦)−𝑓 (𝑥,𝑦 + Δ𝑦)𝑓 (𝑥,𝑦)

����+ ���� 𝑓 (𝑥,𝑦 + Δ𝑦)−𝑓 (𝑥 + Δ𝑥,𝑦 + Δ𝑦)𝑓 (𝑥,𝑦)

����
≈ 𝐶𝑓 ,𝑦 (𝑥,𝑦) ·

����Δ𝑦𝑦 ���� +𝐶𝑓 ,𝑥 (𝑥,𝑦 + Δ𝑦) ·
����Δ𝑥𝑥 ����

≈ 𝐶𝑓 ,𝑦 (𝑥,𝑦) ·
����Δ𝑦𝑦 ���� +𝐶𝑓 ,𝑥 (𝑥,𝑦) ·

����Δ𝑥𝑥 ���� (6)

4.2 Chain Condition
Atomic condition measures how the input error is amplified by an atomic operation. Specifically,

for single-input operation 𝑜𝑝 (𝑥), the relative error of output can be calculated by Formula 4, while

for binary-input operation 𝑜𝑝 (𝑥,𝑦), the resulting relative error can be measured by Formula 6.
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To capture the propagation of floating-point errors during the execution of an operation sequence,

we introduce chain condition.

Definition 4.1. Given an operation sequence ⟨𝑜𝑝0, . . . , 𝑜𝑝𝑖 , . . . , 𝑜𝑝𝑛⟩(0 ≤ 𝑖 ≤ 𝑛), operation 𝑜𝑝𝑖 ’s

chain condition 𝐶𝐶𝑜𝑝𝑖 evaluates how the input floating-point errors are amplified by the operation

sequence ⟨𝑜𝑝0, . . . , 𝑜𝑝𝑖⟩.

Fig. 4 gives the transition rules for chain conditions, i.e., how chain conditions can be calculated

via traversing the operation sequence, where 𝑜𝑝𝑖 → 𝑜𝑝 𝑗 means that the output of 𝑜𝑝𝑖 serves as an

input of 𝑜𝑝 𝑗 and 𝐶𝑜𝑝 (𝑥) denotes the atomic condition of operation 𝑜𝑝 w.r.t. 𝑥 .
Given an operation, when its inputs do not depend on previous operations, the resulting floating-

point error is only affected by the carry-in error and the operation itself. Hence, we can utilize

the operation’s atomic condition to evaluate the error propagation. As illustrated in rules Init-1
and Init-2, the chain condition 𝐶𝐶𝑜𝑝 𝑗

is the summation of the atomic conditions of the inputs.

The intuitions behind rules Unary, Binary-1 and Binary-2 are demonstrated by the proof of the

following three theorems. For brevity, 𝜀𝑥 denotes the relative error of variable 𝑥 (i.e., Δ𝑥
𝑥
) and 𝑥

represents the mean of 𝑥1 and 𝑥2.

𝑦 = 𝑜𝑝 𝑗 (𝑥) ∧ ∄𝑜𝑝𝑖 → 𝑜𝑝 𝑗

𝐶𝐶𝑜𝑝 𝑗
= 𝐶𝑜𝑝 𝑗

(𝑥) (Init-1)

𝑧 = 𝑜𝑝 𝑗 (𝑥,𝑦) ∧ ∄𝑜𝑝𝑖 → 𝑜𝑝 𝑗

𝐶𝐶𝑜𝑝 𝑗
= 𝐶𝑜𝑝 𝑗

(𝑥) +𝐶𝑜𝑝 𝑗
(𝑦) (Init-2)

𝑦 = 𝑜𝑝𝑖 (𝑥, . . . ) ∧ 𝑧 = 𝑜𝑝 𝑗 (𝑦) ∧ 𝑜𝑝𝑖 → 𝑜𝑝 𝑗

𝐶𝐶𝑜𝑝 𝑗
= 𝐶𝐶𝑜𝑝𝑖 ·𝐶𝑜𝑝 𝑗

(𝑦) (Unary)

𝑦1 = 𝑜𝑝𝑖 (𝑥1, . . . ) ∧ 𝑧 = 𝑜𝑝𝑘 (𝑦1, 𝑦2) ∧ 𝑜𝑝𝑖 → 𝑜𝑝𝑘 ∧ ∄ 𝑗 ≠ 𝑖, 𝑜𝑝 𝑗 → 𝑜𝑝𝑘

𝐶𝐶𝑜𝑝𝑘 = 𝐶𝐶𝑜𝑝𝑖 ·𝐶𝑜𝑝𝑘 (𝑦1) +𝐶𝑜𝑝𝑘 (𝑦2)
(Binary-1)

𝑦1 = 𝑜𝑝𝑖 (𝑥1, . . . ) ∧ 𝑦2 = 𝑜𝑝 𝑗 (𝑥2, . . . ) ∧ 𝑧 = 𝑜𝑝𝑘 (𝑦1, 𝑦2) ∧ 𝑜𝑝𝑖 → 𝑜𝑝𝑘 ∧ 𝑜𝑝 𝑗 → 𝑜𝑝𝑘

𝐶𝐶𝑜𝑝𝑘 = 𝐶𝐶𝑜𝑝𝑖 ·𝐶𝑜𝑝𝑘 (𝑦1) +𝐶𝐶𝑜𝑝 𝑗
·𝐶𝑜𝑝𝑘 (𝑦2)

(Binary-2)

Fig. 4. Transition rules of chain condition.

Theorem 3.1 Given an operation sequence 𝑠𝑒𝑞 = ⟨𝑦 = 𝑜𝑝1 (𝑥1, 𝑥2); 𝑧 = 𝑜𝑝2 (𝑦)⟩, rule Unary
captures how the input floating-point error is amplified by 𝑠𝑒𝑞.

Proof. According to Equation 6, we have

𝜀𝑦 ≈ 𝐶𝑜𝑝1
(𝑥1) · 𝜀𝑥1

+𝐶𝑜𝑝1
(𝑥2) · 𝜀𝑥2

≈ 𝜀𝑥 · (𝐶𝑜𝑝1
(𝑥1) +𝐶𝑜𝑝1

(𝑥2))
= 𝜀𝑥 ·𝐶𝐶𝑜𝑝1

The input error of 𝑜𝑝2 (i.e., 𝜀𝑧) comes from input 𝑦. According to Equation 4, we have

𝜀𝑧 ≈ 𝐶𝑜𝑝2
(𝑦) · 𝜀𝑦

≈ 𝜀𝑥 ·𝐶𝐶𝑜𝑝1
·𝐶𝑜𝑝2

(𝑦)
Hence, rule Unary holds. □
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Theorem 3.2 Given an operation sequence 𝑠𝑒𝑞 = ⟨𝑥 = 𝑜𝑝1 (𝑥1, 𝑥2); 𝑧 = 𝑜𝑝2 (𝑥,𝑦)⟩, rule Binary-1
captures how the input floating-point error is amplified by 𝑠𝑒𝑞.

Proof. According to Equation 6, We have

𝜀𝑥 ≈ 𝐶𝑜𝑝1
(𝑥1) · 𝜀𝑥1

+𝐶𝑜𝑝1
(𝑥2) · 𝜀𝑥2

≈ 𝜀𝑥 · (𝐶𝑜𝑝1
(𝑥1) +𝐶𝑜𝑝1

(𝑥2))
= 𝜀𝑥 ·𝐶𝐶𝑜𝑝1

Suppose the carry-in relative error of 𝑦 is 𝜀𝑦 . The input error of 𝑜𝑝2 (i.e., 𝜀𝑧) comes from the two

inputs 𝑥 and 𝑦. According to Equation 6, we have

𝜀𝑧 ≈ 𝐶𝑜𝑝2
(𝑥) · 𝜀𝑥 +𝐶𝑜𝑝2

(𝑦) · 𝜀𝑦
≈ 𝜀𝑥 ·𝐶𝐶𝑜𝑝1

·𝐶𝑜𝑝2
(𝑥) + 𝜀𝑦 ·𝐶𝑜𝑝2

(𝑦)
≈ 𝜀 ¯𝑖𝑛𝑝𝑢𝑡 · (𝐶𝐶𝑜𝑝1

·𝐶𝑜𝑝2
(𝑥) +𝐶𝑜𝑝2

(𝑦))
Hence, rule Binary-1 holds. □

Theorem 3.3 Given an operation sequence 𝑠𝑒𝑞 = ⟨𝑚1 = 𝑜𝑝1 (𝑥1, 𝑥2);𝑚2 = 𝑜𝑝2 (𝑦1, 𝑦2); 𝑧 =

𝑜𝑝3 (𝑚1,𝑚2)⟩, rule Binary-2 captures how the input floating-point error is amplified by 𝑠𝑒𝑞.

