
MatsVD: Boosting Statement-Level Vulnerability Detection via
Dependency-Based Attention

Cheng Weng
National University of Defense

Technology
Changsha, China

wengcheng@nudt.edu.cn

Yihao Qin
National University of Defense

Technology
Changsha, China

yihaoqin@nudt.edu.cn

Bo Lin
National University of Defense

Technology
Changsha, China

linbo19@nudt.edu.cn

Pei Liu
National University of Defense

Technology
Changsha, China

liupei@nudt.edu.cn

Liqian Chen∗
National University of Defense

Technology
Changsha, China

lqchen@nudt.edu.cn

ABSTRACT
Software vulnerabilities inevitably arise during software develop-
ment and may leave behind huge security risks. In order to detect
and mitigate vulnerabilities before they can be exploited, various
fine-grained deep learning (DL)-based vulnerablity detection (VD)
approaches have been proposed to locate vulnerable statements,
among which the Transformer-based methods have shown promis-
ing performances. However, existing Transformer-based statement-
level approaches still suffer from a crucial limitation: they ignore
the intrinsic data/control dependency relations between the state-
ments. In this work, we propose a novel Transformer-based model
MatsVD, which aims to address the above challenge from two as-
pects: Firstly, inspired by the hierarchical structure of code (i.e.,
tokens, statements, and functions), MatsVD comprises three dif-
ferent Transformer-based layers (i.e., statement embedding layer,
statement representation layer, and function representation layer)
to gradually aggregate the basic code tokens into meaningful state-
ment/function representations; Secondly, to further exploit the
data/control dependencies between statements, we replace the
original attention mechanism of the Transformer with a novel
dependency-based attention by masking irrelevant attention scores
according to the program dependency graph. We comprehensively
evaluate MatsVD on the widely used C/C++ vulnerability dataset
Big-Vul. The results show that MatsVD significantly outperforms
6 other statement-level methods on both binary classification and
ranking metrics. In particular, MatsVD obtains an F1 score of 86%
and a Top-1 Accuracy of 93% on statement-le, which improves
by respectively 22.97% and 7.76% compared to the state-of-the-art
method VELVET.

∗Liqian Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Internetware 2024, July 24–26, 2024, Macau, Macao
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0705-6/24/07
https://doi.org/10.1145/3671016.3674807

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Software Vulnerability Detection, Deep Learning, Transformer

ACM Reference Format:
Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Liqian Chen. 2024. MatsVD:
Boosting Statement-Level Vulnerability Detection via Dependency-Based
Attention. In 15th Asia-Pacific Symposium on Internetware (Internetware
2024), July 24–26, 2024, Macau, Macao. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3671016.3674807

1 INTRODUCTION
Software vulnerabilities refer to accessible and exploitable secu-
rity issues in software systems due to insecure coding practices.
NVD disclosed 26,447 vulnerabilities in 2023, compared to only
18,938 reported in 2019, indicating that the number of software
vulnerabilities is growing rapidly [24]. In particular, over 176,000
vulnerabilities are recorded in the National Vulnerability Database
(NVD) [7] and the Common Vulnerabilities and Exposures (CVE)
[6]. The insidious and harmful nature of the vulnerabilities could
pose significant financial and social risks.

To mitigate this challenge, researchers have proposed various
techniques for software vulnerability detection (VD), which can
mainly be classified into two categories: (1) program analysis-based
approaches, and (2) Deep Learning (DL)-based approaches. Program
analysis-based approaches [2, 4, 12] use manual predefined vulner-
ability templates to detect specific types of vulnerabilities, such
as Out-of-bounds Write, Cross-site Scripting, and Use After Free.
However, due to the diversity and complexity of software vulnera-
bilities, it is unaffordable to define an accurate and comprehensive
template for every type of vulnerability. Consequently, DL-based
approaches [1, 19, 35] are increasingly being proposed to identify
a broader range of vulnerabilities without human labor. Typically,
DL-based approaches first utilize code representation learning to
implicitly capture the vulnerability patterns in the source code, and
then detect vulnerabilities through a classifier model.

Recently, to provide developers with more precise detection re-
sults, statement-level DL-based VD approaches have been proposed

https://doi.org/10.1145/3671016.3674807
https://doi.org/10.1145/3671016.3674807

Internetware 2024, July 24–26, 2024, Macau, Macao Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Liqian Chen

to identify vulnerable statements within a function. Specifically,
some of these approaches [14, 17] represent source code as graphs in
multiple views such as data flow graph (DFG), code property graph
(CPG) [32], and program dependency graph (PDG) [11], and then
predict suspicious nodes that correspond to the vulnerable state-
ments with various GNNs. Other approaches [8, 13, 21], however,
directly transform the source code to token sequences and capture
the syntactic features and semantic information of the statements
with sequence-based DL models such as RNN and Transformer.

Although Transformer has been shown to be superior at captur-
ing syntactic and semantic features of source code [13], existing
Transformer-based approaches suffer from a limitation: they simply
consider the source code as a set of sequential code statements that
are fed directly into Transformer. Consequently, the self-attention
mechanism [26] in Transformer treats code statements as fully
connected relationships, which ignores the intrinsic structural in-
formation of the source code (e.g., data or control dependencies).
This oversight may result in a gap between the vulnerability fea-
tures learned by the model and the underlying semantics of the
code, potentially compromising the performance of VD.

To alleviate the above limitation, we introduce a novel Transformer-
based approach for statement-level VD. Intuitively, we notice that
the source code possesses an intrinsic three-level hierarchical struc-
ture: tokens, statements that are connected through data and control
dependency relationships, and functions. Therefore, we propose to
learn code representations with structural information through a
three-layer Transformer-based model: (1) Statement embedding
layer. First, to obtain more meaningful source code embeddings,
we employ a Transformer-based pre-trained model [28] to generate
token embeddings and aggregate them into statement embeddings.
(2) Dependency-based statement representation layer. Sec-
ond, rather than directly feed the statement embeddings into the
Transformer model, we equip the model with the ability to exploit
the data/control dependencies between statements. Particularly, we
transform source code into PDGs, and then selectively mask par-
tial attention in the Transformer based on the connectivity of the
nodes in the PDGs. The masked attention can reduce the interfer-
ence of information from irrelevant statements and thus generate
statement representations with inter-statement dependency infor-
mation. (3) Function representation layer. Finally, we aggregate
all statement representations into a function representation using
the attention mechanism for obtaining semantic information of
the whole function. After the generation of statement and func-
tion representations, two MLP networks are trained as classifiers
to identify vulnerable statements and functions, respectively. We
name our model as MatsVD (Masked-attention Transformer-based
statement-level Vulnerability Detection approach).

We compared MatsVD against six DL-based statement-level vul-
nerability detection approaches (i.e., TextCNN [16], ICVH [21],
IVDetect [17], LineVD [14], LineVul [13] and VELVET [8]) on the
Big-Vul [9], a large real-world dataset with line-level labels. Evalu-
ation results show that our approach significantly outperforms the
existing VD techniques. Specifically, MatsVD obtains an F1 score of
86% and a Top-1 Accuracy of 93% on the statement-level VD, with
a relative improvement of 22.97% and 7.76% over the best baseline
VELVET. In addition, we performed an ablation study to validate

the contribution of each layer of MatsVD in statement-level vulner-
ability detection. Finally, We conduct quantitative and qualitative
studies to explore how masked attention and Transformer-based
embedding aggregation improve the performance of detecting vul-
nerable statements.

The main contributions of this paper are as follows:
• Methodology. We propose to incorporate inter-statement
data and control dependency information into the Trans-
former via masked attention, which reduces the interference
of irrelevant attention computation for generating better
code representation.

