
T-RAP: A Template-guided Retrieval-Augmented Vulnerability
Patch Generation Approach

Pei Liu
liupei@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Bo Lin
linbo19@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Yihao Qin
yihaoqin@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Cheng Weng
wengcheng@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Liqian Chen∗
lqchen@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

ABSTRACT
Vulnerabilities exert great burden on developers in terms of de-
bugging and maintenance. Automated Vulnerability Repair(AVR)
is considered as a promising approach to alleviate the burden of
developers. Template-based automated program repair techniques
have shown their effectiveness in fixing general bugs. However, due
to the diverse root causes of vulnerabilities, it is challenging to con-
struct sufficient repair templates to cover various vulnerabilities. In
this paper, we introduce a Template-guided Retrieval-Augmented
Patch generation approach, named T-RAP. Inspired by retrieval-
augmented techniques that effectively utilize historical data, our
approach leverages repair templates to extract similar vulnerability
repair patches from the codebase. These patches then guide the pro-
cess of generating vulnerability patches. To extract similar patches,
we also propose a matching algorithm specifically designed for the
retrieval-augmented vulnerability repair. This involves identifying
similarities between numerous templates and vulnerabilities dur-
ing the template-guided stage. Experimental results demonstrate
that T-RAP outperforms all the studied AVR approaches, repairing
56.8% more vulnerabilities than VulRepair and 30.24% more than
VulMaster. It can also accurately repair more types of real-world
vulnerabilities than VulMaster. Additionally, we evaluated the ef-
fectiveness of our patch retriever. The results indicate that our
template-guided retriever, which is based on our matching algo-
rithm, outperforms the retrieval algorithm proposed in the recent
retrieval-augmented patch generation approach RAP-Gen.

∗Liqian Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Internetware 2024, July 24–26, 2024, Macau, China
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0705-6/24/07
https://doi.org/10.1145/3671016.3672506

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software defect analysis; Software testing and debugging.

KEYWORDS
Software Vulnerability, Automated Vulnerability Repair, Repair
Template, Deep Learning

ACM Reference Format:
Pei Liu, Bo Lin, Yihao Qin, Cheng Weng, and Liqian Chen. 2024. T-RAP:
A Template-guided Retrieval-Augmented Vulnerability Patch Generation
Approach. In 15th Asia-Pacific Symposium on Internetware (Internetware
2024), July 24–26, 2024, Macau, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3671016.3672506

1 INTRODUCTION
Over the years, owing to the increasing quantity and complexity of
vulnerabilities, software has become more susceptible to potential
attacks. Traditional approaches to fixing vulnerabilities heavily rely
on the manual efforts of developers. The manual identification and
resolution of these bugs demand significant investments of time
and resources [1].

To alleviate the arduous burden of manual fixing activities [13],
Automated Vulnerability Repair (AVR) techniques have emerged as
a promising way to automatically correct vulnerabilities. Generally
speaking, AVR techniques consist of three major stages: vulnera-
bility localization, patch generation and patch validation. Among
these stages, the quality of the patches generated by repair proce-
dures directly determines the repair results and is crucial to the
entire repair process. Consequently, lots of existing AVR techniques
are dedicated to generating more accurate patches [6, 7, 12].

Template-based AVR techniques are a prominent group of AVR
techniques, which utilize predefined program fix templates to gen-
erate repair patches [16, 25, 33]. Such predefined templates are
often manually summarized by researchers, which is rather time-
consuming and limited greatly by the domain knowledge of design-
ers. Also, existing template-based AVR techniques mainly focus on
type-specific vulnerabilities repair, such as buffer overflow [16] and

https://doi.org/10.1145/3671016.3672506
https://doi.org/10.1145/3671016.3672506

Internetware 2024, July 24–26, 2024, Macau, China Pei Liu, Bo Lin, Yihao Qin, Cheng Weng and Liqian Chen

integer overflow [25], because they have similar root causes and
thus are easy to define templates manually. However, as of February
2024, the total number of vulnerability categories in the Common
Weakness Enumeration (CWE) has reached 938 [9], indicating the
difficulty in summarizing templates for each type of vulnerability
manually, especially considering that many types of vulnerabili-
ties lack explicit fix templates (e.g., CWE-1001: Use of an Improper
API) [3]. In addition, existing template-based automated repair
approaches are not truly automated and usually time-consuming.
Although templates auto-mining techniques have reduced the man-
ual efforts in summarizing templates and solved the problem of
a limited number of manually defined templates, these templates
can not be applied on the vulnerabilities directly. Designing and
implementing associated repair editions remains a heavy burden
for developers. Therefore, existing template-based automated repair
approaches are limited in type-specific vulnerability repair and are
not fully automatic.

Meanwhile, alongside the flourishing development of deep learn-
ing technology [20], some researchers leverage the power of lan-
guage models to repair vulnerabilities. Specifically, learning-based
AVR techniques regard the vulnerability repair task as a code-to-
code translation task that learns repair actions from historical data.
Consequently, these techniques rely heavily on the quantity and
quality of historical vulnerability repair data, which can be hardly
satisfied by existing vulnerability datasets [8]. The current main-
stream public vulnerability datasets Big-Vul [11] and CVEFixes [2]
consist of 3,754 and 5,465 pairs of vulnerabilities respectively, cov-
ering 91 and 180 CWE types. Limited datasets pose challenges for
learning-based vulnerability repair solutions, making the optimiza-
tion of existing datasets crucial for AVR techniques.

Aiming to make full use of existing vulnerability datasets, re-
trieving relevant code snippets and building connections between
similar data may help generating desired code, which can reduce
search space and provide essential code in the code generation pro-
cess [30]. This is consistent with human mind, that is, when faced
with an vulnerability to be repaired, experienced developers will
first try to search relevant code snippets for reference in other large-
scale codebases [28, 29], such as Github. Developers accumulate a
wealth of knowledge and experience throughout the development
and maintenance phases, often producing various documents to cat-
egorize encountered problems in team collaboration. This enables
them to readily access similar code snippets or information to assist
in their repair tasks. However, for automated repair techniques, the
challenge lies in establishing connections between vulnerabilities
and their corresponding code snippets for reference.

To mitigate the aforementioned limitations observed in both
template-based and learning-based AVR techniques, and inspired
by human developers’ retrieving ways for fixing vulnerabilities,
we propose T-RAP, a Template-guided Retrieval-Augmented Patch
generation approach. T-RAP begins by automatically extracting
repair templates, which not specifically targeted at vulnerability
bugs, but cover general repair actions derived from a group of
historical bug-fixing pairs. The repair pairs are then categorized into
different groups according to the corresponding templates. When
given a piece of vulnerable code that needs fixing, T-RAP searches
for the adopted repair templates at the Abstract Syntax Tree (AST)
level by our matching algorithm (detailed in Section 3.1.2). This

stage yields relevant vul-fix pairs based on the matched templates.
Subsequently, T-RAP retrieves several similar vul-fix pairs from
those recorded in the matched templates, which serve as references
for repairing the given vulnerable code. We fine-tune a code-aware
language model CodeT5 as our patch generator. In the final stage,
the patch generator uses both the vulnerable code and the retrieved
bug-fixing pairs as inputs to generate a candidate patch.