Proof. According to Equation 6, We have

𝜀𝑚1
≈ 𝐶𝑜𝑝1

(𝑥1) · 𝜀𝑥1
+𝐶𝑜𝑝1

(𝑥2) · 𝜀𝑥2

≈ 𝜀𝑥 · (𝐶𝑜𝑝1
(𝑥1) +𝐶𝑜𝑝1

(𝑥2))
= 𝜀𝑥 ·𝐶𝐶𝑜𝑝1

Similarly, the relative error of operation 𝑜𝑝2 (i.e., 𝜀𝑚2
) is approximately 𝜀𝑦 ·𝐶𝐶𝑜𝑝2

. The input error

of 𝑜𝑝3 (i.e., 𝜀𝑧) comes from the two inputs𝑚 and 𝑛. According to Equation 6, we have

𝜀𝑧 ≈ 𝐶𝑜𝑝3
(𝑚1) · 𝜀𝑚1

+𝐶𝑜𝑝3
(𝑚2) · 𝜀𝑚2

≈ 𝜀𝑥 ·𝐶𝐶𝑜𝑝1
·𝐶𝑜𝑝3

(𝑚1) + 𝜀𝑦 ·𝐶𝐶𝑜𝑝2
·𝐶𝑜𝑝3

(𝑚2)
≈ 𝜀 ¯𝑖𝑛𝑝𝑢𝑡 · (𝐶𝐶𝑜𝑝1

·𝐶𝑜𝑝3
(𝑚1) +𝐶𝐶𝑜𝑝2

·𝐶𝑜𝑝3
(𝑚2))

Hence, rule Binary-2 holds. □

The final chain condition of numerical program P: For an operation sequence Seq =

{𝑠𝑡0, . . . , 𝑠𝑡𝑛}(𝑛≥0) derived from an instrumented numerical program P. The main idea is sequen-

tially calculating the chain conditions of Seq′𝑠 prefixes. For two operations 𝑠𝑡𝑖 and 𝑠𝑡 𝑗 , 𝑠𝑡𝑖 → 𝑠𝑡 𝑗 (𝑥)
indicates that the output of 𝑠𝑡𝑖 serves as 𝑠𝑡 𝑗 ’s input 𝑥 . Given an operation 𝑠𝑡𝑖 (0 ≤ 𝑖 ≤ 𝑛), through
checking the preconditions of the transition rules in Figure 4, we apply the enabled one to calculate

chain condition 𝐶𝐶𝑖 for sequence {𝑠𝑡0, . . . , 𝑠𝑡𝑖 }. Finally, 𝐶𝐶𝑛 is returned as the final chain condition

of Seq.

4.3 Chain Condition-Guided Global Search
We aim to develop a global search approach that can effectively detect inputs triggering large chain

conditions in floating-point programs. The quest for identifying inputs causing high floating-point

errors has long been a challenging problem, with techniques such as binary search [Chiang et al.

2014], differential evolution [Yi et al. 2017, 2019], MCMC [Yi et al. 2019], and genetic algorithm [Zou

et al. 2015, 2019] being employed. Our objective is to design a simple yet efficient search algorithm

specifically tailored to the characteristics of the chain condition, enabling rapid identification of

large chain conditions.
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To analyze the characteristics of chain conditions, we randomly sample a large number of inputs

from input domains of three GSL functions and identify an input that triggers significant error for

each function. We then examine the distributions of floating-point errors and chain conditions

around these inputs. As illustrated in Figure 5, There exists a remarkable consistency between

the distribution of final chain conditions and the distribution of floating-point errors. Moreover,

the distribution of final chain conditions exhibits a clear trend of gradual increase. Based on these

observations, we derive two guiding rules: 1) R1: Chain condition values can be used to guide the

search for the maximum floating-point error; 2) R2: Changes in chain conditions can guide the

search for the potentially maximum chain condition.

(a) gsl_sf_bessel_J0 (b) gsl_sf_lnsinh (c) gsl_sf_Chi

Fig. 5. Distributions of chain conditions and ULP errors w.r.t. inputs.

In accordance with the two guiding rules, we employ two simple and well-established search

algorithms (i.e., Direct Search [Gablonsky and Kelley 2001; Jones et al. 1993] and Line Search

[Moré and Thuente 1994]) to explore error-triggering inputs. Following R1, we solely utilize chain

conditions to direct the search for error-triggering inputs. In line withR2, Direct Search is employed

to localize input regions that tend to have large chain conditions, and Line Search is used to find

inputs that could potentially trigger the maximum chain condition within the identified input

region based on the changes in chain conditions.

Algorithm 1 shows the workflow of our search approach, including three primary steps: Partition,

Direct Search, and Line Search.
Partition. The algorithm begins by partitioning the input domain I into a set of sub-intervals

(denoted as 𝐼𝑠 ). The fundamental concept of Partition is to decompose the input domain of a

program, thereby effectively reducing the search space and avoiding getting trapped in local optima.

We employ a non-uniform partitioning method based on the density distribution of floating-point

numbers. We consider the input range [−2
88, 288], which covers almost all physical constants, to

be a commonly used input range in scientific computing. Therefore, we increase the numbers

of sub-intervals within this range. For example, for programs with one input that ranges from

−𝑓𝑚𝑎𝑥 to 𝑓𝑚𝑎𝑥 (where 𝑓𝑚𝑎𝑥 ≈ 2
1024

), the presentation of a positive sub-interval 𝑖 ∈ 𝐼𝑠 for floating-
point numbers is shown in Formula 7, and the negative sub-intervals in 𝐼𝑠 is just reversing 𝑖 and

multiplying −1.

𝑓 𝑜𝑟 𝑖 ∈ 𝐼𝑠 , 𝑖 =


[0, 2−1022] if 𝑒 ≤ −1022

(2𝑒 , 2𝑒+30] if − 1022 < 𝑒 ≤ −22

[2𝑒 , 2𝑒+1] if − 22 < 𝑒 ≤ 88

[2𝑒 , 2𝑒+60) if 88 < 𝑒 ≤ 1023

(7)
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Algorithm 1: Chain Condition-Guided Global Search

Input :an instrumented floating-point program P and an input domain I
Output :a list X for the inputs that trigger large chain conditions

1 𝐼𝑠 ← 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(I)
2 𝐶𝐶𝑙 ← ∅
3 𝑇𝑒𝑚𝑝𝐶𝐶𝑙 ← ∅
4 for 𝑖 ∈ 𝐼𝑠 do
5 (𝑥𝑖 , 𝑐𝑐𝑖 ) ← 𝐷𝑖𝑟𝑒𝑐𝑡𝑆𝑒𝑎𝑟𝑐ℎ(𝑖,P)
6 𝑇𝑒𝑚𝑝𝐶𝐶𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑥𝑖 , 𝑐𝑐𝑖 ])
7 end
8 Sort(𝑇𝑒𝑚𝑝𝐶𝐶𝑙 )

9 𝑘 ← 0

10 for 𝑡𝑐 ∈ 𝑇𝑒𝑚𝑝𝐶𝐶𝑙 do
11 𝑥𝑘 ← 𝑡𝑐 .𝑥𝑘

12 𝑐𝑐𝑘 ← 𝑡𝑐 .𝑐𝑐𝑘

13 if 𝑘 < 𝑙𝑖𝑚𝑖𝑡 then
14 (𝑥𝑘 , 𝑐𝑐𝑘 ) ← 𝐿𝑖𝑛𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑥𝑘 , ,P)
15 end
16 if 𝑐𝑐𝑘 > 𝑡ℎ𝑟𝑒𝑎𝑑ℎ𝑜𝑙𝑑 then
17 𝐶𝐶𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑥𝑘 , 𝑐𝑐𝑘 ])
18 end
19 𝑘 ← 𝑘 + 1

20 end
21 Sort(𝐶𝐶𝑙 )

22 𝑋 ← 𝐺𝑒𝑡𝐼𝑛𝑝𝑢𝑡𝑠 (𝐶𝐶𝑙 )
23 return 𝑋

Direct Search. To identify inputs that trigger large chain conditions for program P, we apply the

Direct search algorithm [Gablonsky and Kelley 2001] to each sub-interval 𝑖 in 𝐼𝑠 , resulting in inputs

𝑥𝑖 and their corresponding chain condition values 𝑐𝑐𝑖 (lines 4-7). These values are stored in the

set 𝑇𝑒𝑚𝑝𝐶𝐶𝑙 (line 8). To refine the results, we sort 𝑇𝑒𝑚𝑝𝐶𝐶𝑙 in decreasing order. The sorted set is

then passed to the line search process.

Line Search. Finally, a line search is optionally conducted for a limited number of iterations if the

condition 𝑘 < 𝑙𝑖𝑚𝑖𝑡 is satisfied (lines 13-15). This line search explores the vicinity of the input 𝑥𝑘
obtained from the direct search to find a larger chain condition value 𝑐𝑐𝑘 . If 𝑐𝑐𝑘 exceeds a specified

threshold, both the input 𝑥𝑘 and its corresponding chain condition value 𝑐𝑐𝑘 are added to the set

𝐶𝐶𝑙 (lines 16-18). Set 𝐶𝐶𝑙 is also sorted in descending order and the resulting list is assigned to list

𝑋 (lines 21-22).

