
Synthesizing Boxes Preconditions for Deep Neural Networks
Zengyu Liu

State Key Laboratory of Complex & Critical Software

Environment, College of Computer Science and

Technology, National University of Defense Technology

Changsha, China

liuzengyu21@nudt.edu.cn

Liqian Chen

State Key Laboratory of Complex & Critical Software

Environment, College of Computer Science and

Technology, National University of Defense Technology

Changsha, China

lqchen@nudt.edu.cn

Wanwei Liu

State Key Laboratory of Complex & Critical Software

Environment, College of Computer Science and

Technology, National University of Defense Technology

Changsha, China

wwliu@nudt.edu.cn

Ji Wang
∗

State Key Laboratory of Complex & Critical Software

Environment, College of Computer Science and

Technology, National University of Defense Technology

Changsha, China

wj@nudt.edu.cn

Abstract
Deep neural network (DNN) has been increasingly deployed as a

key component in safety-critical systems. However, the credibil-

ity of DNN components is uncertain due to the absence of formal

specifications for their data preconditions, which are essential for

ensuring trustworthy postconditions. In this paper, we propose a

guess-and-check-based framework PreBoxes to automatically syn-

thesize Boxes sufficient preconditions for DNN concerning rich

safety and robustness postconditions. The framework operates in

two phases: the guess phase generates potentially complex can-

didate preconditions through heuristic methods, while the check
phase verifies these candidates with formal guarantees. The entire

framework supports automatic and adaptive iterative running to

obtain weaker preconditions as well. Such resulting preconditions

can be leveraged to shield DNN for safety and enhance the inter-

pretability of DNN in application. PreBoxes has been evaluated on

over 20 models with 23 trustworthy properties of 4 benchmarks and

compared with 3 existing typical schemes. The results show that

not only does PreBoxes generally infer weaker non-trivial sufficient

preconditions for DNN than others, but also it expands competi-

tive capabilities to handle both complex properties and Non-ReLU
complex structured networks.

CCS Concepts
• Software and its engineering→ Automated static analysis;
Correctness; Dynamic analysis; • Computing methodologies
→ Machine learning.

Keywords
Precondition Synthesis, Neural Network, Boxes, Robustness, Safety

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680393

ACM Reference Format:
Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang. 2024. Synthesizing

Boxes Preconditions for Deep Neural Networks. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3650212.3680393

1 Introduction
Deep learning has been widely used in safety- or mission-critical

applications designed to function in open environments for percep-

tion and decision-making [7, 34], whose minor errors might cause

irreversible damage. Despite the outstanding empirical achieve-

ments of deep neural networks (DNNs), formally guaranteeing

their specifications is still a significant and challenging task partly

due to the data-driven implicit black box of DNNs themselves and

the uncertainty of complex environments outside when combined

into autonomous systems.

Towards guaranteeing desired specifications (also referred to

as contracts), formal verification techniques for DNNs early days

[13, 30–32, 35] pay particular attention to inferring postcondition,

that is, to provide a qualitative analysis of whether a certain prop-

erty holds globally for the given small input domain (such as a

𝜖-perturbation norm neighborhood). However, such a perspective

has difficulty in offering an indirect quantitative analysis on the

specification when the expected property is not globally satisfied

on the whole input domain, that is, to solve which concrete par-

tial input space still meets the desired property. Such attention on

precondition also provides valuable specification descriptions of

DNNs, helping improve their own interpretability. What’s more,

such precondition synthesis helps provide a reliability guarantee

for DNNs when applied at the system level. Before the deployment

of autonomous systems, precondition synthesis techniques could

be used to make quality assessments on multiple similar trained

DNNs, so as to compare and select appropriate ones matching the

design specifications of system components containing DNNs [26],

which furthermore helps achieve a safe and controllable system in-

tegration. At the running time, the synthesized preconditions could

play a role in runtime monitoring for real-time shielding illegal

inputs from open environments for DNN components and making

https://orcid.org/0009-0007-3896-4971
https://orcid.org/0000-0001-8084-8009
https://orcid.org/0000-0002-2315-1704
https://orcid.org/0000-0003-0637-8744
https://doi.org/10.1145/3650212.3680393
https://doi.org/10.1145/3650212.3680393


ISSTA ’24, September 16–20, 2024, Vienna, Austria Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang

timely adjustments for other system components’ task allocation,

such as by using the Simplex architecture [27].