We evaluate the effectiveness of T-RAP on the dataset BigFixes
(which we construct by merging two existing vulnerability datasets
Big-Vul [11] and CVEFixes [2]). The results show that T-RAP out-
performs all studied AVR approaches, repairing 30.24% more vul-
nerabilities than state-of-the-art AVR technique VulMaster.

In summary, the contributions of this paper are as follows:
• We propose a template-guided retrieval-augmented patch gener-
ation method, leveraging repair templates which are high-level
abstractions of a set of similar repair actions, to retrieve relevant
vul-fix pairs from the codebase, and then use the retrieved repair
pairs to guide the patch generation.
• We propose a template matching algorithm designed for the
matching task between numerous templates mined automati-
cally and multiple suspicious statements. This algorithm involves
categorizing templates and assigning priorities to facilitate the
identification of the optimal match.
• We implement our approach by constructing a new tool called
T-RAP. We thoroughly evaluate T-RAP on BigFixes dataset. Ex-
perimental results show the efficiency of our repair procedure.
When compared to existing vulnerability repair tools such as Vul-
Repair and VulMaster, we can generate more accurate patches.
We also prove the usefulness of our retrieval-augmented method
by contrast with other retrieval algorithms.

2 BACKGROUND
2.1 Automated Vulnerability Repair
AVR is derived from Automated Program Repair (APR), which is
an integrated and automated process of vulnerability repair. The
main process framework of AVR task includes three modules: (1)
localization module to identify the vulnerability code location; (2)
patch generation module to automatically modify the vulnerability
code and generate patches to eliminate the root cause of vulnera-
bility; (3) patch verification module to check the correctness of the
candidate patches [21].

In order to better understand the root causes and repair mecha-
nisms of various types of vulnerabilities, researchers categories vul-
nerabilities and form specific vulnerability types known as CWEs.
According to whether they target specific types of vulnerabilities,
existing AVR methods can be divided into type-specific and generic
vulnerability repair methods. Type-specific AVR methods design
the localization and patch generation algorithm based on the syn-
tactic and semantic features of specific types of vulnerabilities, with
the advantage of high precision. However, with the increasing num-
ber of vulnerability categories in CWE system, it is challenging to
design repair techniques for all types of vulnerabilities. Therefore,
it is promising to research on the generic AVR methods. Generic
AVR methods usually take the repair task as a translation process,
which aims to translate the buggy program into the correct pro-
gram by leveraging various Neural Machine Translation (NMT)

T-RAP: A Template-guided Retrieval-Augmented Vulnerability Patch Generation Approach Internetware 2024, July 24–26, 2024, Macau, China

approaches [6, 7, 24]. Existing AVR techniques like VRepair and Se-
qTrans, both adopt the transfer learning strategy by pre-training on
bug fixing datasets and fine-tune on vulnerability datasets. VRepair
has obtained a repair accuracy of 17.3%. Other generic repairmethod
VulRepair adopt a pre-trained encoder-decoder model based on the
T5 architecture and obtained a repair accuracy of 44%.

2.2 Retrieval-Augmented Generation
Retrieval-augmented generation has achieved state-of-the-art per-
formance in many NLP tasks [26]. Retrieval source, retrieval met-
ric and integration methods are three major components of the
retrieval-augmented generation paradigm. Most studies fetch the
retrieval source from its training corpus, that is, in the generation
inference phase, they retrieve relevant examples from the train-
ing corpus. Retrieval metrics determine which examples in the
retrieval source are relevant to the input sequence. BM25 [34] is the
widely used sparse-vector retrieval methods, which both compute
similarity at the lexical level. After obtaining the retrieval infor-
mation, data augmentation is the one of the most straightforward
way to integrate the retrieved into the generation process, which
constructs the augmented inputs by concatenating the retrievals
with the original input. There are many applications of retrieval-
augmented generation in different generation tasks, such as code
generation [15] and machine translation [4, 14].

Wang et al. introduced a retrieval-augmented generation ap-
proach to automated program repair tasks, called RAP-Gen [31].
RAP-Gen constructs a hybrid patch retriever to find a relevant
bug-fix pair first, augmenting the original buggy input, and then
train on the code-aware language model CodeT5 model to generate
candidate patches. RAP-Gen demonstrates superior performance
over state-of-the-art deep learning-based methods on three bench-
marks in JavaScript and Java, indicating the promising potential of
retrieval-augmented generation in advancing APR tasks.

3 APPROACH
In this section, we introduce our approach, T-RAP, a template-
guided retrieval-augmented patch generation method, leveraging
repair templates to retrieve relevant vul-fix pairs from the codebase,
and then use the retrieved repair pairs to guide the patch generation.
The workflow of T-RAP is illustrated in Fig. 2. Our T-RAP archi-
tecture comprises three primary phases: 1) the template-indexing
retriever construction; 2) the patch generator training with pre-
trained model; 3) the inference phase for patch prediction.

3.1 Templates-indexing Retriever
T-RAP aims to use templates as indexes to find the relevant historical
code changes, and then use the retrieved reference to augment the
patch generation. To that end, our workflow begins with construct-
ing a template-indexing retriever, whose retrieving outputs are
important reference ingredients for instructing the next patch gen-
eration phase. Specifically, we initially extract repair templates from
historical vul-fix commits and associate these templates with the
corresponding vul-fix pairs (i.e., the commits from which the tem-
plates were extracted). Subsequently, for a given vulnerability 𝑉𝑡 ,
T-RAP selects the best-matching template with the corresponding

relevant vul-fix pairs ⟨𝑉𝑖 , 𝑃𝑖 ⟩ to serve as the reference for repairing
𝑉𝑡 (illustrated in Sec 3.1.2).

3.1.1 Templates mining. We adapt an automated technique for
mining vulnerability repair templates by leveraging FixMiner [17]
specifically tailored for vulnerabilities in the C/C++ language. Ini-
tially, we transform all code alterations into Rich Edit Scripts (RES) [17],
which utilize four actions (i.e., update, insert, delete, and move) and
node types in AST to represent the code modifications as an edit
script [10]. The RES preserves contextual details of code changes,
such as the AST structure and the altered node type, thereby provid-
ing richer information for template matching. Subsequently, based
on the collected RESs, we identify clusters of trees with identical
structures. From these clusters, we derive a set of RESs sharing the
same structure, constituting a template when the cluster contains
at least two members. Each template is an abstraction of several
code changes in the same cluster, and encapsulates identical repair
modifications applied to the same types of nodes. To facilitate the
future use, we establish a dictionary to store the mapping between
templates and the group of relevant vul-fix pairs, with the template
serving as the key and the group of vul-fix pairs as the value.