• Tool. We propose MatsVD, a novel DL-based approach for
statement-level vulnerability detection. MatsVD comprises
three Transformer layers, corresponding to the intrinsic
three-level hierarchical structure of code: tokens, statements,
and functions. MatsVD is publicly available at https://github.
com/MatsVD/MatsVD.

• Experiment. We extensively evaluate the effectiveness of
MatsVD on the large real-world vulnerability dataset Big-Vul
[9]. The experimental results show that MatsVD significantly
outperforms other statement-level baselines in terms of both
binary classification and ranking metrics.

2 BACKGROUND
2.1 Transformer
The Transformer [26] model consists of two parts: encoder and
decoder. For vulnerability detection, only the encoder is used to
convert the source code into vector representations. The encoder
consists of 𝑁 identical layers and each layer consists of two com-
ponents: a multi-head self-attention layer and a fully connected
feed-forward network. Let 𝑋 𝑣 = [𝑥𝑣1 , 𝑥

𝑣
2 , . . . , 𝑥

𝑣
𝑛] ∈ R𝑛×𝑑 repre-

sents the input vectors, where 𝑛 is the sequence length and 𝑑 is the
embedding size. The input matrix 𝑋 𝑣 is firstly respectively multi-
plied by three different weight matrices𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 to obtain
three main components, namely, Query (𝑄), Key (𝐾) and Value (𝑉).
Then, the scaled dot products of the query with all keys are calcu-
lated to obtain the attention score matrix 𝐴 ∈ R𝑛×𝑛 . The element
𝑎𝑖 𝑗 of matrix 𝐴 represents the similarity between the embedding
vector 𝑥𝑣

𝑖
and 𝑥𝑣

𝑗
. Finally, attention scores are normalized to atten-

tion weights that are multiplied by corresponding value vectors
to obtain attention vectors. After all the self-attentions have been
calculated, they are concatenated to obtain the multi-head attention.
The calculation of the self-attention and the vector representations
𝑋 𝑡 is shown below:

𝑄 = 𝑋 𝑣𝑊𝑄 , 𝐾 = 𝑋 𝑣𝑊𝐾 , 𝑉 = 𝑋 𝑣𝑊𝑉 , (1)

𝐴 =
𝑄𝐾⊤√︁
𝑑𝑘

, 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = softmax(𝐴)𝑉 , (2)

𝑀𝑡 = 𝐿𝑁 (𝑋 𝑡−1 +𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑋 𝑡−1)),
𝑋 𝑡 = 𝐿𝑁 (𝑀𝑡 + 𝐹𝐹𝑁 (𝑀𝑡)),

(3)

where 𝑋 0 = 𝑋 𝑣 , 𝑡 ∈ [1, . . . , 𝑁], 𝑀𝑡 is the attention output after
residual connection and layer normalization,𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 is a multi-
head self-attention layer, 𝐹𝐹𝑁 is a fully connected feed-forward
network, and 𝐿𝑁 denotes layer normalization.

https://github.com/MatsVD/MatsVD
https://github.com/MatsVD/MatsVD

MatsVD: Boosting Statement-Level Vulnerability Detection via Dependency-Based Attention Internetware 2024, July 24–26, 2024, Macau, Macao

1 void foo()
2 {
3 int x = getData();
4 int y = 0;
5 if (x < 0)
6 y = x + y;
7 else
8 y = x - y;
9 }

5

3

6

8

4

(a) Exemplary code sample (b) Program dependence graph (PDG)

Control dependency edge
Data dependency edge

Figure 1: ProgramDependence Graph for an exemplary code.

2.2 Program Dependence Graph
Program Dependence Graph (PDG) is an intermediate program rep-
resentation [11] for program analysis. Figure 1 shows a simple code
example. The PDG on the right side represents the code on the left
side as a graph𝐺 = (𝑉 , 𝐸), where𝑉 is a set of nodes corresponding
to the code statements, and 𝐸 is a set of data and control dependence
edges that labeled with green and red arrows, respectively. The data
dependence edges reflect the dataflow relations between statements.
For example, the variable x declared in line 3 is used in statement
y = x + y; in line 6, which is represented as an edge from node
3 to node 6 in the PDG. The control dependence edges represent
the control relationships between statements, for example, the if
condition at line 5 decides the execution of statements in line 6
and line 8, which induce two edges from node 5 to node 6 and 8,
respectively.

3 APPROACH
3.1 Problem definition
In real-world scenarios, developers typically first determinewhether
a given function is vulnerable, and then further identify vulnera-
ble statements within the vulnerable function. This practice can
prevent the time wasted on trying to locate vulnerable statements
from benign functions. Therefore, we formulate statement-level
VD as a two-phase binary classification problem in this work. In
the first phase, we predict whether a given function is vulnerable or
benign. If the function is identified as vulnerable, the second phase
is then activated to predict which statements are vulnerable in all
the code statements.

We formalize the dataset as {(𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) |𝑋𝑖 ∈ X, 𝑌𝑖 ∈ Y, 𝑍𝑖 ∈
Z, 𝑖 ∈ {1, 2, . . . , 𝑁 }}, where N is the number of functions,X is a set
of code functions, Y = {0, 1} is the function-level label set with 1
denotes vulnerable and 0 denotes benign,Z = {(𝑧1, 𝑧2, . . . , 𝑧𝑛) |𝑧𝑖 ∈
{0, 1},∀𝑖 = 1, 2, . . . , 𝑛} is a flat binary vector set with 1 indicates vul-
nerable statement and 0 otherwise, and n is the maximum number
of statements we consider in a function.

3.2 MatsVD Framework
3.2.1 Overview. As shown in Figure 2, MatsVD consists of three
main components: (1) statement embedding layer that is used to
transform textual code statements into numerical embedding vec-
tors, (2) statement representation layer that is used to capture data
and control dependencies between statements to generate state-
ment representations through masked attention, and (3) function

representation layer that is used to aggregate statement representa-
tions into function representations. After obtaining statement rep-
resentations and function representations, we first feed the function
representations into a function-level classifier to determine whether
the given function is vulnerable. If it is predicted to be vulnerable,
the statement representations will be fed into a statement-level
classifier to further identify vulnerable statements.

3.2.2 Statement Embedding Layer. The statement embedding layer
is the fundamental layer to transform the textual code statements
into numerical vector embeddings that can be processed by deep
learning models. Previous approaches [8, 30] adopted a typically
primitive way to obtain statement embeddings. They first generate
an embedding vector for each token by an embedding model (e.g.,
Word2Vec [20]) and then aggregate the token embeddings of a
statement to get the corresponding statement embedding using
max pooling or average pooling. However, the existing statement
embedding generation approachesmay suffer from several potential
performance losses. On the one hand, the max pooling strategy
extracts the maximum token embedding of each statement, which
may result in information loss. On the other hand, the average
pooling treats all the tokens equally, which can potentially dilute
the impact of prominent tokens.