Recently, the synthesis of DNN preconditions has been gradu-

ally attracting attention. Although the over-approximation of DNN

preconditions [17] contains all legal inputs, it also introduces ille-

gal inputs that violate the desired property. Such approximation

makes it impossible to make indirect quantitative analysis on DNNs

themselves and select appropriate DNNs as system components for

desired specifications. The exact synthesis of DNN preconditions

is the optimal solution to the research problem ideally, but it is

intractable due to the complexity increasing exponentially with

the scale of DNNs. To the best of our knowledge, current existing

work [8, 21, 24] typically supports solving for several variable input

features and is only limited to small ReLU DNNs. Therefore, it is

valuable to under-approximate DNN preconditions. As far as we

know, the types of DNNs that most current under-approximation

work supports are very limited [10, 12, 36]. Most of these works

only design for or experiment on ReLU DNNs, and few mention

piecewise linear DNNs. Furthermore, the desired properties di-

rectly supported by existing works are also relatively simple and

usually represent a convex output set as conjunctions of linear

constraints. Such syntax usually expresses similar semantic cover-

ing local robustness properties and only part of safety properties

[10, 12, 19, 36].

We propose a guess-and-check-based framework PreBoxes in a

gray-box way, which automatically synthesizes under-approximate

Boxes preconditions as weak as possible with no special limitation

on DNN types and supporting for rich desired properties. Consid-

ering the well-expression and easy-readability of the high-level

specification intuitively, the guess phase uses Boxes as the template

to generate non-trivial precondition candidates. Based on our in-

sight into the spatial structure of DNN decision boundary in the

input domain, we design a cost-effective directional boundary sam-

pling heuristic to quickly predict the split sub-regions of the input

domain that have more potential to be preconditions themselves.

We further design an aggregation heuristic for all the potential split

sub-regions based on their spatial location information concern-

ing each other, so as to obtain the non-trivial Boxes candidates of

preconditions and reduce the overhead of verification in the check
phase. The heuristics here are in black-box style relative to DNN

itself. The check phase then verifies whether the required specifica-

tion is formally guaranteed, i.e. checking which of these candidates

are true preconditions by invoking the neural network verifier.

Furthermore, the guess-and-check framework could be performed

iteratively to weaken the precondition solutions as close to the

exact preconditions as possible. To summarize, our contributions

are as follows.

• We propose a guess-and-check-based framework in a gray-

box way to under-approximately synthesize weak Boxes

preconditions with no special limitation on DNN types and

supporting for rich desired properties.

• We design a cheap directional boundary sampling heuris-

tic to efficiently predict which potential parts of the input

domain are preconditions themselves as well as a spatial

aggregation algorithm so as to obtain the non-trivial Boxes

candidates and further improve verification efficiency.

• We have implemented the framework as a tool called Pre-
Boxes. We conducted experiments over 20 models with 23

properties of 4 benchmarks, Syn[19], CartPole, ACASXu and

NN4Sys in VNN-COMP[22], and compared PreBoxes with 3

existing schemes, Uniform, NonUniform in [19] and Preim-
ageAppro in [36]. The results show PreBoxes can generally

infer weaker non-trivial sufficient preconditions for DNN

than others and has competitive capabilities to deal with com-
plex properties and Non-ReLU complex structured networks.

As far as we know, although ACASXu has been discussed in

previous work, we are the first to infer preconditions on ACASXu
without predetermined input feature values and with less type-

restricted and richer properties. Additionally, we have extended

DNN precondition synthesis beyond piecewise linear DNNs like

NN4Sys, which has never been done before.

2 Problem Formulation
Given the desired property P as the postcondition for a given DNN

𝑓 : R𝑛 → R𝑚 , the precondition of 𝑓 can be treated as a set of

all inputs 𝑥 ∈ R𝑛
that are mapped to an element of P by 𝑓 . The

under-approximation of precondition could be treated as any subset

of the exact one, which is also referred to as sufficient precondition.

We hope to infer non-trivial sufficient precondition as weak as

possible, i.e., cover as much of the input space as possible. As usual,

a precondition can be expressed as a predicate or a set characterized

by the predicate. We don’t make a strict distinction here.