(a) Template

(b) Relevant vul-fix diff code

Figure 1: One of templates that related to if_stmt and relevant
vul-fix diff code.

Fig. 1 shows an example of a template along with two of the
relevant vul-fix pairs represented in the GNU diff format. It can
be observed that we have mined a template that modifies the ex-
pression within the condition of an if statement, and both the two
vul-fix diff patches in Fig. 1(b) involve deleting the operator and
updating the call function within the condition. Our miner captures
this characteristic and extracts common edits on the nodes of the
same types, forming a template as Fig. 1(a). Leveraging the dictio-
nary we built, we can directly retrieve the two vul-fix pairs shown
in Fig. 1(b) by the template in Fig. 1(a).

3.1.2 Templates matching. After obtaining a set of templates and
building the dictionary from templates to the corresponding vul-fix
pairs within clusters in the template-mining phase, we intend to
construct our template-guided retriever next. As for an vulnerable

Internetware 2024, July 24–26, 2024, Macau, China Pei Liu, Bo Lin, Yihao Qin, Cheng Weng and Liqian Chen

retriever construct

patch generator training

-
+ -

+

-
+ -

+

-
+ -

+ -
+

— UPD *
—— UPD *

— UPD *
—— INS * TO *

— DEL *
— UPD *
—— MOV * TO *

match
— UPD *
—— UPD *

-
+

mapping

best match

diff commits rich edit scripts

cluster

template codebase

output patch

vul-fix

CodeT5

Fix

T-RAPvulnerability validation

oracle

final patch
candidate patches

-
+

patch inference

beam search

top-k

similar repair pairs

Figure 2: The overall workflow of T-RAP.

code snippet 𝑉𝑡 to be repaired, when we want to construct a re-
triever to search code changes similar to this snippet for reference
like developers, template can be a good bridge to build connections
between the two parts. Therefore, we convert the task of building
the mapping between vulnerable code to the similar historical code
changes in the codebase, to the task of selecting the most suitable
fix template for the vulnerable code snippet. The template matching
algorithm are implemented in in Algorithm 1.

To match the code snippet and templates mined, we leverage a
popular AST parser, tree-sitter1, to convert the code into an abstract
tree, and then extract the buggy nodes at the labelled location lines,
namely from <StartBug> to <EndBug>, which are key nodes in the
next matching. Traditional template-based APR techniques [22]
manually predefine the bug context for each template. They tra-
verse each node of the suspicious statement from its first child
node to the last leaf node. If a node matches the predefined bug
context, the corresponding template is selected for patch genera-
tion. This template selection process continues until a correct patch
is generated. Considering that there may be multiple suspicious
lines labelled in an vulnerable code snippet and usually not only
one buggy node at each labelled line, and the number of templates
mined by FixMiner is in the hundreds, it is infeasible to iteratively
traverse all templates one by one in the codebase to match with the
context of the vulnerable code 𝑉𝑡 until a correct patch is validated.

Therefore, we devise a matching algorithm tailored for the sit-
uation of matching between several buggy nodes and numerous
templates mined automatically in AVR task, aiming to select the
best match template. This initiative draws upon the foundational
matching strategy prevalent in traditional template-based APR
techniques [22, 23], which matches the buggy code context with

1https://tree-sitter.github.io/tree-sitter/

templates in the AST level. However, we introduce several refine-
ments into this strategy to enhance its applicability to our template-
guided approach. First, according to the modified node type, we
organize the templatesmined in the template codebase into different
type groups, including if_stmt, return, expr_stmt, decl_stmt,
return, for, while, function and block_content. We note that
themodified node types exhibit varying levels of granularity and dis-
tinctive features. For instance, modifications within the expr_stmt
templates and block_content templates are obviously not at the
same granularity, with the expr_stmt also serving as a constituent
of flow control statements templates like if_stmt. The presence
of overlapping characteristics among the templates may result in
an vulnerable code snippet matching successfully with several tem-
plates, thereby obscuring the realization of best match. For example,
Fig. 3(a)is an vulnerable code snippet with fault location labels, with
one of its buggy nodes (type = identifier, "realloc"). As for
the context of this buggy node in the AST, several templates can be
matched successfully, such as Fig. 3(b) and Fig. 3(c). We expect to
select template in 3(c) as the best match, for it reflect the if control
structure in the vulnerable function 3(a).

Consequently, we categorize these templates into three broader
groups: (1) flow control statement (if_stmt, for, while); (2) basic
statement (expr_stmt, decl_stmt, return); (3) high granularity block
(function, block_content). The priority order is defined the same as
above, with flow control statements assigned the highest priority,
because we think the flow control statements are more important
label as the context information for matching. We assign templates
featuring high granularity block the lowest priority, for we expect
to make fewer modifications in repair.

After selected the template group, we conduct the matching pro-
cess as the Algorithm 1. The matching algorithm begins by iterating
over each template in the templates_group. For each template, the
algorithm initializes two variables: best_match to track the highest

https://tree-sitter.github.io/tree-sitter/

T-RAP: A Template-guided Retrieval-Augmented Vulnerability Patch Generation Approach Internetware 2024, July 24–26, 2024, Macau, China

(a) An example of vul buggy node

(b) Template expr_stmt

(c) Template if_stmt

Figure 3: An example of vulnerable snippets and thematched
templates.

match score encountered so far, and best_template to store the
corresponding template. Within the loop, we initialize a temporary
score variable score and then invoke the node_match function to
compare the attributes of the buggy_node with the current tem-
plate. This function recursively traverses both the buggy node and
the template, comparing their attributes to determine the degree
of similarity. The node_match function takes as input the buggy
node (b), the current template node (t), the depth of traversal in
both the buggy node (Lb) and the template node (Lt), and a flag
(all_traversed) indicating whether all nodes at the same depth in
the buggy context have been completed. If the traversal encounters
a leaf node in the template or if all_traversed is True, the function
will return the current depth of the template (Lt). Otherwise, it
proceeds to compare the types and attributes of the current nodes
(b.type and t.type). If they match, the function recursively explores
their child nodes to further assess the similarity with the depth
incremented both. If no match is found, the function backtracks
and explores alternative paths. Once the traversal is complete, the
function returns the depth of the template node (Lt) where the best
match was found. Back in the match function, if the score obtained
from node_match is greater than or equal to the current best_match,
the best_template is updated to the current template.

3.1.3 Templates indexing. With the best match template prepared,
we can access a set of relevant historical code changes by the dic-
tionary built during templates mining. Given that the difference
between vulnerable and the repaired code typically occur in con-
tiguous lines of code [23], which contains the key information of
the patch. Therefore, we extract the modified statements along with
the surrounding lines of code from both the vulnerable code and
fixed code, to form the retrieved vul-fix pairs.