4.4 Chain Condition Based Error Localization
To localize the source code of an error, we perform a backward tracing of the chain conditions to

identify floating-point operations that introduce large chain conditions and propagate them to the

output of the program. As shown in Algorithm 2, the algorithm extracts runtime information about

all instructions in P for the given error-triggering input 𝑥 , resulting in an instructions sequence

Seq = {𝑠𝑡0, . . . , 𝑠𝑡𝑛}. Then, it uses set 𝑆𝑢𝑏𝑆𝑒𝑞 (initialized to be empty) to store the localized source
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Algorithm 2: Chain Condition Based Error Localization Algorithm

Input: P: an instrumented floating-point program; 𝑥 : an error-triggering input

Output: 𝑆𝑢𝑏𝑆𝑒𝑞: the sequence of localized source code.

1 Seq = {𝑠𝑡0, . . . , 𝑠𝑡𝑛} ← P(𝑥)
2 𝑆𝑢𝑏𝑆𝑒𝑞 ← ∅
3 BackwardErrorTrace(𝑠𝑡𝑛, 𝑆𝑒𝑞, 𝑆𝑢𝑏𝑆𝑒𝑞)
4 return 𝑆𝑢𝑏𝑆𝑒𝑞

5 Function BackwardErrorTrace(𝑠𝑡𝑛, 𝑆𝑒𝑞, 𝑆𝑢𝑏𝑆𝑒𝑞):
6 𝑠𝑡𝑖 , 𝑠𝑡 𝑗 ← GetPredecessors(𝑆𝑒𝑞, 𝑠𝑡𝑛)
7 𝑆𝑢𝑏𝑆𝑒𝑞 ← 𝑠𝑡𝑛

8 if 𝐶𝐶 (𝑠𝑡𝑖 ) > 𝐶𝐶 (𝑠𝑡𝑛)/𝜔 then
9 BackwardErrorTrace(𝑆𝑒𝑞, 𝑠𝑡𝑖 , 𝑆𝑢𝑏𝑆𝑒𝑞)

10 end
11 if 𝐶𝐶 (𝑠𝑡 𝑗 ) > 𝐶𝐶 (𝑠𝑡𝑛)/𝜔 then
12 BackwardErrorTrace(𝑆𝑒𝑞, 𝑠𝑡 𝑗 , 𝑆𝑢𝑏𝑆𝑒𝑞)

13 end
14 return 0

15 End Function

Fig. 6. Error trace for example code P2 in §3.

code. Function GetPredecessors obtains the two precedent statements 𝑠𝑡𝑖 and 𝑠𝑡 𝑗 of 𝑠𝑡𝑛 in Seq. If
the chain condition value of a precedent statement exceeds a threshold (𝐶𝐶 (𝑠𝑡𝑛)/𝜔), where 𝜔 is a

user-defined constant greater than 1, then the function recursively calls itself with the respective

statement and updates 𝑆𝑢𝑏𝑆𝑒𝑞. Finally, the algorithm returns the localized source code stored in

𝑆𝑢𝑏𝑆𝑒𝑞. For the example code P2 in §3, as shown in Fig. 6, the algorithm traces the error from op5
to op3 based on the values of chain conditions and forms the resulting 𝑆𝑢𝑏𝑆𝑒𝑞 = {𝑜𝑝5, 𝑜𝑝3}.

5 Evaluation
In this section, we first talk about the implementation of FPCC. Then, we present our experimental

settings and evaluate FPCC on real-world numerical programs. Finally, we provide insights on

utilizing FPCC for tracing and localizing floating-point errors in numerical programs.

5.1 Implementation
Our implementation of FPCC follows the high-level structure depicted in Fig. 3 using C++ and

Python. FPCC has the capability to instrument a provided numerical program, identify inputs that
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trigger significant chain conditions, and trace and localize the source code of the potential errors.

Its implementation consists primarily of three key components:

(1) A Transformer that lifts a numerical program P to an instrumented program
ˆP to calculate

the chain conditions and collect the information of instructions inP. The transformer operates

on the LLVM IR code of P. It mainly consists of an LLVM PASS module that instruments the

IR code of P and includes handler functions to calculate chain conditions and store instruction

information. For each floating-point instruction, the Transformer injects a function call to an

external handler to calculate the chain condition within the instruction and store relevant

information (such as instruction ID for backward error trace).

(2) A Searcher that implements Algorithm 1 described in §4.3 to detect error-triggering inputs.

The Searcher consists of a direct search engine and a line search engine. Notably, we implement

the line search ourselves and adopt an open-source implementation of direct search
1
.

(3) A Tracer that implements Algorithm 2 described in §4.4 to trace and localize the source code

of errors. Given an instrumented numerical program
ˆP and an error-triggering input 𝑥 , the

Tracer collects runtime information of
ˆP and provides the possible locations of source code

that leads to significant errors.

5.2 Experimental Setup
5.2.1 Subjects. A series of experiments were conducted to assess FPCC on a selection of subjects

acquired from the GNU Scientific Library (GSL version 2.5)
2
. GSL is a publicly available numerical

library that offers an extensive collection of mathematical algorithms, including random number

generators, special functions, and least-squares fitting methods. GSL has been widely used to

evaluate various floating-point research methodologies [Guo and Rubio-González 2020; Yi et al.

2017, 2019; Zou et al. 2015, 2019].

GSL includes a total of 154 special functions, each utilizing floating-point parameters and return

values. ATOMU [Zou et al. 2019] supports only single inputs and selects 88 univariate functions

from the aforementioned 154 special functions. In order to directly compare with the state-of-the-art

approach ATOMU [Zou et al. 2019], we also concentrate on these 88 univariate functions.

To compare with FPGen [Guo and Rubio-González 2020], the state-of-the-art tool for detecting

high floating-point errors in functions with multiple inputs, we utilize the benchmarks provided by

FPGen [Guo and Rubio-González 2020], consisting of 21 benchmarks: 3 summation algorithms, 9

matrix computation routines from the Meschach library [Stewart and Leyk 1994], and 9 statistical

routines from the GNU Scientific Library (GSL).

The code for the 88 GSL functions spans between 14 and 329 lines, while the 21 multiple-input

programs from FPGen consist of 8 to 132 lines, predominantly featuring nested loops like matrix

multiplication.

5.2.2 Oracles. Although FPCC is an oracle-free tool for detecting significant errors, it is still

necessary to have knowledge of the correct results of programs in order to validate the effectiveness

of FPCC. For the 88 special functions from GSL, in line with prior research studies [Yi et al. 2017; Zou

et al. 2019], to mitigate precision-related operations that may introduce errors in high precisions,

we employ mpmath (a library that facilitates floating-point arithmetic with arbitrary precision)

to compute the oracles of a numerical program P. As for the 21 functions with multiple inputs,

where precision-specific operations were not identified, following the approach of FPGen [Guo and

Rubio-González 2020], we opt to utilize higher precision (long double) exclusively for the oracles.

1
https://github.com/rlnx/DiRect

2
https://www.gnu.org/software/gsl/
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5.2.3 Parameters Setup. To ensure a fair comparison between FPCC and ATOMU, both of which

rely on random seed in their search process, we conduct 100 repeated experiments using FPCC and

ATOMU and use the average results. This was done to reduce the influence of randomness on the

experimental results. In Algorithm 1, we set the limit parameter (line 13) to be 10, meaning that the

top 10 sub-intervals will undergo a fine line search. And we set the threshold parameter (line 16) to

be 1e14. We set 𝜔 in Algorithm 2 to 100 in order to trace floating-point operations that magnify

chain conditions by a factor of 100.

For k-ary functions, the number of input ranges to be searched increases exponentially, making

it difficult for both FPCC and FPGen to search all input ranges within a limited time. Consequently,

a time limit must be imposed. In the corresponding paper of FPGen [Guo and Rubio-González

2020], the experimental time was set to 7200 seconds (2 hours) to yield its outcomes. Hence, we

have adhered to FPGen’s established setting. Given that FPCC does not rely on high-precision test

oracles and executes at a notably rapid pace, we have set a time limit of 100 seconds for FPCC.

5.2.4 Evaluation Metrics. In our experiments, we employ the following metrics to assess the

effectiveness and efficiency of the methods.

Significant floating-point error:We measure the error using the relative error 𝐸𝑟𝑟𝑟𝑒𝑙 specified

in Formula 1. Following previous research [Zou et al. 2019], we consider a relative error greater

than 10
−3

as significant.

Error-triggering inputs: For each project, both FPCC and ATOMU produce a list of inputs

that are suspected of causing significant floating-point errors. For example, ATOMU provided a list

of 26 inputs for the function airy_Ai, and 7 of these inputs were confirmed by mpmath to indeed

trigger significant floating-point errors. We denote the count of these error-triggering inputs as 26,

and this result is recorded as “7/26” in the “Error-triggering Inputs” column of Table 1.