Transformer-based Embedding Aggregation. To enhance
the quality of the initialized statement embeddings, MatsVD pro-
poses to utilize a code pre-trained model CodeT5 [28] to gener-
ate an embedding for each token in a statement, then employ the
self-attention mechanism [26] to naturally aggregate the token
embeddings into statement embeddings. We expect to obtain better-
initialised token embeddings With the pre-trained model, which
could get moremeaningful code representations and improvemodel
capabilities. Moreover, different from existing statement embed-
ding approaches that adopt average or max pooling strategies for
token embedding aggregation, MatsVD adds an extra special token
at the beginning of the token sequence of a statement, and takes
the corresponding output embedding of the special token as the
statement embedding. Inspired by the concept of the classification
token in some Transformer-based models for downstream classifi-
cation tasks [18], we argue that the special token could naturally
guide the Transformer model to aggregate the information through
self-attention computation. The overall process of the statement
embedding layer can be formalized as follows:

Given a function consisting of𝑛 code statements𝑋𝑖 = [𝑥1, . . . , 𝑥𝑛],
we first use byte pair encoding (BPE) [23] to tokenize each statement
𝑥 𝑗 (𝑗 ∈ {1, 2, . . . , 𝑛}) to a sequence of tokens denoted as [𝑡1, . . . , 𝑡𝑟],
where 𝑟 is the max number of tokens we consider in a statement.
Then, we insert a special token 𝑡0 = “<s>” at the beginning of
each sequence and feed it into the CodeT5 encoder, which results
in the vector representations of all tokens from the output of the
last encoder layer. Finally, we retain the vector representation of
the first token (i.e., the vector corresponds to the special token)
as the statement embedding for 𝑥 𝑗 and name it as 𝑥𝑣

𝑗
∈ R𝑑 . In

summary, given a function 𝑋𝑖 , the statement embedding layer pro-
duces the statement embedding for each code statement, denoted
as 𝑋 𝑣

𝑖
= [𝑥𝑣1 , 𝑥

𝑣
2 , . . . , 𝑥

𝑣
𝑛] ∈ R𝑛×𝑑 .

Internetware 2024, July 24–26, 2024, Macau, Macao Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Liqian Chen

Source Code

Dependency-based

Statement Representation Layer

Statement Embeddings

Statement Representations

Function Representations

Extra Token

T
o
k
e
n
iz

e
r

Statement Embedding Layer

C
o

d
e
T

5
 E

n
c
o

d
e
rs

𝑥𝑛𝑥1 …

Tokenized Statement

…

PDG Mask Matrix

x N

Function Representation Layer

F
u
n
c
tio

n
-le

v
e
l

C
la

s
s
ifie

r

Vulnerable

Benign

Graph

Extraction
Mask Matrix

Construction

M
u
lti-H

e
a
d

S
e
lf-A

tte
n
tio

n

F
e
e
d
-F

o
rw

a
rd

 N
e
tw

o
rk

F
e
e
d
-F

o
rw

a
rd

 N
e
tw

o
rk

M
u
lti-H

e
a
d

S
e

lf-A
tte

n
tio

n

Statement-level

Classifier

or

Vulnerable Statements

Extra Vector

Figure 2: An overview architecture of MatsVD.

3.2.3 Dependency-based Statement Representation Layer. Intuitively,
vulnerabilities may caused by the vulnerable statements interacting
with other dependent statements. Consequently, to identifywhether
a statement is vulnerable, it is not only necessary to consider its
own syntactic and semantic information (we have achieved it in
the aforementioned statement embedding layer), but also crucial to
capture valuable features from the relevant contextual information
(i.e., the other dependent statements). However, although previous
work [13] has shown the Transformer model’s capability to capture
long-term dependencies between source code tokens, the primi-
tive self-attention computation (mentioned in Section 2.1) treats
each token equally, which failed to employ the inter-statement data
or control dependencies. In this layer, MatsVD aims to utilize the
data and control dependencies between statements for generating
more meaningful statement representations. Specifically, to guide
the Transformer model capture dependencies between statements
more efficiently, we encode the dependencies within an input func-
tion as a mask matrix and then apply it to the attention score matrix
during the self-attention computation.

Mask Matrix Construction. Formally, we first obtain the PDG
𝐺 = (𝑉 , 𝐸) of a given function through program analysis [31],
where 𝑉 is a set of nodes representing code statements and 𝐸 is
a set of data and control dependency edges. Let (𝑣𝑖 , 𝑣 𝑗) denotes a
data or control dependency edge between statements 𝑥𝑖 and 𝑥 𝑗 ,
where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. Note that we do not explicitly distinguish
the different edge types in the constructed PDG, because the alone
data/control relationship between statements may be too sparse.
According to the PDG, we then construct a mask matrix𝑀 ∈ R𝑛×𝑛
consisting of zero and minus infinity. We define𝑚𝑖 𝑗 as the (𝑖, 𝑗)-
element of the mask matrix𝑀 . As shown in Equation 4, if there is
no data or control dependency between code statements 𝑥𝑖 and 𝑥 𝑗 ,
we set𝑚𝑖 𝑗 as minus infinity. Otherwise, we set it as zero. Note that
our intuition is that each statement is naturally most relevant to
itself, even if it is not represented as data or control dependency.
Thus, we do not mask the attention score at the position (𝑖, 𝑗) when
𝑖 = 𝑗 . Figure 3 shows an example of the construction process of
a mask matrix. For example, the edge from node 3 to node 6 is
derived from the fact that the variable 𝑥 declared at line 3 is used at
line 6. Therefore, the element𝑚36 and𝑚63 in the mask matrix𝑀

are set to zero, which means there is a data dependency between
code statements 𝑥3 and 𝑥6. On the contrary, since there is no data
or control dependency between statements 3 and 4, the elements
𝑚34 and𝑚43 in the mask matrix𝑀 are set to minus infinity.

𝑚𝑖 𝑗 =

{
0, (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 𝑜𝑟 𝑣𝑖 = 𝑣 𝑗
−∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

Dependency-based Attention. After obtaining the mask ma-
trix𝑀 , we then utilize it to modify the self-attention computation
in the Transformer model. Intuitively, we argue that although the
original self-attention mechanism can adaptively focus on impor-
tant inputs during the training process, the fully-connected manner
may still cause interference of information from irrelevant inputs.
Consequently, we employ the mask matrix 𝑀 to explicitly guide
the model to concentrate on specified inputs, i.e., other statement
embeddings that possess data or control dependencies with the
current statement embedding. Let 𝑎𝑖 𝑗 denote the (𝑖, 𝑗)-element of
the attention score matrix 𝐴 in equation 2, we modify it by adding
𝑚𝑖 𝑗 as below:

𝑎𝑖 𝑗 =

(
𝑥𝑣
𝑖
𝑊𝑄

) (
𝑥𝑣
𝑗
𝑊𝐾

)𝑇√︁
𝑑𝑘

+𝑚𝑖 𝑗 . (5)

We then normalize the attention scores using the softmax func-
tion to get the attention weights and multiply them by the value
vectors to obtain the attention vector as below:

𝑤𝑖 𝑗 = Softmax
(
𝑎𝑖 𝑗

)
=

exp(𝑎𝑖 𝑗)∑𝑛
𝑗=1 exp

(
𝑎𝑖 𝑗

) , (6)

𝑐𝑖 =

𝑛∑︁
𝑗=1

𝑤𝑖 𝑗 (𝑥𝑣𝑗𝑊
𝑉), (7)

where 𝑐𝑖 is the output vector of the self-attention calculation which
corresponds to statement 𝑥𝑖 , and𝑤𝑖 𝑗 is the attention weight that
indicates the contribution degree of statement 𝑥 𝑗 in generating
the statement representation of 𝑥𝑖 . Considering the modified self-
attention, when statements 𝑥𝑖 and 𝑥 𝑗 have no dependency rela-
tionship, we add an infinitely negative value to the corresponding
attention scores. In this way, the attention weights outputted by

MatsVD: Boosting Statement-Level Vulnerability Detection via Dependency-Based Attention Internetware 2024, July 24–26, 2024, Macau, Macao

1 int foo() {
2 int x = getData();
3 int y = 0;
4 int z = 1;
5 if (x < 0)
6 z = x + y + z;
7 return 0;}

5

3

6

4
2

7 1

Source Code PDG Mask Matrix

1 2 3 4 5 6 7

Data dependency edge 0
−∞Control dependency edge

1
2

3

4

5

6

7

Figure 3: An example of mask matrix construction.

the softmax function are zero, which means that the embedding of
𝑥𝑖 has no contribution to the representation computation of 𝑥 𝑗 , and
vice versa. In other words, dependency-based self-attention guides
the model to generate the statement representations by only con-
sidering the statements that are dependent on them, thus avoiding
the influence of irrelevant information.