Algorithm 1 T-RAP template-matching algorithm
Input: 𝑏𝑢𝑔𝑔𝑦_𝑛𝑜𝑑𝑒, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠_𝑔𝑟𝑜𝑢𝑝
Output: 𝑏𝑒𝑠𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

1: function match(𝑏𝑢𝑔𝑔𝑦_𝑛𝑜𝑑𝑒, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠_𝑔𝑟𝑜𝑢𝑝)
2: for each 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 in 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠_𝑔𝑟𝑜𝑢𝑝 do
3: 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ ← 0
4: 𝑏𝑒𝑠𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← 𝜙

5: 𝑇 ← 𝑗𝑠𝑜𝑛𝑇𝑟𝑒𝑒 (𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
6: 𝑠𝑐𝑜𝑟𝑒 =node_match(𝑏𝑢𝑔𝑔𝑦_𝑛𝑜𝑑𝑒,𝑇 , 0, 0, 𝑓 𝑎𝑙𝑠𝑒)
7: if 𝑠𝑐𝑜𝑟𝑒 ≥ 𝑏𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ then
8: 𝑏𝑒𝑠𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

9: end if
10: end for
11: return 𝑏𝑒𝑠𝑡_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

12: end function
13: function node_match(𝑏, 𝑡, 𝐿𝑏, 𝐿𝑡, 𝑎𝑙𝑙_𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑)
14: if !𝑇 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 or 𝑎𝑙𝑙_𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 is 𝑡𝑟𝑢𝑒 then
15: return Lt
16: end if
17: if 𝑏.𝑡𝑦𝑝𝑒 == 𝑡 .𝑡𝑦𝑝𝑒 then
18: if !𝑇 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 then
19: return Lt
20: else
21: for each b_c in 𝑏.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
22: for each t_c in 𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
23: 𝐿𝑏, 𝐿𝑡 ← 𝐿𝑏 + 1, 𝐿𝑡 + 1
24: Lt = node_match(𝑏_𝑐, 𝑡_𝑐, 𝐿𝑏, 𝐿𝑡, 𝑓 𝑎𝑙𝑠𝑒)
25: end for
26: 𝑎𝑙𝑙_𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 ← 𝑇𝑟𝑢𝑒

27: end for
28: end if
29: end if
30: end function

3.2 Data Processing
3.2.1 Output representation. Early works [12, 27] on neural repair
has proved that outputting the whole function resulted in decreased
performance as the function length increased. We follow the code
representation designed in previous data-driven vulnerability re-
pair methods [6], which only outputs the changes on source code
tokens, instead of the whole generated function with the same
length as source code. We use a pair of special tokens <StartBug>
and <EndBug> to label the suspicious location code, which guide
the further modifying location for patch generation. As for the code
with multiple suspicious locations, label each one respectively, and
allow for generating multiple changes in the output. Meanwhile,
we use another pairs of special tokens <StartMod> and <EndMod>
to label the start and end of the changes in the source code. Com-
bining the source code and the output patch identifying the specific
fix could yield the entire function with fix changes. Figure4 shows
an example of our output representation of the vul-fix pairs with
labeled tokens, and T-RAP aims to generate correct patches in the
representation of the fix in the example.

3.2.2 Subword Tokenization. We adopt the Byte Pair Encoding
(BPE) algorithm as our tokenizer, consistentwith prior researches [12,

Internetware 2024, July 24–26, 2024, Macau, China Pei Liu, Bo Lin, Yihao Qin, Cheng Weng and Liqian Chen

Figure 4: An example of vul-fix pair representation.

31, 32]. BPE operates by tokenizing words at the byte-level and
effectively reducing the size of the vocabulary, consequently dimin-
ishing the dimensions of the embedding layer. Besides, the BPE
algorithmmitigates the Out-of-Vocabulary (OOV) issue. OOV refers
to words or symbols encountered during model training that are not
included in the vocabulary. The occurrence of OOV instances can
greatly affect the model’s performance and its ability to generalize,
as it cannot understand words outside its vocabulary, resulting in
incorrect interpretation of input data.

3.3 Patch Generation
The generator of T-RAP adopts an encoder-decoder architecture,
comprising 12 Transformer layers in both the encoder and decoder.
Each layer utilizes 12 attention heads for multi-head attention com-
putations, resulting in a total parameter size of 220M. This architec-
ture is widely employed in state-of-the-art pre-trained models and
across various application scenarios [5, 12, 18, 31, 32]. Consistent
with prior researches [12, 18, 31], we initialize the parameters of
each generator with weights from CodeT5 [32]. The purpose of
this initialization is to provide the generator with domain-specific
knowledge of programming languages, which can help T-RAP gen-
erate more reliable patches.

3.3.1 Input Preparation. Given an vulnerability pairs ⟨𝑉𝑡 , 𝐹𝑡 ⟩ from
the training dataset, namely function 𝑉𝑡 and its correct fix 𝐹𝑡 , the
template-indexing retriever outputs several relevant vul-fix code
changes⟨𝑉𝑖 , 𝐹𝑖 ⟩,⟨𝑉𝑗 , 𝐹 𝑗 ⟩... if there are templates matched success-
fully. In patch generator training phase, we design the strategy
that all of the retrieved vul-fix pairs, along with the 𝑉𝑡 , are used as
input to the patch generator to generate the predicted patch. We
use a retrieval field 𝑅 to denote the retrieved code change pairs
⟨𝑉𝑖 , 𝐹𝑖 ⟩,⟨𝑉𝑗 , 𝐹 𝑗 ⟩... , separating different pairs with a special token
[𝑆𝐸𝑃]. That is: 𝑅𝑡 = ⟨𝑉𝑖 , 𝐹𝑖 ⟩[𝑆𝐸𝑃]⟨𝑉𝑗 , 𝐹 𝑗 ⟩.... As for the given the
training data pair ⟨𝑉𝑡 , 𝐹𝑡 ⟩, the input to our patch generator is aug-
mented as : 𝐼𝑡 = 𝑉𝑡 ⊕ 𝑅𝑡 .

There are also vulnerabilities fail to match any of the templates
mined, indicating that no similar historical repairs can be retrieved
in the codebase for reference. On this occasion, the retrieval filed 𝑅
will be NULL, and the inputs to our patch generator will include the
vulnerable code only, that is: 𝐼𝑡 = 𝑉𝑡 .