Rank-1 input: In the context of FPCC and ATOMU, rank-1 input refers to the top-ranked

suspicious input identified by these methods for potential significant floating-point error. These

methods, being oracle-free and based on condition numbers, do not provide actual error values, so

the rank-1 input may not necessarily trigger a significant floating-point error. After conducting 100

repeated experiments, we obtain 100 rank-1 inputs, and we assess the proportion of these inputs

that actually trigger a significant floating-point error. The results of this evaluation are presented

in the “% of Rank-1 Inputs” column of Tables 1 and 2,

We conduct experiments on a desktop running Ubuntu 18.04 LTS with an Intel Core i9-13900 @

5.20 GHz CPU and 32GB RAM.

5.3 Evaluation Results
To better evaluate FPCC, we compare it with ATOMU [Zou et al. 2019], the state-of-the-art tool for

detecting floating-point errors while not relying on oracles. Our experimental evaluation focuses

on investigating the following research questions (RQs):

• RQ1: How effective is FPCC in detecting functions with significant errors?

• RQ2: How efficient is FPCC in detecting functions with significant errors?

• RQ3: How scalable is FPCC?

• RQ4: How stable is FPCC?

5.3.1 RQ1: How effective is FPCC in detecting functions with significant errors? As depicted in

Tables 1 and 2, the “% of Rank-1 Inputs” column presents the percent of error-triggering inputs

among the rank-1 inputs reported by both FPCC and ATOMU across 100 repeated experiments.

The “Error-triggering Inputs” column displays the total number of inputs that effectively trigger

significant errors among all the reported inputs. The “Max RelErr” column illustrates the maximum
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relative floating-point errors triggered by FPCC and ATOMU across all reported inputs. The “Max
ULPErr” column shows the maximum log2 value of ulp errors triggered by all reported inputs. In

Table 1, the values that have better results are bold for each column
3
.

Table 1. Results for the 42 functions with significant errors.

GSLfunctions

Pct. of Rank-1 Inputs Error-triggering Inputs Max RelErr Max ULPErr Time

Speedup
FPCC ATOMU FPCC ATOMU FPCC ATOMU FPCC ATOMU FPCC ATOMU

airy_Ai 100% 0% 58/58 7/26 1.38E+298 2.91E+04 63.54 62.72 0.217 0.562 2.59

airy_Bi 100% 5% 58/58 8/27 1.35E+302 1.12E+10 63.55 62.99 0.221 0.538 2.43

airy_Ai_scaled 100% 0% 58/58 7/26 1.38E+298 1.53E+04 63.54 62.79 0.239 0.567 2.37

airy_Bi_scaled 100% 1% 58/58 8/27 1.35E+302 5.81E+09 63.55 62.99 0.245 0.561 2.29

airy_Ai_deriv 100% 100% 10/10 1/16 4.34E+00 3.46E-02 63.22 46.88 0.067 0.216 3.23

airy_Bi_deriv 100% 100% 10/10 2/16 2.58E+00 8.03E-01 63.20 50.03 0.068 0.222 3.27

airy_Ai_deriv_scaled 100% 100% 10/10 1/15 4.34E+00 4.02E-02 63.22 47.05 0.082 0.222 2.72

airy_Bi_deriv_scaled 100% 100% 10/10 2/15 2.58E+00 3.23E-01 63.20 49.59 0.092 0.228 2.49

bessel_J0 100% 100% 6/6 2/14 3.90E-01 1.65E-01 51.26 49.04 0.402 0.419 1.04

bessel_J1 100% 100% 8/8 2/15 1.87E-01 1.04E-01 50.52 48.68 0.417 0.422 1.01

bessel_Y0 100% 100% 5/5 2/24 2.86E+00 1.84E-01 61.92 49.46 0.176 0.392 2.23

bessel_Y1 100% 89% 5/5 2/24 1.17E-01 8.68E-02 49.43 48.56 0.172 0.401 2.34

bessel_j1 100% 81% 4/4 1/3 3.10E-02 3.38E-02 47.80 42.55 0.012 0.039 3.23

bessel_j2 100% 91% 4/6 1/4 3.61E-01 7.74E-02 51.03 45.94 0.017 0.042 2.53

bessel_y0 100% 100% 46/47 7/14 8.32E+119 1.36E+04 63.13 62.72 0.077 0.132 1.72

bessel_y1 100% 100% 48/48 13/23 9.29E+114 2.51E+09 63.14 62.92 0.170 0.334 1.96

bessel_y2 100% 0% 46/47 13/25 8.32E+119 8.44E+10 63.13 62.92 0.170 0.360 2.12

clausen 100% 100% 18/18 3/11 6.60E-01 1.01E+00 52.66 57.31 0.098 0.143 1.46

dilog 100% 36% 1/1 0/10 5.52E-01 3.24E-01 52.16 20.16 0.112 0.165 1.48

expint_E1 100% 100% 1/1 1/16 4.58E-01 1.81E-01 51.76 49.23 0.101 0.261 2.58

expint_E2 100% 100% 1/1 1/17 2.65E+02 6.17E+01 62.92 56.18 0.102 0.290 2.85

expint_E1_scaled 100% 99% 1/1 1/16 4.58E-01 1.57E-01 51.84 48.69 0.263 0.378 1.44

expint_E2_scaled 100% 100% 58/58 2/17 7.76E+291 3.40E+288 62.92 62.54 0.295 0.383 1.30

expint_Ei 100% 100% 1/1 1/16 4.58E-01 1.71E-01 51.76 49.07 0.092 0.268 2.91

expint_Ei_scaled 100% 100% 1/1 1/16 4.58E-01 1.49E-01 51.84 49.07 0.261 0.386 1.48

Chi 100% 100% 2/2 1/17 4.40E-02 8.57E-02 47.56 48.39 0.216 0.504 2.34

Ci 100% 100% 49/49 13/36 9.29E+114 2.55E+08 63.14 62.58 0.245 0.931 3.80

lngamma 100% 0% 2/2 2/21 1.35E+00 3.98E+00 62.93 53.02 0.054 0.170 3.14

lambert_W0 100% 50% 62/62 1/8 1.00E+00 3.51E-01 61.76 50.49 0.033 0.063 1.91

lambert_Wm1 100% 99% 31/31 2/9 1.00E+00 8.94E-01 61.76 58.78 0.035 0.069 1.95

legendre_P2 100% 100% 2/2 1/1 4.19E-02 7.55E-02 47.48 47.95 0.007 0.011 1.51

legendre_P3 100% 100% 2/2 1/1 1.00E+00 1.14E-01 61.92 48.64 0.010 0.013 1.34

legendre_Q1 100% 100% 2/2 1/5 5.03E-01 1.32E-01 52.01 48.38 0.011 0.025 2.20

psi 100% 100% 12/12 3/19 3.49E-01 5.06E+00 51.48 51.08 0.184 0.355 1.93

psi_1 100% 0% 11/11 1/7 5.76E-01 1.07E-01 52.38 47.99 0.084 0.179 2.14

sin 100% 100% 80/80 7/14 9.29E+114 2.53E+10 63.25 62.89 0.114 0.160 1.41

cos 100% 100% 78/78 7/14 8.32E+119 1.43E+04 63.24 62.87 0.113 0.157 1.40

sinc 100% 100% 174/174 8/16 1.00E+00 1.00E+00 62.36 62.22 0.126 0.227 1.81

lnsinh 100% 100% 1/1 1/2 1.13E-01 1.65E-01 49.03 49.36 0.007 0.016 2.25

zeta 100% 0% 6/6 2/38 6.24E-01 2.39E-02 51.35 45.98 0.144 0.589 4.10

zetam1 100% 2% 3/3 1/42 5.65E-02 6.27E-03 48.15 43.09 0.124 0.646 5.22

eta 100% 0% 6/6 4/43 6.24E-01 1.84E-02 51.33 46.23 0.154 0.624 4.06

Summary 100% 72.69% 1049/1053 141/723 0.139 0.302 2.17

99.62% 19.45%

Percent of error-triggering inputs over rank-1 inputs. As shown in Table 1, both FPCC and

ATOMU have successfully identified inputs that can lead to significant errors on 42 GSL functions.

Since both methods are oracle-free, the rate of false positives plays a crucial role in evaluating

their effectiveness in detecting significant floating-point errors. Table 1 provides insights into this

evaluation. The “% of Rank-1 Inputs” column reveals that all of the rank-1 inputs reported by FPCC

triggered significant floating-point errors, achieving a 100% (42/42) detection rate. In contrast, there

only exist 25 functions (25/42, 59.5%) that ATOMU’s rank-1 inputs can 100% trigger significant

errors over 100 repeated experiments. On average, 100% of rank-1 inputs that reported by FPCC can

3
Due to the limited number of significant digits, some values in the table may appear identical.
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trigger significant errors while 72.69% rank-1 inputs reported by ATOMU can trigger significant

errors.