After getting the vectors for each statement, the output of the
current encoder will be fed into the next encoder according to Eq.
3. We utilize the output vectors of the last encoder as statement
representations. All the statement representations are denoted as
𝑆𝑣
𝑖
= [𝑠𝑣1 , 𝑠

𝑣
2 , . . . , 𝑠

𝑣
𝑛] ∈ R𝑛×𝑑 , where 𝑠𝑣

𝑖
∈ R𝑑 represents the state-

ment representation of 𝑥𝑖 .

3.2.4 Function Representation Layer. In this layer, we aim to ag-
gregate the statement representations we have obtained into the
function representation for function-level vulnerability detection.
Similar to the aggregation of the token embeddings in the state-
ment embedding layer, we argue that some code statements may
contribute more to identifying function-level vulnerabilities than
others. Therefore, we utilize the intrinsic self-attention mechanism
of the Transformer to allow the model to adaptively concentrate on
the statements that are more important and aggregate statement
representations to form the function representation.

Specifically, given a sequence of statement representations 𝑆𝑣
𝑖
=

[𝑠𝑣1 , 𝑠
𝑣
2 , . . . , 𝑠

𝑣
𝑛] ∈ R𝑛×𝑑 , we first insert an extra special vector 𝑠𝑣0 at

the beginning position. The vector is regarded as a statement-level
context vector used to measure the importance of the statement
based on the similarity between 𝑠𝑣0 and 𝑠𝑣

𝑖
. Then we input the se-

quence into Transformer to derive 𝑛 + 1 vector representations.
During the computation process, the vector representation of the
beginning position is computed as a weighted sum of all the state-
ment representations based on their importance. Consequently,
we preserve the vector at the beginning position as the function
representation for function-level detection, denoted as𝑀𝑣

𝑖
∈ R𝑑 .

3.2.5 Linear Classifiers. In the training phase, given a function
𝑋𝑖 = [𝑥1, . . . , 𝑥𝑛] and the corresponding labels 𝑌𝑖 and 𝑍𝑖 , we aim
to learn two mapping functions to precisely detect the vulnerable
statements in a function. One map function 𝑓 : X → Y is designed
to identify whether a given function is vulnerable or not, and an-
other map function 𝑔 : X → Z is employed to further predict
the problematic statements within the function. Specifically, two
multi-layer perceptron (MLP) networks are trained as classifiers
to perform two-stage vulnerability detection. We denote the cross
entropy loss function as L(.) and optimize the model parameters

by minimizing the following loss function:

min
1
𝑁

𝑁∑︁
𝑖=1

(
L𝑖func + L𝑖statement

)
,

𝑠 .𝑡 . L𝑖func = L(𝑓 (𝑋𝑖 , 𝑌𝑖 | 𝑋𝑖)),
L𝑖statement = L(𝑔(𝑋𝑖 , 𝑍𝑖 | 𝑋𝑖)).

(8)

In the inference phase, a function 𝑋𝑖 is firstly transformed into
one function representation𝑀𝑣

𝑖
and a set of statement representa-

tions 𝑆𝑣
𝑖
through the three-layer MatsVD encoding model. Then, we

employ the trained classifiers to convert the representations into
the function-level probability 𝑌𝑖 ∈ [0, 1] and the statement-level
probabilities 𝑍𝑖 = [𝑧𝑖1, . . . , 𝑧𝑖𝑛] ∈ [0, 1]𝑛 , respectively. We predict
function 𝑋𝑖 as vulnerable if function-level probability 𝑌𝑖 is greater
than a predefined threshold 𝑡𝑓 . If 𝑋𝑖 is predicted as vulnerable, we
further predict which statements in𝑋𝑖 are vulnerable by comparing
the probabilities in 𝑍𝑖 with another threshold 𝑡𝑠 . Note that if a func-
tion is predicted as benign, we mute the statement-level classifier
to directly predict all statements in this function as benign.

4 EXPERIMENTAL DESIGN
4.1 Research Questions
To evaluate the effectiveness of MatsVD in detecting vulnerable
statements, we aim to investigate the following three questions:

RQ1: How effective is MatsVD for statement-level vulner-
ability detection?

RQ2: How does each component affect the performance
of MatsVD at the statement level?

RQ3: How domasked attention and Transformer-based ag-
gregation help locate vulnerable statements more precisely?

4.2 Datasets
In order to fully evaluate the effectiveness of our method at the
statement level, we choose the large real-world dataset Big-Vul [9].
Extracted from 348 Github projects, the Big-Vul dataset comprises
188,000 C/C++ functions, which encompasses 3,754 code vulnerabil-
ities across 91 distinct vulnerability types. We select this dataset for
our evaluation for the following reasons: (1) Big-Vul is one of the
largest vulnerability datasets with line-level ground truths, which
is indispensable to training a statement-level VD model such as
MatsVD. (2) Big-Vul comes from real-world vulnerabilities. Pre-
vious study [1] has shown that model performance can be more
realistically evaluated on real-world vulnerability projects. (3) Big-
Vul is widely used, which has been utilized by three state-of-the-art
approaches (i.e., IVDetect [17], LineVD [14] and LineVul [13]) to
assess the performance of statement-level VD.

To the best of our knowledge, there are other datasets with
statement-level labels that have been used in other studies [8],
such as Juliet Test Suite [25] and D2A [34]. However, we did not
evaluate MatsVD on these datasets in this work for the following
reasons: (1) Juliet Test Suite is an artificially produced synthetic
dataset, which has been demonstrated to fall short in reflecting
real-world vulnerability patterns [1]. (2) The statement labels in
D2A are obtained from the results of static analyzers, which may
carry many false positives and false negatives and thus affect the
performance of the model [5].

Internetware 2024, July 24–26, 2024, Macau, Macao Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Liqian Chen

4.3 Baselines
We compare MatsVD with six statement-level deep learning-based
vulnerability detection methods.

CNN-based and RNN-based Methods. TextCNN [16] uses a
CNN-based model for sentence-level classification tasks. ICVH [21]
leverages two bi-RNNs to detect statement-level vulnerabilities by
maximizing mutual information.

GNN-based Methods. IVDetect [17] leverages a graph convo-
lution network [15] to predict function-level vulnerabilities and a
GNNExplainer [33] to further locate vulnerable statements. LineVD
[14] represents source code as PDGs and leverages a graph attention
network [27] for statement-level VD.

Transformer-based Methods. LineVul [13] leverages the prin-
ciple of model interpretability to find the most prominent lines that
are interesting to the Transformer model (i.e., the lines with the
highest attention scores). VELVET [8] combines a Transformer-
based model and a GNN model to capture the semantics of state-
ments for statement-level VD.

4.4 Evaluation Metrics
In addition to the binary classification problem as defined in Section
3.1, statement-level VD can also be considered as a ranking problem
where models rank statements by suspicious scores in a vulnerable
function. Therefore, We measure the performance of the statement-
level approaches on both binary classification and ranking metrics.