3.3.2 Model Training. After integrating the retrieval field with the
original vulnerable input, we prepare the augmented training data
to patch generator. This is denoted as : 𝐼𝑡 = 𝑉𝑡 [𝑅𝐸𝑇𝑅]𝑉𝑖 [𝑆𝐸𝑃]𝐹𝑖 ...,
where [RETR] is a special token separating the retrieved vul-fix
pairs from the original vulnerable code, and [SEP] is a special to-
ken separating the vul-fix pairs. Specifically, the training input
pairs⟨𝐼𝑡 , 𝐹𝑡 ⟩ will first be tokenized by BPE into a sequence of code
at the sub-word level, then the Embedding layer generate an embed-
ding vector for each subword, capturing the semantic features of
the code tokens. The results of word embedding serves as the input
to the encoder module of T-RAP, deriving the encoder hidden state,

which in turn informs the decoder module to generate and output
the predicted patches. The primary objective of model training is
to fine-tune the model to obtain specific weights for repair patch
generation task on the vulnerability dataset. Therefore, we adopt
cross-entropy loss function over the training phase, which is fre-
quently used in optimization and probability estimation. Formally,
the loss can be described as:

L𝑜𝑠𝑠 = −
N∑︁
𝑖=1

log(𝑃𝜃 (𝐹𝑡 |𝐼 , 𝐹<𝑡)).

where 𝑁 denote the number of tokens in the patch, 𝜃 are the pa-
rameters of model, 𝐼 is the ground truth, and 𝐹<𝑡 is the tokens
generated so far.

3.4 Patch Inference
During inference, we employ the beam search strategy to generate
a list of candidate fixed patches for a given vulnerable function.
Specifically, as for the given vulnerable function𝑉𝑑 , (1) We use Tree-
sitter, a widely-used AST parser generator, to construct the AST and
extract a list of its faulty nodes. Each faulty code is then matched
with the mined templates (illustrated in 3.1.2). We combine the
vector 𝑉𝑑 with the retrieved code changes, which are mapped from
the matched template. (2) We then split 𝑉𝑑 using the tokenization
component and input the subword tokenized sequence into the
trained model. (3) The model extracts and decodes the sequence’s
features, then generates the probability distribution of the tokens
that constitute the candidate patch. We implement beam search to
select several candidate patches based on the probability at each
decoding step. That is, the beam size parameter 𝛽 is determined to
select the Top-𝛽 high probability predicted patches generated dur-
ing the encoding step. These candidate patches are later validated
for their correctness.

4 EXPERIMENTAL DESIGN
4.1 Research Questions
We seek to answer the following research questions (RQs):

RQ1: Effectiveness of T-RAP. How does T-RAP perform to
repair vulnerabilities in open source projects compared with other
AVR approaches?

RQ2: Analysis of T-RAP predictions.How does T-RAP perform
in fixing vulnerabilities of different types and complexity?

RQ3: Ablation Study. What are the contributions of the major
components of T-RAP?

4.2 Dataset
To evaluate the T-RAP more accurately, we constructed a dataset
named BigFixes by combining the two largest vulnerability datasets,
Big-Vul [11] and CVE-Fixes [2]. We conducted a comparison of
the vulnerability source files and eliminated any duplicates in the
merged dataset. This was done to prevent data leakage, ensuring
that the same item does not appear in both the training and testing
sets. As a result, we obtained a consolidated dataset with 6,008
vulnerabilities, covering 180 CWE types. We adopt the same data

T-RAP: A Template-guided Retrieval-Augmented Vulnerability Patch Generation Approach Internetware 2024, July 24–26, 2024, Macau, China

spilt way as Chen et al. [6] and Fu et al. [12], allocating 70% of the
dataset is for training, 10% for validation and 20% for testing.

4.3 Baselines
We choose the most advanced and relevant AVR techniques VRepair
and VulRepair as the baseline to compare the repair performance
with our approach T-RAP.

VRepair. Chen et al. [6] proposed a Transformer-based vulnera-
bility repair approach VRepair in 2021. VRepair adopted transfer
learning technique, which first trained on a large bug fix corpus
and fine-tuned on the vulnerability dataset in C, alleviating the
small vulnerability dataset problem.

VulRepair. Fu et al. [12] proposed a T5-based vulnerability
repair approach named VRepair in 2022. VulRepair adopted Code-
T5 model and fine-tuned the model on the vulnerability repair task,
and achieved a better repair results compared to VRepair.

VulMaster. Zhou et al. [35] proposed VulMaster, VulMaster
effectively understands vulnerable code, regardless of its length,
and integrates diverse information, including code structures and
expert knowledge from the CWE system. VulMaster achieves better
repair results compared to VRepair and VulRepair.

RAP-Gen. RAP-Gen[31] adopts a hybrid patch retriever for
bug-fix pairs mining, which considers both lexical and semantic
matching by combining sparse and dense retrievers. We imple-
mented the retriever of RAP-Gen based on the design outlined in
the paper, which is not open-sourced.

T-RAP-BM25 and T-RAP-Rand. To evaluate the contribution
of our template-guided retriever on the repair performance, we
propose two contrasting methodologies with different retrieving
strategies: the T-RAP-BM25 method with BM25 algorithm realiz-
ing the retrieval, and the T-RAP-Rand method utilizing a random
retriever. Both methodologies leverage CodeT5 as patch generator.

4.4 Evaluation Metrics
Different from benchmarks in APR field, there are no test cases pro-
vided in existing vulnerability datasets. Existing AVR techniques [6,
12] are devoting to generating patches that can be exactly matched
with the oracle fix, that is, a candidate patch is considered correct
only if it is exactly matched with the oracle fix. Therefore, T-RAP
validate the generated patches by exactly matching with the oracle
fix following existing automated repair techniques [6, 12, 31, 35].

We utilize Recall to evaluate the repair performance of T-RAP,
which is widely used in automatic repair evaluation metric. Recall is
the percentage of the number of vulnerabilities fixed by the correct
patches generated in all the vulnerabilities. The higher recall means
the higher quality of the patches generated by the repair techniques.
We compare the recall of our T-RAP with other baseline approaches
in accuracy metrics on our BigFixes.

In addition, considering that it is time-consuming in validating
the correctness of patches generated by beam search, we also adopt
the metric Recall@Top-k, which measures the percentage of the
correct patch being in the top-k predicted patches generated of all
the vulnerabilities, and the smaller k means the patches generated
are more precise and a better repair performance. In our experi-
ments, we evaluate the accuracy of patches generated at the Top-1,
Top-5 and Top-10 respectively.

4.5 Implementation Details
T-RAP is mainly composed of two modules, which is the template-
guided retriever and the retrieval-augmented patch generator.

FixMiner [17] is a template mining tool based on an iterative
clustering strategy to produce fix templates for APR systems, which
selects projects written in Java with bug reports as dataset, and
focuses on evaluating the relevance of the yielded templates [17]. In
our template-guided retriever, we transfer FixMiner into focusing
on vulnerabilities functions in C language and evaluating the ef-
fectiveness of our template-guided retriever. We first extract repair
templates on our training dataset to construct our template data-
base, and then represent the repair templates mined in text as json
trees with keys of node_type, edit_operation and children_nodes,
so that we can match vulnerabilities and templates based on tree
structures. After matching vulnerabilities with templates as our
matching algorithm1, we store the relevant vul-fix pairs retrieved
by the matched templates in a new field noted as "retrievals". which
will be the input of the patch generator training phase together
with the oracle vul-fix pairs later.