Number of error-triggering inputs. The “Error-triggering Inputs” column highlights FPCC’s

remarkable consistency in reporting inputs that are capable of triggering significant floating-point

errors across all functions, thereby demonstrating its robustness. On the contrary, ATOMU exhibits

limited ability to identify such inputs for most functions. In total, FPCC reports 1053 inputs, with

an impressive 99.62% (1049 inputs) capable of triggering significant floating-point errors.

In comparison, ATOMU reports 723 inputs, of which only 19.45% (141 inputs) can trigger signifi-

cant floating-point errors. These statistics further emphasize the superior performance of FPCC

in accurately identifying inputs that lead to significant errors, showcasing its effectiveness and

reliability.

There exist only four inputs reported by FPCC fail to trigger significant errors. We discovered

that these inputs, specifically in the functions 𝑏𝑒𝑠𝑠𝑒𝑙_ 𝑗2(2), 𝑏𝑒𝑠𝑠𝑒𝑙_𝑦0(1), 𝑏𝑒𝑠𝑠𝑒𝑙_𝑦1(1), can actually

induce a relative error larger than 1e-4, which is very close to 1e-3. Additionally, FPCC accurately

identified the source code responsible for the error based on these four inputs. It is reasonable to

argue that chain condition utilized in FPCC is an approximation of relative error and the 4 inputs

mentioned above are still valuable inputs for debugging numerical programs.

More error-triggering inputs may help developers better understand the nature of the error. For

instance, in the case of the airy_Ai function, FPCC identified 58 error-triggering inputs. These inputs

reveal that significant errors occur when the inputs are large, which aligns with the characteristics

of the inaccuracy reduction bug described in §6.

Bug duplication. We analyzed the duplication of all reported bugs by tracing the triggering

locations within functions. We found that all reported bugs can be traced back to 43 bug locations

across 42 functions with significant errors. We offer detailed insights into these bugs and their

respective locations in §6. Notably, all 1053 inputs reported by FPCC can trigger all these bug

locations. Additionally, ATOMU can trigger all these bug locations within 141 inputs. ATOMU

iteratively detects all unstable floating-point instructions, meaning it traverses all bug locations.

Therefore, ATOMU’s detection should be comprehensive but not necessarily reliable. For example,

for the GSL function airy_ai, ATOMU reports 26 inputs pointing to more than 10 locations. While

these locations cover the bug locations, users cannot determine which one is the actual bug location.

In contrast, all inputs from FPCC point to the actual bug locations. Thus, FPCC primarily addresses

the false positive issue of ATOMU, aiming to enhance the detection reliability.

Maximum errors. In terms of the detected maximum relative errors, FPCC performs better in

34 functions, while ATOMU detects higher relative errors in 8 functions. Similarly, FPCC detects

higher ULP errors in 38 functions, while only 4 functions for ATOMU.

False positives and false negatives in the 46 functions without significant errors. Re-
garding the 46 functions without significant errors, as shown in Table 2, FPCC does not report any

inputs. In contrast, ATOMU reports a total of 303 inputs for these functions. However, none of

these inputs have the capability to trigger significant errors. We re-ran FPCC with 100 times more

sampled inputs across 46 functions, yet we did not encounter any new functions with significant

errors. The empirical results demonstrate that FPCC does not produce false negatives.

RQ1: Compared to ATOMU, FPCC excels with 100% accuracy in detecting major errors for its
top-ranked inputs, versus ATOMU’s 72.69%. Across all reported inputs, FPCC identifies significant
floating-point errors in 99.62%, while ATOMU only detects such errors in 19.45% (141/723). These
figures underscore FPCC ’s reliability and effectiveness in error detection.
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Table 2. Results for the 46 functions without significant errors.

GSLfunctions

% of Rank1-Inputs Error-triggering Inputs Max RelErr Max ULPErr Time

Speedup
FPCC ATOMU FPCC ATOMU FPCC ATOMU FPCC ATOMU FPCC ATOMU

bessel_I0 0% 0% 0/0 0/9 0 2.11E-16 0 1.18 0.045 0.104 2.32

bessel_I1 0% 0% 0/0 0/9 0 2.19E-16 0 1.18 0.043 0.105 2.42

bessel_I0_scaled 0% 0% 0/0 0/9 0 1.92E-16 0 1.03 0.096 0.177 1.85

bessel_I1_scaled 0% 0% 0/0 0/9 0 1.91E-16 0 1.04 0.100 0.177 1.76

bessel_K0 0% 0% 0/0 0/10 0 2.37E-16 0 1.28 0.027 0.112 4.11

bessel_K1 0% 0% 0/0 0/10 0 2.09E-16 0 1.10 0.029 0.119 4.18

bessel_K0_scaled 0% 0% 0/0 0/8 0 1.82E-16 0 1.02 0.029 0.108 3.79

bessel_K1_scaled 0% 0% 0/0 0/8 0 1.92E-16 0 1.04 0.038 0.116 3.03

bessel_j0 0% 0% 0/0 0/1 0 4.58E-17 0 0.33 0.008 0.023 2.74

bessel_i0_scaled 0% 0% 0/0 0/0 0 0 0 0.00 0.008 0.011 1.37

bessel_i1_scaled 0% 0% 0/0 0/1 0 4.29E-15 0 4.11 0.011 0.017 1.52

bessel_i2_scaled 0% 0% 0/0 0/1 0 5.04E-12 0 15.21 0.012 0.015 1.30

bessel_k0_scaled 0% 0% 0/0 0/0 0 0 0 0.00 0.005 0.006 1.20

bessel_k1_scaled 0% 0% 0/0 0/0 0 0 0 0.00 0.006 0.007 1.17

bessel_k2_scaled 0% 0% 0/0 0/0 0 0 0 0.00 0.007 0.007 1.05

ellint_Kcomp 0% 0% 0/0 0/4 0 1.79E-10 0 20.00 0.073 0.197 2.70

ellint_Ecomp 0% 0% 0/0 0/10 0 1.81E-15 0 2.94 0.206 0.464 2.25

erfc 0% 0% 0/0 0/8 0 9.84E-16 0 2.32 0.056 0.181 3.20

log_erfc 0% 0% 0/0 0/9 0 2.77E-16 0 1.48 0.042 0.123 2.91

erf 0% 0% 0/0 0/6 0 1.02E-16 0 0.92 0.065 0.162 2.51

erf_Z 0% 0% 0/0 0/0 0 0 0 0.00 0.008 0.009 1.26

erf_Q 0% 0% 0/0 0/8 0 4.8E-15 0 3.98 0.069 0.185 2.68

hazard 0% 0% 0/0 0/10 0 2.94E-14 0 5.90 0.040 0.143 3.54

exp 0% 0% 0/0 0/0 0 0 0 0.00 0.005 0.006 1.30

expm1 0% 0% 0/0 0/2 0 2.73E-14 0 6.84 0.007 0.013 1.87

exprel 0% 0% 0/0 0/2 0 2.45E-14 0 7.38 0.007 0.013 1.87

exprel_2 0% 0% 0/0 0/4 0 5.52E-11 0 17.93 0.008 0.018 2.37

Shi 0% 0% 0/0 0/19 0 3.56E-16 0 1.64 0.120 0.367 3.06

Si 0% 0% 0/0 0/13 0 1.59E-16 0 1.07 0.138 0.348 2.53

fermi_dirac_m1 0% 0% 0/0 0/0 0 0 0 0.00 0.006 0.010 1.57

fermi_dirac_0 0% 0% 0/0 0/1 0 1.15E-14 0 6.21 0.007 0.014 1.97

fermi_dirac_1 0% 0% 0/0 0/11 0 4.01E-16 0 1.87 0.075 0.188 2.51

fermi_dirac_2 0% 0% 0/0 0/11 0 6.43E-16 0 2.02 0.068 0.185 2.73

fermi_dirac_mhalf 0% 0% 0/0 0/13 0 8.89E-15 0 5.33 0.140 0.255 1.82

fermi_dirac_half 0% 0% 0/0 0/13 0 2.74E-14 0 6.93 0.142 0.268 1.89

fermi_dirac_3half 0% 0% 0/0 0/13 0 1.91E-14 0 5.96 0.132 0.250 1.90

gamma 0% 0% 0/0 0/20 0 1.36E-13 0 9.45 0.021 0.158 7.40

gammainv 0% 0% 0/0 0/26 0 6.37E-14 0 8.53 0.053 0.278 5.24

legendre_P1 0% 0% 0/0 0/0 0 0 0 0.00 0.005 0.006 1.20

legendre_Q0 0% 0% 0/0 0/3 0 0 0 0.00 0.010 0.020 1.95

log 0% 0% 0/0 0/1 0 0 0 0.00 0.005 0.010 1.97

log_abs 0% 0% 0/0 0/1 0 0 0 0.00 0.005 0.011 2.09

log_1plusx 0% 0% 0/0 0/6 0 1.17E-16 0 0.71 0.026 0.070 2.66

log_1plusx_mx 0% 0% 0/0 0/6 0 2.03E-16 0 1.07 0.026 0.069 2.64

synchrotron_2 0% 0% 0/0 0/9 0 7.08E-13 0 12.17 0.043 0.104 2.43

lncosh 0% 0% 0/0 0/0 0 0 0 0.00 0.028 0.025 0.88

Total number of error-triggering inputs 0/0 0/303 Average time 0.046 0.114 2.50

5.3.2 RQ2: How efficient is FPCC in detecting functions with significant errors? In Table 1, the

smaller numbers in column Time are highlighted in bold. In terms of processing functions with

significant errors, FPCC is much faster, taking approximately 0.14 seconds, while ATOMU takes

0.30 seconds. The speedup values shown in the SPEEDUP column of Table 1 range from 1.01x to

5.22x, with an average speedup of 2.17x. To assess the statistical significance of the time difference

between the two sets, we conducted a Mann-Whitney-Wilcoxon test [Wilcoxon 1992] which yielded

a p-value of 1.65 ∗ 10
−4
(< 0.05). This p-value indicates a significant difference between the two sets

of time.
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Fig. 7. Comparison of the Log2(N) number of error-triggering inputs per second detected by ATOMU and
FPCC.