Classification Metrics. On the binary classification problem,
we report the Matthews Correlation Coefficient (MCC), Precision
(Pre), Recall (Re), and F1 Score (F1) metrics of each method:

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)
,

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , 𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝐹1 =
2 × 𝑃𝑟𝑒 × 𝑅𝑒
𝑃𝑟𝑒 + 𝑅𝑒 ,

(9)

where 𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁 , and 𝐹𝑁 is the number of true positives, false
positives, true negatives, and false negatives, respectively. MCC is
particularly suitable for dealing with unbalanced datasets. It takes
values between -1 and +1, with higher values indicating better
model performance.

Ranking Metrics. We use Mean First Ranking (MFR), Mean
Average Ranking (MAR), and Top-k Accuracy (Top-k).

MFR measures the average ranking of the first vulnerable state-
ment, and MAR measures the average ranking of all the vulnerable
statements. They are defined as:

𝑀𝐹𝑅 =

∑𝑁
𝑖=1 𝐹𝑅(𝑖)
𝑁

,𝑀𝐴𝑅 =

∑𝑁
𝑖=1𝐴𝑅(𝑖)
𝑁

, (10)

where 𝑁 is the number of vulnerable functions, 𝐹𝑅(𝑖) denotes the
rank of the first vulnerable statement among the 𝑖-th vulnerable
function, and 𝐴𝑅(𝑖) denotes the average rank of all the vulnerable
statements on the 𝑖-th vulnerable function. Lower𝑀𝐴𝑅 and𝑀𝐹𝑅
indicate higher accuracy of vulnerability localization.

Top-k Accuracy measures the percentage of vulnerable functions
where at least one actual vulnerable statement is ranked in the
Top-k, over all the vulnerable functions. Higher values of Top-k
Accuracy indicate better detection performance.

4.4.1 Evaluation Scenario. To better evaluate the performance of
the statement-level VD methods, we set two evaluation scenarios
for binary classification: (1)Two-Phase Detection. In this scenario,
only when the function is classified as vulnerable by the model, the
vulnerable statements are further detected. The scenario is more
consistent with vulnerability detection in practice and reflects the
models’ authentic detection capability. (2) One-Phase Detection.
This scenario eliminates interference from function-level detection,
which concentrates on reflecting the statement-level VD perfor-
mance of the model. We use the same trained models and only input
vulnerable functions for the models to detect vulnerable statements.

4.5 Experimental Setup
Data Preprocessing and Splitting. We generate the PDG for
each function through Joern [31], which is a program analysis tool
widely used by existing research [8, 14]. Due to the limitation of Jo-
ern and the incorrect syntax of some functions, we discarded some
functions for which we failed to get their corresponding PDGs.
Then, we delete all the blank lines in the remaining functions. Fi-
nally, We follow existing works [14, 17] to obtain line-level ground
truth from the vulnerability-fixing commit: (1) Deleted or modified
lines in the vulnerable version for fixing are treated as vulnerable.
(2) If some lines are added to the vulnerable version for fixing, all
lines that are are control or data dependent on the added lines in
the vulnerable version are also considered vulnerable. The distri-
bution of the processed Big-Vul dataset is similar to the real-world
scenario[1], where the number of vulnerable and benign functions
are 7977 and 177,982 respectively, with an approximate proportion
of 1:20. Following the previous work [13], we randomly split the
entire dataset into training, validation, and test sets by the ratio of
8:1:1.

Implementation Details. Based on the Transformer model,
MatsVD requires all input sequences to be of equal length. In order
to avoid the loss of valuable information as much as possible, we
investigate the code length distribution of the dataset, which shows
that approximately 95% of functions contain less than 155 lines and
about 95% of lines contain less than 20 tokens. Therefore, we define
the max number of statements 𝑛 = 155 in a function and the max
number of tokens 𝑟 = 20 in a statement for MatsVD and all the
baselines. Note that we treat each line in the source code as a code
statement in this work. For functions or statements that exceed
or fall short of their corresponding thresholds, we either pad or
truncate them as necessary.

Hyper-Parameters Settings. For the pre-trainedmodel CodeT5
[28] used in the statement embedding layer, we use its default
settings, i.e., 12 Transformer encoder layers, 768 hidden sizes, and
12 attention headers. We use 4 Transformer encoder layers for
generating statement representations and 1 layer for generating
function representations, respectively. We set the training batch
size to 16, and the epoch size to 20. For classifier models, we set
both the threshold of the function and the statement-level VD to
0.5. The learning rate is set to 5e-5. We use Adam as the training
optimizer. The model is trained on the Ubuntu20.04 system with
80GB RAM, AMD EPYC 7543 CPU, and A40 graphics card.

MatsVD: Boosting Statement-Level Vulnerability Detection via Dependency-Based Attention Internetware 2024, July 24–26, 2024, Macau, Macao

Table 1: Results of VD methods on the classification metrics.

Method
Two-Phase Detection One-Phase Detection

Function Level Statement Level Statement Level
Mcc Pre Re F1 Mcc Pre Re F1 Mcc Pre Re F1

TextCNN 0.3849 61.75 26.20 36.79 0.1404 21.10 30.15 24.83 0.2206 26.24 40.27 31.78
ICVH 0.4556 65.73 33.94 44.76 0.1804 21.39 43.85 28.75 0.2656 27.34 50.76 35.54

IVDetect 0.6171 72.28 55.23 62.61 0.3014 28.36 58.46 38.19 0.3564 31.52 65.06 42.47
LineVD 0.7537 82.47 70.76 76.17 0.3899 35.52 63.86 45.65 0.4506 40.94 67.38 50.93
LineVul 0.8224 87.65 78.58 82.87 0.4951 62.10 47.45 53.79 0.5299 62.38 53.40 57.54
VELVET 0.8973 95.41 85.19 90.01 0.6966 68.74 71.23 69.96 0.6781 59.87 86.25 70.68

MatsVD (ours) 0.9361 97.53 90.37 93.81 0.8606 91.57 81.13 86.03 0.8585 89.90 84.86 87.31

Table 2: Results of VD methods on the ranking metrics.

Method Top-1 Top-3 Top-5 MFR MAR
TextCNN 27.41 34.79 46.01 13.16 18.69
ICVH 35.37 43.08 55.83 11.80 16.24

IVDetect 46.69 54.27 62.97 8.73 12.63
LineVD 60.52 73.76 80.74 4.63 10.21
LineVul 24.54 48.49 60.64 9.32 13.94
VELVET 86.09 92.41 93.86 3.73 7.81

MatsVD (ours) 92.77 94.46 94.82 2.46 6.34

5 EXPERIMENTAL RESULTS
5.1 RQ1: Effectiveness of MatsVD
Classification Metrics. The experimental results of MatsVD and
other baselines on classification metrics are shown in Table 1. Under
the Two-Phase Detection scenario, MatsVD significantly outper-
forms all baselines on all metrics in terms of both the function level
and the statement level. Specifically, MatsVD achieves 0.8606 in
MCC and 86.03% in F1 on the statement level, respectively, which
gains an improvement of 23.54% and 22.97% compared to the state-
of-the-art baseline VELVET.