T-RAP construct the patch generator based on a T5 model with
an encode-decode architecture in each generator, which is widely
used by state-of-the-art pre-trained models[5, 12, 18, 19, 31, 32]. We
initialize the parameters of each generator with the weights from
CodeT5-base [32] to equip the generators with domain-specific
knowledge of programming languages, and then fine-tune these
generators for the downstream task of patch generation. We run
the experiments on a server with 2 Nvidia GeForce RTX 4090 GPUs.
We fine-tune the model for 30 epochs with the learning rate 3e-4
and batch size 4, using the AdamW optimizer to update the model
and minimize the loss function. In the inference phase, we set the
beamsize as 50, the same with the baseline technique VulRepair.

5 EXPERIMENTAL RESULTS
5.1 RQ1: How does T-RAP perform to repair

vulnerabilities in open source projects
compared with other AVR approaches?

To evaluate the performance of T-RAP in open source projects, we
compare T-RAP with other four baseline approaches on BigFixes
dataset. Table 1 shows the effectiveness of T-RAP compared to
other state-of-the-art AVR techniques. Generally speaking, T-RAP
outperforms these AVR techniques in repair recall metrics. Specifi-
cally, the recall of T-RAP is 146.6% and 56.8% higher than VRepair
and VulRepair, 30.24% and 14.9% higher than VulMaster and RAP-
Gen, which means T-RAP is capable of generating more correct
patches for vulnerabilities. We also concentrate on the top-1 accu-
racy, which determines the cost of human effort due to the lack
of test cases. We find that T-RAP can generate 28.90% and 18.13%
more correct patches than VulMaster and RAP-Gen at the top-1
candidate patch rank, which illustrates T-RAP can achieve a good
repair performance with less patches generated and validated.

Comparison Analysis. The recall of VulMaster, RAP-Gen and
T-RAP all surpass 20%. Compared with VRepair and VulRepair, these
techniques all leverage additional information beyond the original
vul-fix pairs. VulMaster has integrated diverse information from

Internetware 2024, July 24–26, 2024, Macau, China Pei Liu, Bo Lin, Yihao Qin, Cheng Weng and Liqian Chen

Table 1: Comparison with state-of-the-art AVR techniques.

Recall @Top-1 @Top-5 @Top-10
VRepair 10.90% 6.82% 10.15% 10.57%
VulRepair 17.14% 13.31% 16.06% 16.72%
VulMaster 20.63% 17.23% 18.72% 20.08%
RAP-Gen 23.38% 18.80% 22.55% 22.90%
T-RAP 26.87% 22.21% 25.04% 25.80%

the CWE system and expert knowledge, therefore succeed in gener-
ating the most unique patches. The superior repair performance of
RAP-Gen and T-RAP shows the effectiveness of retrieval-augmented
strategy in generating patches. Retrievals establish the internal con-
nections among repair commits, maximizing the utilization of lim-
ited datasets during model training. Templates-guided retriever of
T-RAP outperforms than hybrid retriever of RAP-Gen. This maybe
because repair templates can capture deeper connections inherent
in repair actions behind repair commits, while hybrid retrieve may
be more inclined to focus on the code attributes themselves.

Figure 5: Overlaps of vulnerabilities fixed by different tech-
niques.

Overlap Analysis. To further investigate how well T-RAP com-
plements VRepair, VulRepair, VulMaster and RAP-Gen, we anal-
yse the number of overlapping vulnerabilities fixed by the above
techniques. As is shown in Fig 5, T-RAP fixes 28 more unique vul-
nerabilities than existing four techniques, and generated 75 and 42
more correct patches than VulMaster and RAP-Gen respectively.
Overall, the results illustrate that T-RAP is complementary to the
four state-of-the-art AVR techniques to increase the number of
vulnerabilities being correctly fixed in BigFixes.

5.2 RQ2: How does T-RAP perform in fixing
vulnerabilities of different types and
complexity?

To better analyse the repair performance of T-RAP in patch genera-
tion, we perform investigations in the CWE types and the lengths
of the vulnerabilities that can be repaired by T-RAP.

We analyzed the CWEs with the highest frequency in our test
dataset and calculate the Recall metrics respectively. Table 2 shows
the repair performance of T-RAP on vulnerabilities of different CWE
types. It can be seen that T-RAP achieves a balanced performance

in the recall of different CWE types of vulnerabilities, ranging from
23% to 36%. T-RAP achieves the best performance on CWE-190 and
CWE-264, reaching 36.84% and 36.00%, while obtains the worst
performance on CWE-20 and CWE-416 with 23.81% both.

Table 2: The repair performance of T-RAP on vulnerabilities
of different CWE types.

CWE Type CWE Descriptions Recall Proportion

CWE-119 Improper Restriction of Operations
within the Bounds of a Memory Buffer 26.30% 81/308

CWE-125 Out-of-bounds Read 25.00% 18/112
CWE-20 Improper Input Validation 23.81% 25/105
CWE-264 Permissions, Privileges, and Access Controls 36.00% 18/50
CWE-476 NULL Pointer Dereference 25.00% 11/44

CWE-200 Exposure of Sensitive Information to
an Unauthorized Actor 20.93% 9/43

CWE-416 Use After Free 23.81% 10/42
CWE-190 Integer Overflow or Wraparound 36.84% 14/38
CWE-787 Out-of-bounds Write 28.12% 9/32
CWE-399 Resource Management Error 35.48% 11/31
TOTAL 26.83% 216/805

In addition, we counted the CWE types of vulnerabilities fixed by
different AVR techniques. As Fig 6 shows, T-RAP also repairs 3 more
CWE types of vulnerabilities than VulMaster, which makes fully use
of the rich expert knowledge beyond the CWE type from the CWE
system and is good at tackling vulnerabilites with varieties of CWE
type. We also note that T-RAP repaired 2 unique CWE types(CWE-
269 and CWE-674), which have not been repaired by the above
four techniques. T-RAP failed in generating correct patches for
vulnerabilities of CWE-863, CWE-672 and CWE-276, because the
number of these types of vulnerabilities in BigFixes is less than 10,
hardly to support retrieving and patch generating.

Figure 6: CWE types of vulnerabilities fixed by different tech-
niques.