Among the 46 functions without significant errors, the Time column in Table 2 illustrates that

FPCC takes less time than ATOMU for most of these functions. The speedups range from 0.87x

to 7.40x, with an average speedup of 2.50x. Additionally, the p-value of 0.0026 (< 0.05) from the

Mann-Whitney-Wilcoxon test indicates a significant difference between the two sets of time.

Moreover, Fig. 7 visually represents the logarithm (base 2) of the number of inputs per second

that can cause significant errors, detected by both FPCC and ATOMU. As shown in Fig. 7, FPCC

surpasses ATOMU in identifying a higher number of error-trigging inputs per second for all 42

functions. On average, FPCC achieves a rate of 253.76 error-triggering inputs per second, while

ATOMU manages to detect 18.83 error-triggering inputs per second. In terms of error-triggering

inputs, FPCC achieves a 13.47x speedup compared to ATOMU.

RQ2: In comparison to the state-of-the-art technique, FPCC exhibits an average 2.17x speedup over
ATOMU in effectively detecting significant floating-point errors. Moreover, FPCC achieves a 13.47x
speedup over ATOMU in terms of the number of error-triggering inputs per second.

5.3.3 RQ3: How scalable is FPCC in detecting functions with significant errors? High-precision
execution results in considerable performance overhead. In a study comparing ATOMU with other

high-precision error detection methods across the 88 GSL functions utilized in our benchmark,

ATOMU was observed to be 140 times faster than LSGA [Zou et al. 2015] and 1362 times faster

than DEMC [Yi et al. 2019] (an enhanced version of EGAT [Yi et al. 2017]). Additionally, BGRT

[Chiang et al. 2014] was evaluated against EGAT in a study [Yi et al. 2017], using a subset of 12 GSL

functions from our benchmark. However, BGRT failed to detect higher errors and exhibited slower

performance compared to EGAT. Considering that FPCC is 2.17 times faster than ATOMU, it also

demonstrates superior speed compared to LSGA, EGAT, BGRT, and DEMC across GSL benchmarks

based on previous research findings.

FPGen [Guo and Rubio-González 2020] combines high precision with symbolic execution to

identify floating-point errors. However, the computational overhead and path explosion associated

with symbolic execution can significantly impact the analysis of complex real-world programs,

especially numerical library programs with transcendental functions. While FPGen can detect

errors across multiple inputs, its focus is limited to precision issues in floating-point addition and

subtraction operations. Hence, we conducted a comparison between FPCC and FPGen using 21
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Table 3. FPCC vs FPGen over 21 functions with multiple inputs.

Fid Benchmarks LOC FP Params

Relative Error Time(s)

FPCC FPGen FPCC FPGen

0 recursive_summation 10 32 9.00E+00 1.00E+00 100 7200

1 pairwise_summation 30 32 3.00E+00 1.32E-16 100 7200

2 compensated_summation 13 32 1.00E+00 1.00E+00 100 7200

3 sum 8 4 1.00E+00 1.00E+00 100 7200

4 2norm 9 4 1.76E-16 0.00E+00 100 7200

5 1norm 8 4 1.57E-16 2.21E-16 100 7200

6 dot 8 8 1.10E+00 1.92E-04 100 7200

7 conv 20 8 3.07E+00 2.04E-04 100 7200

8 mv 15 20 1.16E+00 8.94E-04 100 7200

9 mm 16 32 2.30E-05 2.58E-14 100 7200

10 LU 98 16 1.04E+00 2.73E+00 100 7200

11 QR 62 16 1.00E+00 2.59E-14 100 7200

12 wmean 23 8 8.52E+01 1.00E+00 100 7200

13 wvariance_m 49 8 6.81E-01 7.63E-02 100 7200

14 wvariance_w 49 8 8.71E-01 2.85E-12 100 7200

15 wsd_m 78 8 3.22E-01 3.74E-02 100 7200

16 wsd_w 51 8 6.49E-07 1.14E-12 100 7200

17 wtss_m 49 8 9.24E-01 4.45E-16 100 7200

18 wabsdev_m 21 8 4.94E-01 1.00E+00 100 7200

19 wkurtosis_m 132 8 8.19E+00 2.57E+01 100 7200

20 wkew_m 128 8 7.05E+00 1.77E-12 100 7200

benchmarks from FPGen [Guo and Rubio-González 2020]. As shown in Table 3, FPCC was able to

identify significant floating-point errors in 17 of the 21 programs, which is a greater number than

the 9 programs where FPGen detected errors. It is worth noting that in 17 of the benchmarks, FPCC

reported higher error magnitudes. Furthermore, FPCC ’s experimental runtime was 100 seconds,

compared to FPGen’s 7200 seconds, suggesting that FPCC operates at a speed that is approximately

72 times faster than FPGen.

RQ3: In comparison to the state-of-the-art technique, FPCC ’s comparison revealed its superior
detection capability across multiple-input benchmarks, identifying more significant errors than
FPGen in the majority of cases.

5.3.4 RQ4: How stable is FPCC in detecting functions with significant errors? We conducted 100

repeated experiments to measure the stability of FPCC. Fig. 8 displays box plots representing log2

value of the number of error-triggering inputs detected by FPCC and ATOMU for each function

across the 100 trials. Fig. 9 displays box plots representing the ULP errors of rank-1 inputs detected

by FPCC and ATOMU for each function across the 100 runs. For the majority of functions, the

number of error-triggering inputs and the ULP errors of the rank-1 inputs reported by FPCC remain

consistent and stable across the repeated trials. The box plots in Fig. 8 and Fig. 9 provide valuable

insights into the consistency and stability of FPCC.
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To further assess the stability, we calculated the coefficient of variation (CV) for the 100 results.

For the number of error-triggering inputs, the average CV value of FPCC is 1.59e-16, while ATOMU

is 0.064. For the ULP errors of rank-1 inputs, the average CV values of FPCC and ATOMU are

2.03e-16 and 0.257, respectively. Both results indicate that FPCC has good stability.

RQ4: FPCC demonstrates good stability in detecting error-triggering inputs, as evidenced by an
average coefficient of variation (CV) value of 1.59e-16 for the number of error-triggering inputs and
2.03e-16 for the ULP errors of rank-1 inputs.

Fig. 8. Box plots representing the log2 value of the number of error-triggering inputs detected by FPCC and
ATOMU for each function across the 100 runs.

Fig. 9. Box plots representing the ULP errors of rank-1 inputs detected by FPCC and ATOMU for each
function across the 100 runs.

5.4 Interesting Bugs Found
We have utilized FPCC to trace and localize the source code of errors in the 42 GSL functions that

exhibit significant errors. Table 4 presents the bugs, example codes, number of functions
4
, and

representative function names associated with these errors. We have identified four main classes of

bugs contributing to these significant errors in GSL functions. We provide a localized example code

4
the sum number is 43 due to sinc includes two types bugs that introduced by different branches
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Table 4. Results on discovered bugs.

Classes of bugs Example code # func Representative GSL function

Inaccuracy

reduction

((x - y * P1) - y * P2) - y * P3;

(trig.c 275)

12 airy_Ai, airy_Ai_scaled, bessel_j0,

bessel_y1, bessel_y2, sinc, airy_Bi

Danger zone log(eps);(trig.c 450) 5 airy_Ai_deriv, lnsinh

Inaccuracy

sin(M_PI*x)

sin(M_PI * ax);

(psi.c 757)

6 psi, psi_1, sinc,

zeta, zetam1, eta

Bad cancellation 0.5*x*(5.0*x*x - 3.0);

(legendre_poly.c 95)

20 bessel_J0, bessel_Y1,

bessel_J1, bessel_Y0

for each bug, and the complete source codes for all functions can be found in the appendix. In the

following, we will elaborate on the detected bugs.

Inaccuracy reduction. In Table 4, Column 2 provides the example code for inaccuracy reduction.