We define a setB ⊆ R𝑛
as a𝑛-dimensional Box iff it is expressible

as B =

{
𝑥 ∈ R𝑛 |∧𝑛

𝑖=1
(𝑥𝑖 ∈ [𝑥𝑖

𝑙
, 𝑥𝑖𝑢 ]),𝑤ℎ𝑒𝑟𝑒 𝑥𝑖𝑙 , 𝑥

𝑖
𝑢 ∈ R

}
. The set

of all boxes of R𝑛
is denoted as B𝑛

. A set BS ⊆ R𝑛
conforms

to the Boxes iff there exist 𝑛-dimensional boxes B1, · · · ,B𝑘 such

that BS =
⋃𝑘

𝑖=1
B𝑖 . The set of all sets of boxes of R𝑛

is denoted

as BS𝑛 [11]. The input features of DNN usually have physical

meaning in applications, so we consider the features to have limited

numerical ranges, i.e. the input domain of DNN is bounded. We

also require sufficient precondition solutions of DNN in the form

of Boxes. Additionally, the postcondition P can be expressed as the

formulas over linear inequalities supporting for mixed conjunctive

and disjunctive form, which include many properties like local

robustness and complex safety properties.

In summary, the synthesis problem here could be formulated as

follows: Given a DNN 𝑓 under a bounded input domain I ∈ B𝑛

and the desired property P expressed as mixed conjunctive and

disjunctive form of boolean expressions over linear inequalities,

how to calculate the Boxes sufficient precondition 𝑓 −1

I (P) as weak
as possible.

𝑓 −1

I (P) := {BS ∈ BS𝑛 | BS ⊆ I ∧ 𝑓 (𝑥 ) ∈ P, 𝑤ℎ𝑒𝑟𝑒 ∀𝑥.𝑥 ∈ BS} (1)

3 Methodology
3.1 Overview
Our solution provides a method for automatically synthesizing suf-

ficient preconditions for DNNs in a guess-and-check framework,

as depicted in Figure 1. At the guess phase, we reconstruct the

original DNN to a featured DNN with a unified and standardized

expression meaning of its output based on the desired property. At

the same time, we adopt the idea of partitioning first and merging



Synthesizing Boxes Preconditions for Deep Neural Networks ISSTA ’24, September 16–20, 2024, Vienna, Austria

later on the input domain to obtain non-trivial boxes sufficient

precondition candidates through cost-effective heuristics. Specif-

ically, the input domain is split into multiple finer boxes at first.

Then we design a heuristic directionally sampling on the bound-

aries of each partitioned space to efficiently select those sub-boxes

having greater potential as preconditions themselves. Furthermore,

to reduce the overhead of redundant verification and increase the

readability of final solutions, we design an aggregation heuristic

for merging small candidates into larger and fewer boxes based on

spatial structure rather than obtaining a great many trivial candi-

dates. The subsequent check phase is to perform provable verifi-

cation on the candidate set by invoking the DNN verifier so as to

generate truly sufficient Boxes preconditions. After such a single

guess-and-check process, the solutions have already been provable

under-approximation of the exact precondition. Furthermore, to

make sufficient preconditions weaker and get to the exact precondi-

tion as close as possible, our framework also supports performing

adaptive iterative running on the candidates for which the verifier

fails to determine a clear result or for which it is deemed unsafe,

thereby solving weaker preconditions, i.e. covering input domains

as much as possible.

To dive into detail in the following subsections, we first elabo-

rate on how to generate non-trivial sufficient preconditions, and

then provide an adaptive iterative version helping obtain weaker

provable sufficient preconditions.

3.2 Infer Non-Trivial Sufficient Precondition
3.2.1 Building Featured DNN. Inspired by DNN verification [6],

we want to bring the benefits of unified canonical representation

to the DNN precondition synthesis problem here as well.