To investigate the effect of different lengths of vulnerabilities
on the repair performance of T-RAP, we divide the our dataset into
several ranges with interval 100 according to the token length after
subword tokenization, and analyse the recall metric on different
length intervals respectively. The result is as Table 3. We find that
the performance of T-RAP decreases as the length increases on the
whole. T-RAP achieves the best performance on the vulnerabilities
on the tokens length less than 100 with 50.52% accuracy, while
the recall substantially drops to 25.41% for vulnerable functions
with tokens between 300 to 400. Considering the T5 model’s maxi-
mum input length of 512 tokens, any additional tokens beyond this
threshold will be truncated, leading to a sharp decrease in recall for
vulnerabilities exceeding 500 tokens. Furthermore, vulnerabilities
longer than 500 tokens constitute more than half of our dataset,
thereby contributing to the overall low repair accuracy of our T-RAP.

T-RAP: A Template-guided Retrieval-Augmented Vulnerability Patch Generation Approach Internetware 2024, July 24–26, 2024, Macau, China

Table 3: The repair performance of T-RAP on vulnerabilities
of different length intervals.

Length Interval Recall proportion
(0,100) 50.52% 49/97
(101,200) 36.90% 62/168
(201,300) 33.11% 49/148
(301,400) 25.41% 31/122
(401,500) 33.33% 36/108
>500 17.17% 96/559

5.3 RQ3: What are the contributions of the
major components of T-RAP?

To investigate the impact of the template-guided retriever in our
T-RAP approach, we excluded our template-retriever from T-RAP
for ablation experiments. In this training phase, the input to the
patch generator was the original vulnerable function along with
the oracle fix without retrievals. We set another two groups of
experiments: T-RAP-Rand and T-RAP-BM25 to further explore the
effects of different retrievers.

The results are presented in Table 4. It is worth noting that
the recall decreased 34.8% after removing our template-retriever,
which proves the effectiveness of our template-guided retriever
in repair performance. Our template-guided retriever, utilized by
T-RAP, repaired 50.1% and 21.8% more vulnerabilities compared to
T-RAP-Rand and T-RAP-BM25 respectively. We observed that the
repair accuracy of T-RAP-Rand closely aligns with the recall of
VulRepair, primarily due to its adaptation of CodeT5 in the patch
generation process.

Table 4: Results of Ablation Study.

Ablation Settings Recall
T-RAP without template-retriever 17.50%

T-RAP-Rand 18.97%
T-RAP-BM25 22.05%

T-RAP 26.87%

6 RELATEDWORK
Template-based AVR. Existing template-based AVR techniques
are mainly aimed at type-specific vulnerabilities, for they are the
same in the root cause thus easy to define templates manually.
Existing research on template-based AVR mainly focus on com-
mon specific types of vulnerabilities such as buffer overflow and
interger overflow, and more feasible repair techniques need to be
proposed for a large number of other types of vulnerabilities. In
addition, existing template-based automated repair approaches are
not truly automated, in which templates can not be applied on the
vulnerabilities directly.

Different from existing template-based AVR techniques, T-RAP
does not restrict the types of vulnerabilities. Templates in T-RAP
plays a role of guiding the repair, not the skeleton of generating
repair patches, therefore can fit in a variety types of vulnerabilities
and can be directly applied on the patch generation.

Learning-based AVR. Chen et al. [6] proposed a Transformer-
based vulnerability repair approach VRepair. VRepair adopted trans-
fer learning technique, which first trained on a large bug fix cor-
pus and fine-tuned on the vulnerability dataset in C. Fu et al. [12]
proposed a T5-based vulnerability repair approach VulRepair. Vul-
Repair adopt Code-T5 pre-trained language model and fine-tuned
the model on the vulnerability repair task.

Different from existing learning-based AVR techniques, inspired
by the way of developers in repairing, T-RAP retrieves historical
repairs to augment the inputs in the patch generation.

7 DISCUSSION
7.1 Compared with Large Language Models
To assess the effectiveness of Large Language Models (LLMs) in
automated vulnerability repair, we use two renowned LLMs: the
GPT-3.5-turbo-0125 model and DeepSeek-Coder. The input consists
of the vulnerable function and the vul-fix pair retrieved by our
template-guided retriever. The output follows the same settings.
The prompt is: "You are an automated vulnerability repair technique.
Here are some historical fixes for reference: . . . Please return the
repaired modified code for the following vulnerable function: . . .".
With the temperature set to zero, the LLMs always return the most
likely repair. Thus, we only utilize the Top-1 recall as the metric.
The results show that the GPT-3.5-turbo-0125 and DeepSeek-Coder
can repair 6.1% and 4.9% of vulnerabilities, respectively. This could
be because current advanced methods are fully fine-tuned on task-
specific datasets. In contrast, ChatGPT is optimized for artificial
general intelligence, not specifically for bug fixes.

7.2 Threats to Validity
Internal Validity. The threats to internal validity mainly comes
from the following three aspects: 1) the retrieval results by tem-
plates. For we retrieve historical repair commits by matching the
context of the buggy nodes in the AST level, there may be irrelevant
repair commits retrieved and interfere the model training, thereby
result in the incorrect patch generated; 2) the parsing errors by
tree-sitter. There may be parsing errors if a new version of a pro-
gramming language introduces new syntactic features or syntactic
rules, and the current version of Tree-sitter has not been updated
to support these changes; 3) the hyperparameter settings of T-RAP.
Different hyperparameter settings will lead to different evaluation
results in neural models, but it is expensive and time-consuming to
find an optimal hyperparameter setting. Therefore, we do conduct a
grid search to find a hyperparameter setting with a relatively better
performance , but cannot make sure current setting is the best.
External Validity. Our approach is only evaluated on the vul-
nerability dataset in C language and covering 180 different CWEs.
We do not study its generalization to the vulnerability datasets of
other programming languages (PLs) and other CWEs. Our approach
is language-specific for we employ the features like ASTs in the
template-mining module, and thus cannot be generalized to other
PLs directly. We leave equipping our approach being language-
agnostic as our future work.
Construct Validity We rely on exact match accuracy to evaluate
the repair performance following previous studies [6, 12, 31]. EM
can reflect the repair performance at a syntactic level, but do not

Internetware 2024, July 24–26, 2024, Macau, China Pei Liu, Bo Lin, Yihao Qin, Cheng Weng and Liqian Chen

consider the semantics of patches. That is, patches semantically
equivalent but not exactly match with the oracle fix will not be
considered as a correct patch. However, limited by the absence of
test cases in existing vulnerability datasets, other metrics cannot be
imported into AVR techniques. We expect to see new vulnerability
datasets equipped with test cases where repairs can be reproducible
in the future work.

8 CONCLUSION
In this paper, we propose a template-guided retrieval-augmented
patch generation approach (T-RAP) for automated vulnerability
repair. T-RAP consists of two components: a template-guided re-
triever to retrieve the relevant historical repair pairs, and a retrieval-
augmented patch generator to output the patches with the vulner-
able function and retrievals as input. Through the evaluation of
the repair accuracy and the analysis of the vulnerabilities fixed, we
show that our T-RAP achieves the best performance in repair accu-
racy than the four studied AVR techniques. All data in this study
are publicly available at: https://zenodo.org/records/11001126.