This code is used to reduce a positive input 𝑥 to the interval [0, 𝜋/4]. The value of 𝑦 is obtained by

𝑓 𝑙𝑜𝑜𝑟 (𝑥/(0.25 ∗𝑀_𝑃𝐼 )), while 𝑃1, 𝑃2, and 𝑃3 are precomputed splits of 𝜋/4 to ensure a precision

of approximately 75 bits. It is important to note that this reduction method, derived from fdlibm in

netlib5, only works for inputs less than 823549.6645. To address the inaccuracy bug, larger inputs

require higher precision 𝜋 and using the Payne-Hanek reduction technique to reduce them into

the range [0, 𝜋/4]. Interestingly, this bug was initially reported in the bessel_j0 function on April

11, 2012, as bug#361526 in GSL’s bug list. Subsequently, it was discovered that other functions also

exhibit the same bug, and the source code of the bug was finally localized on August 13, 2015, as

bug#457467.
Danger zone. The occurrence of danger zone bug is difficult to avoid as it is inherent to

mathematical functions. For instance, the use of 𝑙𝑜𝑔(𝑒𝑝𝑠) can introduce a significant error when

𝑒𝑝𝑠 is very close to 1. This is problematic because 1 is a well-known danger zone for the 𝑙𝑜𝑔

function where the condition number of 𝑙𝑜𝑔(𝑥) is given by |1/𝑙𝑜𝑔(𝑥) |, and as 𝑥 approaches 1,

|1/𝑙𝑜𝑔(𝑥) | → ∞. This means that even if the error introduced by 𝑥 is very small, the relative error

will be significantly amplified by the condition number, as shown in Formula 4. To address this bug,

there are possible suggestions such as using high precision or employing piece-wise polynomial

approximation methods [Yi et al. 2019].

Inaccuracy sin(M_PI*x). The bug occurs when 𝑠𝑖𝑛(𝑀_𝑃𝐼 ∗ 𝑥) fails to accurately represent

𝑠𝑖𝑛𝑝𝑖 (𝑥). For instance, when 𝑥 = 100, 𝑠𝑖𝑛(𝑀_𝑃𝐼 ∗ 100) = 1.964386723728472𝑒 − 15, whereas

𝑠𝑖𝑛𝑝𝑖 (100) = 0. It is important to note that this bug not only affects the accuracy of the results but

also causes functional issues. For example, according to the definition of function 𝑝𝑠𝑖 , a domain

error will occur if 𝑥 is positive or negative. This is implemented in the code snippet of gsl_sf_psi_e

as below:

1 double s = s i n ( M_PI ∗ x ) ;

2 i f ( f a b s ( s ) < 2 . 0 ∗ 1 . 4 9 1 6 6 8 1 4 6 2 4 0 0 4 1 3 e − 1 5 4 ) {
3 DOMAIN_ERROR( r e s u t l s ) ;

4 }

5 . . .

5
http://www.netlib.org/fdlibm/e_rem_pio2.c

6
https://savannah.gnu.org/bugs/?36152

7
https://savannah.gnu.org/bugs/?45746

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 324. Publication date: October 2024.



324:22 Xin Yi, Hengbiao Yu, Liqian Chen, Xiaoguang Mao, and Ji Wang

However, for 𝑥 = 100, the condition inside the if statement is not met due to the inaccuracy of

𝑠𝑖𝑛(𝑀_𝑃𝐼 ∗ 100), resulting in a functional problem with the function.

Bad cancellation. The bad cancellation bug is a well-known accuracy bug in numerical programs

[Benz et al. 2012]. Table 4 demonstrates that half of the GSL functions listed in the table encounter

errors due to bad cancellations. Tomitigate this problem, one can employ high-precision calculations

or optimize the implementation used in the numerical program. For the example code in Table 4,

the bad cancellation occurs in the subtraction operation of 5.0 ∗ 𝑥 ∗ 𝑥 − 3.0 when the input value of

𝑥 is 7.745966692414834e-01. This leads to 5.0 ∗ 𝑥 ∗ 𝑥 = 3.0 with a small error 2.11e-16. Due to this

small error, the result of 5.0 ∗ 𝑥 ∗ 𝑥 − 3.0 becomes 0.0, resulting in a relative error of 1.0. To fix

this bug, we can replace the expression with 𝑓𝑚𝑎(5.0 ∗ 𝑥, 𝑥,−3.0), utilizing the fused multiply-add

(fma) instruction to avoid the small error 2.11e-16. Alternatively, other methods such as error-free

transformation [Muller et al. 2009], high precision calculations [Fousse et al. 2007], or piece-wise

polynomial approximation [Yi et al. 2019] can be employed to address the problem.

6 Discussion
Error free transformations. Error-free transformations (a.k.a efts) utilize a sequence of standard

floating-point operations to evaluate the rounding error of primitive floating-point operation (i.e.,
+, −, ∗, /). EFTSantizer [Chowdhary and Nagarakatte 2022] employs error-free transformations as

shadow execution to detect numerical errors. Both FPCC and EFTSantizer do not rely on expensive

high-precision calculations. However, for non-primitive operations (such as the mathematical

functions sine and logarithm), depends on n high-precision like as for provide support, while

FPCC can leverage exploit the condition numbers of non-primitive operations analyze reason the

propagation of rounding errors.

EFTSantizer aims to approximate the final rounding error of an input, while our tool, FPCC ,

focuses on identifying inputs that trigger significant rounding errors. As illustrated in Table 1,

all reported rank-1 inputs of achieve are accuracy. Specifically, i.e., when evaluating the outputs

of the reported inputs against the oracles generated by the arbitrary precision library mpmath,
all detected inputs of FPCC trigger significant rounding errors. To evaluate the effectiveness of

EFTSantizer, we input the reported error-triggering data from FPCC into EFTSantizer and assess

whether the estimated error produced by EFTSantizer aligns closely with the error calculated by

mpmath.
Table 5 presents a comparison of the relative errors between mpmath and EFTSantizer. The

results that show significant differences between mpmath and EFTSantizer are highlighted with

a grey background. Out of the 42 functions analyzed, there are 7 functions (7/42, or 16.7%) for

which EFTSantizer fails to provide accurate rounding errors, exhibiting wildly different magnitudes

compared to those generated by mpmath.
In addition, chain conditions are more effective at capturing the trends of error variations and

identifying significant errors than EFTS-based detection approaches. As illustrated in Figure 5, the

distribution of floating-point errors in small regions is discrete, which makes error-based detection

susceptible to local optima. In contrast, chain conditions, grounded in the mathematical concept of

condition numbers, display characteristics akin to continuous, smooth mathematical curves with

distinct gradients. This allows for faster convergence to optimal solutions.

Precision-specific operations. FPCC mitigates potential oracle issues arising from precision-

specific operations in two ways: 1) For basic mathematical functions that involve a significant

number of precision-specific operations (such as sine, cosine, exponential functions, etc.), FPCC pro-

cesses them using mathematical formulas based on condition numbers. For instance, the condition

number formula for the sine function, i.e. 𝑥 ∗ cot(𝑥), can be directly derived through mathematical

semantics. 2) In the case of precision-specific operations [Wang et al. 2016] within GSL functions,
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Table 5. Relative error comparison of MPMATH and EFTSantizer.

Index Function Name

Relative Error

Index Function Name

Relative Error

EFTSantier MPMATH EFTSantier MPMATH

0 legendre_P2 3.81E-02 3.81E-02 21 bessel_J1 1.88E-02 1.79E-01

1 legendre_P3 3.72E-02 3.72E-02 22 bessel_Y0 1.56E-02 7.93E-02

2 legendre_Q1 -2.58E-03 1.28E-02 23 bessel_Y1 -2.97E-02 1.04E-01

3 psi -5.25E-03 9.89E-01 24 bessel_j1 7.09E-03 2.17E-03

4 psi_1 1.66E-16 1.40E-01 25 bessel_j2 2.04E-02 4.99E-03

5 sin 1.38E+00 2.90E+09 26 bessel_y0 8.68E-01 1.72E+04

6 cos 1.38E+00 7.96E+00 27 bessel_y1 1.28E+00 9.58E+03

7 sinc 3.78E-02 1.00E+00 28 bessel_y2 8.49E-01 1.46E+04

8 lnsinh 0.00E+00 2.64E-01 29 clausen -1.05E-01 9.36E-01

9 zeta 3.90E-16 1.29E-02 30 dilog 1.92E-01 5.52E-01

10 zetam1 5.61E-17 2.26E-03 31 expint_E1 -1.48E-02 2.92E-02

11 eta 7.82E-17 1.53E-02 32 expint_E2 -1.49E-01 2.40E+00

12 airy_Ai 8.78E-01 6.64E+03 33 expint_E1_scaled -1.48E-02 2.92E-02

13 airy_Bi 1.00E+00 2.89E+09 34 expint_E2_scaled -5.34E-01 3.01E+212

14 airy_Ai_scaled 9.78E-01 1.40E+04 35 expint_Ei -3.10E-02 1.11E-02

15 airy_Bi_scaled 1.01E+00 4.91E+09 36 expint_Ei_scaled 4.56E-02 1.41E-01

16 airy_Ai_deriv -1.26E-16 3.70E-03 37 Chi 5.09E-02 1.28E-01

17 airy_Bi_deriv -5.53E-01 2.20E-01 38 Ci 1.10E+00 5.74E+02

18 airy_Ai_deriv_scaled 3.67E-18 1.09E-02 39 lngamma 1.85E-01 3.06E-01

19 airy_Bi_deriv_scaled 2.35E-02 1.26E-02 40 lambert_W0 1.00E+00 3.11E-01

20 bessel_J0 -1.91E-03 5.97E-02 41 lambert_Wm1 1.00E+00 1.00E+00

FPCC directly passes the chain condition to the return value for bitwise operations without in-

creasing precision during computation, thereby preserving the semantics of these operations. For

rounding operations, such as (𝑥 + 𝑛) − 𝑛, which are implemented in GSL functions by invoking

the rounding function FPCC directly transmits the chain condition to the return value and does

not enter the rounding function. Reduction operations represent another common category of

precision-specific operations in GSL, exemplified by the expression ((𝑥 −𝑦 ∗ 𝑃1) −𝑦 ∗ 𝑃2) −𝑦 ∗ 𝑃3.