Let 𝑓 : R𝑛 → R𝑚 be the original DNN and P be the desired

property expressed in the mixed conjunctive and disjunctive form
of boolean expression over linear constraints. What we integrate

into the featured DNN
¯𝑓 : R𝑛 → R1

is the violation of P (re-

ferred as ¬P) as addition layers 𝑓𝑎𝑑𝑑 : R𝑚 → R1
after 𝑓 . Suppose

the output of 𝑓 is 𝑦 ∈ R𝑚 . No matter ¬P is single non-relational

linear inequality (like 𝑎 × 𝑦𝑖 ≤ 𝑏,𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 ∈ R, 𝑖 ∈ {1, ...,𝑚})
or single relational linear inequality (like 𝑦𝑖 ≤ 𝑦 𝑗 ,𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑗,

𝑖, 𝑗 ∈ {1, ...,𝑚}), they can be regularized into vector multiplication

form 𝐶𝑇𝑦 + 𝑑 ≤ 0, 𝑤ℎ𝑒𝑟𝑒 𝐶 ∈ R𝑚, 𝑑 ∈ R and treated as a fully

connected layer 𝑓𝑎𝑑𝑑 = 𝐶𝑇𝑦 + 𝑑 . Besides, conjunction or disjunc-

tion could be handled by maxpooling unit. If ¬P is

∧𝑘
1

(
𝑦𝑖 ≤ 𝑦 𝑗

)
𝑟 ,

𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ Z, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, · · · ,𝑚} , 𝑟 ∈ {1, · · · , 𝑘}, we make 𝑓𝑎𝑑𝑑
as𝑚𝑎𝑥 (

(
𝑦𝑖 − 𝑦 𝑗

)
𝑟 ),𝑤ℎ𝑒𝑟𝑒 𝑟 ∈ {1, · · · , 𝑘}. If ¬P is

∨𝑘
1

(
𝑦𝑖 ≤ 𝑦 𝑗

)
𝑟 ,

considering𝑚𝑖𝑛(
(
𝑦𝑖 ≤ 𝑦 𝑗

)
𝑟 ) ⇔ −𝑚𝑎𝑥 (−

(
𝑦𝑖 ≤ 𝑦 𝑗

)
𝑟 ), we set 𝑓𝑎𝑑𝑑

as −𝑚𝑎𝑥 (−
(
𝑦𝑖 − 𝑦 𝑗

)
𝑟 ),𝑤ℎ𝑒𝑟𝑒 𝑟 ∈ {1, · · · , 𝑘}. The other forms can

be handled with a combination of the above rules.

Such a normalization makes the output of featured DNN
¯𝑓 have a

unified meaning. The output of a positive scalar indicates the input

satisfies P. A negative scalar output implies the input satisfies ¬P.
And a zero scalar output indicates that input falls on the decision
boundary

{
𝑥 ∈ R𝑛 | ¯𝑓 (𝑥) = 0

}
. With

¯𝑓 , we could reformulate the

Boxes sufficient precondition in a unified canonical representation:

𝑓 −1

I (P) :=
{
BS ∈ BS𝑛 | BS ⊆ I ∧ ¯𝑓 (𝑥 ) > 0, 𝑤ℎ𝑒𝑟𝑒 ∀𝑥.𝑥 ∈ BS

}
(2)

Such a canonical representation would reduce the cost of process-

ing complex properties, e.g. containing several OR clauses, using

a single procedure rather than dismantling enumerator subs [13].

Besides, the featured DNN helps convert the satisfiability problem

to a simpler numerical positivity judgment. Furthermore, this form

facilitates our understanding of the relationship between decision
boundary and preconditions, as discussed in Section 3.2.3 later.

3.2.2 Input Splitting. When there is no prompt about the true

preconditions, it is unwise to hand over the entire domain to the

verifier because as long as there is a counterexample (i.e., an input

that violates the expected property P), the verifier would declare

the entire domain as unsafe based on a qualitative judgment, even

if there are still stronger preconditions inside the domain. To gain

more insight into true preconditions, we divide the entire domain

into a set of aligned boxes covering the original.