REFERENCES
[1] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the effective-

ness of unified debugging: An extensive study on 16 program repair systems. In
Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 907–918.

[2] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30–39.

[3] Quang-Cuong Bui, Ranindya Paramitha, Duc-Ly Vu, FabioMassacci, and Riccardo
Scandariato. 2024. APR4Vul: an empirical study of automatic program repair
techniques on real-world Java vulnerabilities. Empirical software engineering 29,
1 (2024), 18.

[4] Deng Cai, Yan Wang, Huayang Li, Wai Lam, and Lemao Liu. 2021. Neural
Machine Translation with Monolingual Translation Memory. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.).
Association for Computational Linguistics, Online, 7307–7318.

[5] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T. Devanbu,
and Baishakhi Ray. 2022. NatGen: Generative Pre-Training by “naturalizing”
Source Code (ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, 18–30.

[6] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer
learning for repairing security vulnerabilities in c code. IEEE Transactions on
Software Engineering 49, 1 (2022), 147–165.

[7] Jianlei Chi, Yu Qu, Ting Liu, Qinghua Zheng, and Heng Yin. 2022. Seqtrans:
automatic vulnerability fix via sequence to sequence learning. IEEE Transactions
on Software Engineering 49, 2 (2022), 564–585.

[8] Roland Croft, M Ali Babar, and MMehdi Kholoosi. 2023. Data quality for software
vulnerability datasets. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). IEEE, 121–133.

[9] CWE. 2024. Common Weakness Enumeration. Website. https://cwe.mitre.org.
[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. ACM, 313–324.

[11] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code
vulnerability dataset with code changes and CVE summaries. In Proceedings of
the 17th International Conference on Mining Software Repositories. 508–512.

[12] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: A T5-Based Automated Software Vulnerability Repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
935–947.

[13] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.

[14] Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor O.K. Li. 2018. Search en-
gine guided neural machine translation (AAAI’18/IAAI’18/EAAI’18). AAAI Press,

Article 629, 8 pages.
[15] Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and Percy Liang. 2018.

A retrieve-and-edit framework for predicting structured outputs. In Proceed-
ings of the 32nd International Conference on Neural Information Processing Sys-
tems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA,
10073–10083.

[16] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using safety properties
to generate vulnerability patches. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 539–554.

[17] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining relevant fix
patterns for automated program repair. Empirical Software Engineering 25, 3
(2020), 1980–2024.

[18] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022. Automating Code Review Activities by Large-Scale Pre-Training. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).
1035–1047.

[19] Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang
Mao. 2023. CCT5: A Code-Change-Oriented Pre-trained Model. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (San Francisco, CA, USA) (ESEC/FSE
2023). Association for Computing Machinery, New York, NY, USA, 1509–1521.

[20] Bo Lin, Shangwen Wang, Zhongxin Liu, Xin Xia, and Xiaoguang Mao. 2022. Pre-
dictive Comment Updating with Heuristics and AST-Path-Based Neural Learning:
A Two-Phase Approach. IEEE Transactions on Software Engineering (06 2022).

[21] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. 2021. Context-Aware
Code Change Embedding for Better Patch Correctness Assessment. ACM Trans-
actions on Software Engineering and Methodology (12 2021), 1.

[22] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
31–42.

[23] Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H Deng. 2017. Vurle:
Automatic vulnerability detection and repair by learning from examples. In
Computer Security–ESORICS 2017: 22nd European Symposium on Research in
Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22.
Springer, 229–246.

[24] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: learning to repair compilation errors. In Proceedings of the 2019
27th ACM ESEC/FSE. 925–936.

[25] Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eckert.
2021. IntRepair: Informed Repairing of Integer Overflows. IEEE Transactions on
Software Engineering 47, 10 (2021), 2225–2241.

[26] S. M Towhidul Islam Tonmoy, S M Mehedi Zaman, Vinija Jain, Anku Rani, Vipula
Rawte, Aman Chadha, and Amitava Das. 2024. A Comprehensive Survey of
Hallucination Mitigation Techniques in Large Language Models.

[27] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2018. An Empirical Study on Learning Bug-
Fixing Patches in the Wild via Neural Machine Translation. ACM Transactions
on Software Engineering and Methodology (TOSEM) 28 (2018), 1 – 29.

[28] Shangwen Wang, Mingyang Geng, Bo Lin, Zhensu Sun, Ming Wen, Yepang Liu,
Li Li, Tegawendé Bissyandé, and Xiaoguang Mao. 2023. Natural Language to
Code: How Far Are We?

[29] Shangwen Wang, Mingyang Geng, Bo Lin, Zhensu Sun, Ming Wen, Yepang Liu,
Li Li, Tegawendé Bissyandé, and Xiaoguang Mao. 2024. Fusing Code Searchers.
IEEE Transactions on Software Engineering PP (01 2024), 1–15.

[30] Shangwen Wang, Bo Lin, Zhensu Sun, Ming Wen, Yepang Liu, Yan Lei, and
Xiaoguang Mao. 2023. Two Birds with One Stone: Boosting Code Generation
and Code Search via a Generative Adversarial Network. Proceedings of the ACM
on Programming Languages 7.

[31] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. RAP-Gen:
Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program
Repair. In Proceedings of FSE.

[32] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696–8708.

[33] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-guided
precise program repair for null pointer dereferences. In Proceedings of the 41st
International Conference on Software Engineering. IEEE, 512–523.

[34] Stephen E. Robertson;Hugo Zaragoza. 2009. The probabilistic relevance frame-
work: BM25 and beyond(Article). Foundations and Trends in Information Retrieval
(2009), 333–389. Issue No.4.

[35] Xin Zhou, Kisub Kim, Bowen Xu, Donggyun Han, and David Lo. 2024. Out of
Sight, Out of Mind: Better Automatic Vulnerability Repair by Broadening Input
Ranges and Sources. In International Conference on Software Engineering.

https://zenodo.org/records/11001126
https://cwe.mitre.org

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Automated Vulnerability Repair
	2.2 Retrieval-Augmented Generation

	3 APPROACH
	3.1 Templates-indexing Retriever
	3.2 Data Processing
	3.3 Patch Generation
	3.4 Patch Inference

	4 EXPERIMENTAL DESIGN
	4.1 Research Questions
	4.2 Dataset
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Implementation Details

	5 EXPERIMENTAL RESULTS
	5.1 RQ1: How does T-RAP perform to repair vulnerabilities in open source projects compared with other AVR approaches?
	5.2 RQ2: How does T-RAP perform in fixing vulnerabilities of different types and complexity?
	5.3 RQ3: What are the contributions of the major components of T-RAP?

	6 Related Work
	7 DISCUSSION
	7.1 Compared with Large Language Models
	7.2 Threats to Validity

	8 CONCLUSION
	References