Considering themodel architecture, we observe that Transformer-
based VDmethods tend to achieve better performance thanmethods
based on othermodels. For example, the F1 score of the Transformer-
based method LineVul on the function (statement) level is 82.87%
(53.79%), which is consistently better than the best GNN-based
method LineVD 76.17% (45.65%) and the RNN-based ICVH 44.76%
(28.75%). The result is consistent with the findings of Fu et al. [13]
that the Transformer architecture better captures long-term depen-
dencies in the source code, leading to better performance. Particu-
larly, even though the Transformer-based baselines have achieved
relatively high performance, MatsVD still obtains dramatic perfor-
mance improvement. We attribute this to the designs of the three
Transformer-based layers and the dependency-based attention in
MatsVD. The layer-by-layer learning manner from fine to coarse
granularity helps the model capture more subtle vulnerability fea-
tures, while the extra dependency information prevents the model
from focusing on useless details.

As we mentioned in Section 4.4.1, the statement-level results
of the two-phase detection scenario depend on the function-level
performance. To better investigate the authentic statement-level

performance of each method, we also present the results under the
one-phase detection scenario, where all of the methods directly
detect vulnerable statements on the actual vulnerable functions.
From the One-Phase Detection column in Table 1, we observe that
MatsVD still holds its advantages compared to other baselines af-
ter we eliminate the interference of the function-level VD phase.
Specifically, the Mcc and F1-score metrics of MatsVD significantly
increase by respectively 26.6% and 23.5% compared to the second
best method VELVET. The above results further confirm the supe-
riority of MatsVD in the statement-level VD task.

Ranking Metrics. By considering the VD task as a ranking
problem, the ranking metrics are capable of more comprehensively
evaluating the detection capability of the model. Intuitively, the
approach that ranks the defective statements more forward better
captures the vulnerability characteristics. The experimental results
of MatsVD and the baselines on classification metrics are shown in
Table 2. The results show that MatsVD consistently outperforms
other baselines on all rankingmetrics. Specifically,MatsVD achieves
2.46 and 6.34 inMFR andMAR, respectively, compared to the second
best method VELVET, which gains 3.73 and 7.81. When it comes
to Top-k metrics, we found that VELVET and MatsVD both reach
relatively high Top-5 (93.86% versus 94.82%). However, MatsVD
significantly surpasses VELVET on Top-1 with 6.68% more state-
ments are ranked at Top-1. This phenomenon reflects MatsVD’s
robustness in identifying vulnerable statements, especially in dis-
tinguishing the subtle differences in semantics between statements.

Answer to RQ1:MatsVD significantly outperforms all baselines
on binary classification and ranking metrics at the statement level,
which improves by respectively 22.97% and 7.76% in terms of the
F1 and Top-1 Accuracy over the SOTA methods.

5.2 RQ2: Ablation Study
MatsVD comprises three components: statement embedding layer
(SE), dependency-based statement representation layer (SR), and
function representation layer (FR). We assess the effectiveness of
each component of MatsVD by respectively modifying each layer.
For SE, we replace the pre-trained model CodeT5 with three dif-
ferent variants: SE-CodeBERT, SE-AvgPooling, and SE-RNN.
Specifically, the first variant replaces CodeT5 with another pre-
trained model CodeBERT [10] to generate statement embeddings.
The latter two variants use only the embedding layer of the pre-
trained CodeT5 to initialize the embedding vector for each token
and then aggregate them into statement embeddings using average

Internetware 2024, July 24–26, 2024, Macau, Macao Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Liqian Chen

Table 3: Ablation study result of MatsVD on the classification metrics.

Method
Two-Phase Detection One-Phase Detection

Function Level Statement Level Statement Level
Mcc Pre Re F1 Mcc Pre Re F1 Mcc Pre Re F1

SE-CodeBERT 0.9270 96.38 89.77 92.95 0.8092 85.32 77.09 81.00 0.7956 81.01 82.61 81.80
SE-AvgPooling 0.8983 94.70 86.04 90.16 0.7518 80.66 70.51 75.25 0.8017 84.85 79.76 82.23

SE-RNN 0.9010 93.79 87.36 90.46 0.7741 79.91 75.42 77.60 0.7520 72.80 83.72 77.89
SR-NoMask 0.9288 96.49 89.53 92.88 0.8052 85.54 76.14 80.57 0.7734 76.89 83.03 79.84

FR-AvgPooling 0.9290 96.39 90.13 93.15 0.8101 82.40 80.01 81.19 0.7205 64.88 87.81 74.62
FR-RNN 0.9263 96.49 89.53 92.88 0.8023 81.61 79.25 80.41 0.7105 63.23 88.10 73.63

MatsVD (ours) 0.9361 97.53 90.37 93.81 0.8606 91.57 81.13 86.03 0.8585 89.90 84.86 87.31

Table 4: Ablation study result of MatsVD on the ranking
metrics.

Method Top-1 Top-3 Top-5 MFR MAR
SE-CodeBERT 89.53 93.38 94.36 2.63 6.62
SE-AvgPooling 88.68 92.90 94.08 2.96 6.71

SE-RNN 89.29 93.26 94.34 3.04 7.15
SR-NoMask 90.49 91.81 92.17 3.17 6.85

FR-AvgPooling 90.85 93.50 94.05 2.94 6.69
FR-RNN 90.49 92.90 93.98 2.66 6.75

MatsVD (ours) 92.77 94.46 94.82 2.46 6.34

pooling or an RNN. For SR, we remove the masked-attention mech-
anism in MatsVD and denote this variant as SR-NoMask. For FR,
we compare it with two variants: FR-AvgPooling and FR-RNN,
which use average pooling and an RNN to aggregate the statement
representations into the function representations, respectively.

Classification Metrics. Table 3 presents the performance of
MatsVD and its variants on the classification metrics. The results
show that MatsVD outperforms six variants on the most metrics
except for Recall of one phase detection. In terms of statement
embedding approaches, the statement-level F1 score of the SE-
CodeBERT decreases by 6.21% and 6.74% under the two scenarios,
respectively. This suggests that the pre-trained model CodeT5 in
MatsVD contributes to converting textual source code into more
meaningful vector representations compared to CodeBERT. Mean-
while, MatsVD achieves 10.78%/5.08% and 8.43%/9.42% absolute
improvement on statement-level F1-score under the two scenar-
ios compared to SE-AvgPooling/RNN. This trend is similar to the
comparison with the FR-AvgPooling/RNN, which indicates that
the Transformer-based aggregation we proposed is more effec-
tive than average pooling or RNN. In addition, the performance
of SR-NoMask decreases sharply in both two detection scenarios
compared with MatsVD, with the F1 score dropping by 6.78% and
9.36%, respectively. It’s MCC also similarly decreases by 7% and
11%, respectively. This result indicates that masked attention plays
an important role in statement-level VD.

On the function level, we observe that MatsVD consistently
outperforms all its variants. However, the performance loss of each
variant is marginal compared to the situation at the statement
level, with the absolute reduction of F1 score not more than 4%. To
explain this, we notice that compared to the statement-level VD

which concentrates on more local features within one statement,
the function-level VD considers the global features within thewhole
function. Therefore, it is easier for the function-level VD to capture
more coarse vulnerable features compared to the statement-level
VD, which is more difficult to identify fine-grained features.

Ranking Metrics. Table 4 presents the performance of MatsVD
and its variants on the ranking metrics. We can observe from the
table that all of the variants fall short in prioritizing the vulnerable
statements, especially on Top-1 and Top-3. Specifically, MatsVD
improves the best performance of different variants by 2.1%, 6.9%,
4.4% on Top-1, MFR, and MAR, respectively. This phenomenon
validates the importance of each component in MatsVD for more
precisely detecting problematic statements.

Answer to RQ2: All three layers of MatsVD play important
roles in vulnerability detection, where the statement level is more
affected than the function level.