As described in §6 that 𝑃1, 𝑃2, and 𝑃3 are 75-bit precision values of 𝜋/4. This reduction operation

is effective within the range of ([-823549.6645, 823549.6645]) using 64-bit precision. However, as

the input values increase, the accuracy of the reduction result diminishes, and for this operation,

chain conditions escalate with larger input values, aligning with the distribution of errors. Utilizing

high precision to directly compute the reduction operation could compromise the semantics of the

original operation and may fail to identify inputs that genuinely trigger floating-point errors.

FPCC’s speedup overATOMU. FPCC andATOMUwere executed on the same single-coremachine

without any concurrent operations, ensuring a fair evaluation of FPCC’s speedup compared to

ATOMU. We believe FPCC is faster than ATOMU for three reasons: (1) Search Granularity:
ATOMU must search for an input that triggers a large condition number for each unstable floating-

point operation (e.g., +, -, sin) sequentially. In contrast, FPCC focuses solely on the condition

number of the final output, significantly reducing the number of search iterations. (2) Algorithm
Differences: ATOMU employs a genetic algorithm that requires multiple samplings and executions

per iteration. FPCC, on the other hand, combines two algorithms: a direct algorithm for the coarse-

grained identification of input ranges that may trigger high floating-point errors, followed by

a line search algorithm for fine-grained pinpointing without the need for multiple samplings.

Consequently, FPCC requires fewer samples overall. (3) Guiding Functions: The consistency
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in chain conditions and function error distribution, along with inherent properties of function

variation, enables FPCC to effectively utilize the gradient of chain conditions as a guide to identify

inputs that trigger significant errors.

Correlation between chain conditions and floating-point errors. According to Formula 4,

the floating-point relative error is approximately the product of the condition number and the

backward error. Chain conditions serve as an approximation of the function’s condition number.

While the condition number (

���𝑥 𝑓 ′ (𝑥 )𝑓 (𝑥 )

���) is theoretically invariant to program execution, the backward

error depends on it. Since the backward error varies across numerical programs, there is, in theory,

no consistent correlation coefficient that links chain conditions to floating-point errors.

During our experimental investigations, we observed a correlation between condition numbers

and floating-point errors, which led us to establish a threshold. For example, with a function output

of 1, a relative error of 1e-3 corresponds to a condition number of approximately 5e12. To mitigate

the impact of backward error, we empirically adjusted this value by a factor of 20, resulting in

a threshold of 1e14. Setting the threshold too high or too low could result in undetected errors.

Theoretically, we cannot provide a definitive correlation coefficient for this threshold. However,

based on empirical data, we have established a threshold that has been validated as effective for

multi-input programs. Users are advised to initially use the current threshold and may consider

lowering it if a smaller relative error is necessary.

7 Related Work
In this section, we review related work across several areas, including static error-bound analysis,

floating-point error detection, and the generation of error-triggering inputs.

Static error-bound analysis. Many approaches have been proposed to analyze the upper

bounds of floating-point errors [Blanchet et al. 2003; Chen et al. 2021, 2020; Constantinides et al.

2021; Darulova and Kuncak 2014; Das et al. 2020; Daumas and Melquiond 2010; de Dinechin et al.

2011; Haller et al. 2012; Solovyev et al. 2018; Titolo et al. 2018]. These approaches often abstract

the program and employ standard program analysis techniques, such as affine arithmetic, interval

arithmetic, symbolic reasoning, and abstract interpretation, to infer upper bound errors. LEE

et al. [Lee et al. 2016, 2017] reduce the computation of error-bound to an optimization problem,

which they solve using off-the-shelf computer algebra systems. Their tool fully supports bit-

manipulation operations and has been applied to verify the correctness of transcendental functions.

In contrast to these static analyses, our approach is dynamic and focuses on generating error-

triggering inputs rather than providing formal guarantees regarding the correctness of floating-point

results.

Floating-point error detection. FpDebug [Benz et al. 2012], Herbgrind [Sanchez-Stern et al.

2018], FPSanitizer [Chowdhary et al. 2020], and PFPSanitizer [Chowdhary and Nagarakatte 2021]

execute programs concurrently using high-precision shadow execution to evaluate rounding errors

in operations by comparing the original results with those produced by high-precision computations.

However, high precision computations significantly degrade the performance and do not hold on

precision-specific operations [Wang et al. 2016]. EFTSanitizer [Chowdhary and Nagarakatte 2022]

employs error-free transformations to accelerate shadow execution while utilizing the MPFR library

for high-precision elementary functions and LLVM’s intrinsics. Verrou [Févotte and Lathuilière

2016] assesses inaccuracies by perturbing rounding and conducting statistical analyses. Bao and

Zhang [Bao and Zhang 2013] propose a runtime monitoring method that tracks the propagation of

cancellation errors, which can alter the values of integers or booleans. These approaches focus on

the error generated during the execution of a specific input, while our approach aims to generate

inputs that can trigger significant floating-point errors.
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Generation of floating-point error-triggering input . Many black-box search heuristics

have been proposed to identify error-triggering inputs. BGRT [Chiang et al. 2014] performs binary

guided random search that focuses on tighter input configurations that trigger more significant

errors. LGSA [Zou et al. 2015] is a genetic algorithm that derives insights from empirical analysis.

EAGT [Yi et al. 2017] utilizes a condition number-guided search. DEMC [Yi et al. 2019] is based on

differential evolution and Markov Chain Monte Carlo (MCMC) sampling.

FPGen [Guo and Rubio-González 2020] transforms the challenge of generating high-error-

triggering inputs into a code coverage problem, which it addresses through symbolic execution.

Unlike the aforementioned approaches that rely heavily on oracles produced by high-precision

computations, our method is oracle-free and utilizes chain conditions to direct the search.

The closest tool to FPCC is ATOMU [Zou et al. 2019], which is also oracle-free and employs atomic

conditions to effectively identify inputs that trigger significant floating-point errors. However,

ATOMU only considers the condition number of individual operations and does not analyze

the transitions of condition numbers, which leads to an increased occurrence of false positives.

Additionally, ATOMU searches for inputs for every unstable operation, resulting in decreased

search efficiency. In contrast, FPCC introduces the concept of chain conditions to capture the

propagation and accumulation of floating-point errors, utilizing this approach to guide the search

for error-triggering inputs. Compared to ATOMU, FPCC effectively addresses the false positives

introduced by atomic conditions and achieves higher search efficiency through the use of chain

conditions that capture the interactions among consecutive atomic conditions.

8 Conclusion and Future Work
This paper introduces chain conditions to capture the propagation of floating-point errors and

utilizes them to guide the search for inputs that trigger significant floating-point errors. We have

implemented our approach in a prototype tool named FPCC and evaluated it on 88 functions from

the GNU Scientific Library (GSL). The experimental results are promising. All reported rank-1

inputs from FPCC can trigger significant floating-point errors, whereas only 27% of ATOMU’s

rank-1 inputs fail to do so. In total, 99.64% (1,049 out of 1,053) of the inputs reported by FPCC

can trigger significant errors, while 19.45% (141 out of 723) of the inputs reported by ATOMU

can trigger significant errors. Additionally, FPCC achieves a 2.17x speedup compared to ATOMU.

Notably, FPCC also outperforms FPGen across benchmarks with multiple inputs. The future of

work encompasses two key aspects: 1) Enhancing the tool to support complex inputs, such as

matrices and vectors; 2) Enhancing tools to support parallel programs, such as Message Passing

Interface (MPI) programs.

Data-Availability Statement
The artifact is publicly available [Yi et al. 2024]. It includes source code files, scripts, and a Docker

image designed to reproduce the experimental results presented in Section 5.
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