5.3 RQ3: Impact of Masked Attention and
Transformer-Based Aggregation

To explore the impact of masked attention and Transformer-based
aggregation on detecting vulnerable statements, we first conducted
a quantitative study on the statement-level results under the two-
phase detection scenario. Figure 4 presents the F1 score of the four
models on functions with different lengths. The results show that
MatsVD outperforms the other variants on all the intervals. In par-
ticular, compared to the other three intervals, MatsVD achieves
the largest increase in F1 score for long functions with 120 to 155
lines, with an absolute significant improvement of 11.4%, 11.8%,
and 12.7% over SE-AvgPooling, SR-NoMask, and FR-AvgPooling,
respectively. On the one hand, these results indicate that the in-
volvement of masked attention is able to exploit dependencies in
the function to adjust the allocation of attention, which reduces
the noise information of irrelevant statements (e.g., independent
variable declarations or return statements) and highlights critical
statements in a long context. On the other hand, compared to the
FR-AvgPooling (SE-AvgPooling), the Transformer-based aggrega-
tion approach preserves the information of significant statements
(tokens) and captures the long-term dependencies of sequences in
generating function (statement) representation. This also enhances
the capability of the model to detect long vulnerability functions.

To better understand how MatsVD detects vulnerable state-
ments more precisely, we conducted a qualitative study to evaluate

MatsVD: Boosting Statement-Level Vulnerability Detection via Dependency-Based Attention Internetware 2024, July 24–26, 2024, Macau, Macao

[0, 40) [40, 80) [80, 120) [120, 155]
Function Length (Number of Lines)

0.5
0.6
0.7
0.8
0.9
1.0

F1
 S

co
re

SE-AvgPooling SR-NoMask FR-AvgPooling MatsVD

Figure 4: Statement-level F1 score on vulnerable functions
with different lengths.

the advantage of MatsVD against other baselines. Specifically, we
choose three baselines based on primitive self-attention including
LineVul[13], LineVD[14], and VELVET[8]. Figure 5 shows a real-
world vulnerable function from the Linux kernel (CVE-2013-4592),
which contains a Resource Management Errors vulnerability that
can lead to a memory leak. Statements at lines 109, 110, 111, and
114 (denoted as s109, s110, s111, and s114, respectively) are labeled
as vulnerable in the Big-Vul dataset. For this example, we list the
statement-level detection results of each method, where the vulner-
able statements predicted by the VD methods are denoted with 1.
Overall, MatsVD correctly detects all four vulnerable statements,
while LineVul, LineVD, and VELVET failed to identify all of them.

LineVul performs the worst by only correctly identifying state-
ments s110 and s114 and producing the most false positives. Intu-
itively, this may due to the fact that LineVul regards the source code
as a sequence of tokens, which results in attention being spread
across individual tokens and makes it difficult for the model to
concentrate on important statements in the source code. Addition-
ally, it also fails to leverage the dependency information between
statements, and relies solely on the features of prominent tokens
within the statements to indirectly predict vulnerable statements.

LineVD correctly identifies only s110 and s111 but fails to de-
tect s109 and s114 that have data and control dependencies with
them. Considering that LineVD utilizes a graph attention network
(GAT) [27] model to learn data and control dependencies in the
PDGs of source code, we argue that the unsatisfactory performance
of LineVD may be caused by the intrinsic limitation of the GNNs.
Many studies have proved that GNNs are facing the over smooth-
ing [3] problem, which means that GNNs are better at capturing
local features than learning global information.

VELVET achieves the second-best performance by correctly de-
tecting three vulnerable statements except s111. Although VELVET
combines Transformer and GNN to separately capture global and
local semantic information for locating vulnerable statements, it
suffers from the possible contradictory results of the two models [8].
This may be the reason why it does not detect s111 as vulnerable.

MatsVD correctly detects all the vulnerable statements with
the highest accuracy. We attribute it to the following reasons: (1)
MatsVD is implemented on top of the Transformer architecture.
Due to the exceptional scalability of the Transformer, it can better
capture dependency information for long sequences compared to
GNN and RNN. This enables MatsVD to accurately and compre-
hensively understand vulnerability functions. (2) MatsVD adopts a
unified three-layer Transformer model structure. Compared to the

1 int __kvm_set_memory_region(struct kvm *kvm,
 struct kvm_userspace_memory_region *mem,
 int user_alloc)
2 {
3 int r;
4 gfn_t base_gfn;
5 unsigned long npages;
6 r = check_memory_region_flags(mem);
 ...
102 rcu_assign_pointer(kvm->memslots, slots);
103 synchronize_srcu_expedited(&kvm->srcu);
104 kvm_arch_flush_shadow_memslot(kvm, slot);
105 kfree(old_memslots);
106 r = kvm_arch_prepare_memory_region(kvm,
 &new, old, mem, user_alloc);
107 if (r)
108 goto out_free;
109 if (npages) {
110 r = kvm_iommu_map_pages(kvm, &new);
111 if (r)
112 goto out_free;
113 } else
114 kvm_iommu_unmap_pages(kvm, &old);
115 r = -ENOMEM;
 ...

128 }

File: virt/kvm/kvm_main.c

CVE Page: https://www.cvedetails.com/cve/CVE-2013-4592/
LN LV LD VT MD GT

1 1 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 1 0 1 0 0

… 0 0 0 0 0

102 0 0 0 1 0

103 0 1 0 0 0

104 0 0 0 0 0

105 0 0 0 0 0

106 1 0 1 0 0

107 0 0 0 0 0

108 0 0 0 0 0

109 0 0 1 1 1

110 1 1 1 1 1

111 0 1 0 1 1

112 0 0 0 0 0

113 0 0 0 0 0

114 1 0 1 1 1

115 1 0 0 0 0

… 0 0 0 0 0

128 0 0 0 0 0

LN: LineNo, LV: LineVul, LD: LineVD, VT: VELVET, MD: MatsVD, GT: Ground Truth

Figure 5: Qualitative study of MatsVD compared to baselines.

state-of-the-art baseline VELVET which is based on hybrid mod-
els, MatsVD avoids compatibility issues between different model
architectures to produce more stable results. (3) MatsVD refines the
original attention computation of the Transformer by selectively
masking partial attention based on data and control dependencies
between statements. The dependency-based attention guides the
model to focus more on prominent statements in the function and
leverage dependency information in the source code, which helps
the model to identify vulnerable statements more effectively.

Answer to RQ3: Masked attention and Transformer-based ag-
gregation work together to effectively capture data/control depen-
dencies between statements within the function to help better iden-
tify vulnerable statements.

6 THREATS TO VALIDITY
Threats to internal validity. The main internal threat is related
to the process of PDG generation. To mitigate this threat, we used a
popular code analysis tool Joern [31] to generate PDGs and discard
functions not successfully parsed by Joern from our experiments.
Wemanually checked 300 generated PDGs to ensure the correctness
of the extracted data and control dependencies in the function.

Threats to external validity. The main external threat derives
from the quality of the dataset [5]. To mitigate this threat, we
selected the widely used practical vulnerability dataset Big-Vul
and obtain statement-level ground truth using heuristics following
existing works [14, 17]. Moreover, all the projects in the dataset are
developed in C/C++ programming language. The effectiveness of
our approach on other programming languages such as Java and
Python remains to be explored. We will collect and explore more
diverse datasets in future work.

7 RELATEDWORK
To obtain more fine-grained detection results, various statement-
level VD approaches have been proposed recently. ICVH[21] lever-
ages bidirectional RNNs to identify statements in functions that are

Internetware 2024, July 24–26, 2024, Macau, Macao Cheng Weng, Yihao Qin, Bo Lin, Pei Liu, and Liqian Chen

highly relevant to vulnerabilities through maximizing mutual in-
formation. Li et al. [17] proposed IVDetect, which employs a graph
neural network for function-level detections, coupled with a GN-
NExplainer to pinpoint the most influential sub-graph contributing
to these detections. Hin et al. [14] proposed LineVD, which repre-
sents the source code as a Program Dependency Graph (PDG) and
employs a Graph Attention Network to learn the statement repre-
sentations. LineVul [13] utilized Transformer to capture long-term
dependencies in code sequence and regarded the statements corre-
sponding to higher attention scores as vulnerable lines. VELVET
employs an ensemble learning strategy that individually computes
a vulnerability score for each statement with a Transformer and
a GNN, and then takes the average of the two scores as the final
vulnerability score for a statement.

In addition, there have been works adopting explainable AI mod-
els for line-level defect prediction. Pornprasit et al. [22] proposed
to leverage the attention mechanism for line-level defect predic-
tion. Thongtanunam et al. [29] proposed a machine learning-based
approach with LIME model-agnostic technique to predict which
lines are likely to be defective in the future. MatsVD differs from
these methods in that we use line-level labels to guide the model
in learning vulnerability features for detection rather than using
model interpretability to get predicted lines.

8 CONCLUSION AND FUTUREWORK
In this work, we propose MatsVD, a novel Transformer-based ap-
proach for statement-level vulnerability detection. MatsVD selec-
tively masks partial attention inside the Transformer based on the
data and control dependencies between the statements to better
capture the semantic information of the source code. The evalua-
tion on a large real-world dataset shows that MatsVD outperforms
the existing DL-based methods on statement-level vulnerability
detection in terms of both binary classification and ranking metrics.
Specifically, MatsVD achieves 22.97% higher F1 score and 7.76%
higher Top-1 Accuracy than the state-of-the-art method VELVET.

Our future work will investigate how to integrate MatsVD into
existing software development lifecycles to help developers find
vulnerable lines in a time-saving way.

REFERENCES
[1] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2022.

Deep Learning Based Vulnerability Detection: Are We There Yet? IEEE Transac-
tions on Software Engineering 48, 9 (2022), 3280–3296.

[2] Checkmarx. 2024. [Online]. Available: https://checkmarx.com/.
[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the
topological view. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 34. 3438–3445.

[4] Cppcheck. 2024. [Online]. Available: https://cppcheck.sourceforge.io/.
[5] Roland Croft, M. Ali Babar, and M. Mehdi Kholoosi. 2023. Data Quality for

Software Vulnerability Datasets. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 121–133.

[6] CVE. 2024. [Online]. Available: http://cve.mitre.org/.
[7] National Vulnerability Database. 2024. [Online]. Available: https://nvd.nist.gov/.
[8] Yangruibo Ding, Sahil Suneja, Yunhui Zheng, Jim Laredo, Alessandro Morari, Gail

Kaiser, and Baishakhi Ray. 2022. VELVET: a noVel Ensemble Learning approach to
automatically locate VulnErable sTatements. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 959–970.

[9] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code
Vulnerability Dataset with Code Changes and CVE Summaries. In Proceedings
of the 17th International Conference on Mining Software Repositories (MSR ’20).
Association for Computing Machinery, 508–512.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
and Linjun Shou. 2020. CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for Computational Linguistics:
EMNLP 2020.

[11] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The program
dependence graph and its use in optimization. (1987).

[12] FlawFinder. 2024. [Online]. Available: http://www.dwheeler.com/FlawFinder.
[13] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: a transformer-based

line-level vulnerability prediction. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories (MSR ’22). 608–620.

[14] David Hin, Andrey Kan, Huaming Chen, and M. Ali Babar. 2022. LineVD:
statement-level vulnerability detection using graph neural networks. In Pro-
ceedings of the 19th International Conference on Mining Software Repositories (MSR
’22). Association for Computing Machinery, 596–607.

[15] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. 2019. Semi-Supervised
Learning With Graph Learning-Convolutional Networks. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 11305–11312.

[16] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, 1746–1751.

[17] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. Vulnerability detection with
fine-grained interpretations (ESEC/FSE 2021). 292–303.

[18] Zhuo Li, Huangzhao Zhang, and Zhi Jin. 2023. WELL: Applying Bug Detectors to
Bug Localization via Weakly Supervised Learning. ArXiv abs/2305.17384 (2023).

[19] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A Deep Learning-Based System
for Vulnerability Detection. In Proceedings 2018 Network and Distributed System
Security Symposium (NDSS 2018). Internet Society.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2 (NIPS’13). Curran Associates Inc., 3111–3119.

[21] Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh
Phung. 2021. Information-theoretic Source Code Vulnerability Highlighting. In
2021 International Joint Conference on Neural Networks (IJCNN). 1–8.

[22] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. 2023. DeepLineDP:
Towards a Deep Learning Approach for Line-Level Defect Prediction. IEEE
Transactions on Software Engineering 49, 1 (2023), 84–98.

[23] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 1715–1725.

[24] Cyber Security Vulnerability Statistics. 2024. [Online]. https://www.comparitech.
com/blog/information-security/cybersecurity-vulnerability-statistics/.

[25] Juliet test suite v1.3 NIST Software Assurance Reference Dataset. 2024. [Online].
Available: https://samate.nist.gov/SARD/test-suites/.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS’17). Curran Associates Inc., 6000–6010.

[27] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, et al.
2017. Graph Attention Networks. ArXiv abs/1710.10903 (2017).

[28] Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi, et al. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing.

[29] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tan-
tithamthavorn, Hideaki Hata, and Kenichi Matsumoto. 2022. Predicting De-
fective Lines Using a Model-Agnostic Technique. IEEE Transactions on Software
Engineering 48, 5 (2022), 1480–1496.

[30] Xin-Cheng Wen, Yupan Chen, Cuiyun Gao, Hongyu Zhang, Jie M. Zhang, and
Qing Liao. 2023. Vulnerability Detection with Graph Simplification and Enhanced
Graph Representation Learning. In Proceedings of the 45th International Conference
on Software Engineering (ICSE ’23). IEEE Press, 2275–2286.

[31] Joern: The Bug Hunter’s Workbench. 2024. [Online]. Available:https://joern.io/.
[32] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and

Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy. 590–604.

[33] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019.
GNNExplainer: generating explanations for graph neural networks.

[34] Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo
Yang, Jim Laredo, Alessandro Morari, and Zhong Su. 2021. D2A: A Dataset Built
for AI-Based Vulnerability Detection Methods Using Differential Analysis. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). 111–120.

[35] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Curran Associates Inc.

https://checkmarx.com/
https://cppcheck.sourceforge.io/
http://cve.mitre.org/
https://nvd.nist.gov/
http://www.dwheeler.com/FlawFinder
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/
https://www.comparitech.com/blog/information-security/cybersecurity-vulnerability-statistics/
https://samate.nist.gov/SARD/test-suites/
https://joern.io/

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Transformer
	2.2 Program Dependence Graph

	3 Approach
	3.1 Problem definition
	3.2 MatsVD Framework

	4 EXPERIMENTAL DESIGN
	4.1 Research Questions
	4.2 Datasets
	4.3 Baselines
	4.4 Evaluation Metrics
	4.5 Experimental Setup

	5 EXPERIMENTAL RESULTS
	5.1 RQ1: Effectiveness of MatsVD
	5.2 RQ2: Ablation Study
	5.3 RQ3: Impact of Masked Attention and Transformer-Based Aggregation

	6 Threats to validity
	7 RELATED WORK
	8 CONCLUSION AND FUTURE WORK
	References