We instantiate two schemes for splitting the input domain I ∈
B𝑛

, namely dimension splitting and counterexample splitting. Figure
2 illustrates two-dimensional examples. When without any hint of

I, the dimension splitting provides a feasible approach to obtain

fine boxes by dividing evenly within each dimension range. It al-

lows for the configuration of distinct segment times across various

dimensions to accommodate differing feature ranges, as shown

in Figure 2(a). Additionally, the findings from DNN verification

[22] suggest that a counterexample is often situated in close spa-

tial proximity to other counterexamples. This characteristic aids in

gathering and processing many possible counterexamples during

input domain splitting, helping to get more potential candidates

later. The counterexample splitting determines a definite violation

region Ω around 𝑐𝑥 as a 𝑙∞-norm ball around 𝑐𝑥 with a radius of

𝜖 , that is Ω = {𝑥 ∈ R𝑛 | ∥𝑥 − 𝑐𝑥 ∥∞ ≤ 𝜖}, and then use the lower

and upper boundaries of Ω in each dimension as breakpoints, e.g.[
𝑥
𝑠𝑝𝑙𝑖𝑡𝑙

𝑖
, 𝑥

𝑠𝑝𝑙𝑖𝑡𝑢

𝑖

]
, where 𝑖 ∈ {1, · · · , 𝑛} shown in Figure 2(b), to par-

tition a set of aligned sub-boxes. We detail the adaptive selection

of input splitting strategies in Section 3.3.

3.2.3 State Prediction. The unified output meaning of the featured

DNN
¯𝑓 facilitates to reveal of the relationship among decision bound-

ary, precondition, and violation space. The featured DNN ¯𝑓 could be

viewed as a continuous function on a compact set based on the uni-

versal approximation theorem of DNN [3], so there must be a zero

value between positive and negative values. The decision bound-
ary

{
𝑥 ∈ R𝑛 | ¯𝑓 (𝑥) = 0

}
reflects the critical situation of whether the

property is satisfied or not, and the precondition

{
𝑥 ∈ R𝑛 | ¯𝑓 (𝑥) > 0

}
and violation space

{
𝑥 ∈ R𝑛 | ¯𝑓 (𝑥) < 0

}
are on both sides of it, as the

blue line and indicative arrows on both sides shown in Figure3(a).

In this 2D example, the yellow arrow side is the weakest target of

synthesis.

We hope to obtain more hints about preconditions by position-

ing decision boundary among partitioned boxes. We evenly sam-

ple along the boundaries of each box directionally, evaluating the

positivity of all sampled data using the featured DNN
¯𝑓 . This pro-

cess allows us to identify definite violation space and continue

discussing potential boxes as candidates for subsequent analysis.

We illustrate four sub-boxes A,B, C,D ∈ B2
in Figure 3(a). B and

C represent scenarios where the decision boundary intersects the
box when both positive and negative sample points are present



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang

Figure 1: Overview of our PreBoxes

Figure 2: Demonstration of Two Input Splitting Schemes.

simultaneously, without any mandatory zero points. These scenar-

ios constitute violation space as a whole in the presence of coun-

terexamples. All positive sample points, like A, suggest potential

precondition candidates, while negative points, such asD, indicate

violation boxes. Ultimately, all dotted sub-boxes in the figure rep-

resent potential precondition candidates. For a space Ω ⊆ R𝑛
, we

use 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (Ω) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 to denote its potential as a precondi-

tion according to our method, and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (Ω) = 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 indicates

∃𝑥 .𝑥 ∈ Ω, ¯𝑓 (𝑥) < 0.

Although
¯𝑓 can be viewed as a continuous function, it is not nec-

essarily monotonic. As shown in Figure 3 (b), when all the boundary

sampling points satisfy property P, the entire box may still cross

the decision boundary. As long as there is a counterexample in the

box, it as a whole input domain does not satisfy P.

Proposition 3.1. Our state prediction method with the above
directional boundary sampling is sound for predicting violation space.

Figure 3: Demonstration of State Prediction.

3.2.4 Aggregation. A Boxes BS𝑜𝑟𝑖 ∈ BS𝑛 composed by 𝑘 potential

sub-boxes B𝑜𝑟𝑖1 ,...,B𝑜𝑟𝑖𝑘 can be obtained after state prediction. It

is trivial to send all such sub-boxes to the verifier to get a prov-

able guarantee. However, the frequent invocation of the verifier

would incur significant verification overhead. Consequently, we

will aggregate the scattered boxes in BS𝑜𝑟𝑖 into larger boxes cost-

effectively in order to reduce the number of verifier invocations.

Note that, we limit the aggregated sub-region to Box and the same

total space covered by Boxes for keeping the readability of DNN con-

tract. The goal is formalized as below: Given BS𝑜𝑟𝑖 with 𝑘 boxes,

the problem is to solve a Boxes BS𝑎𝑔𝑔 ∈ BS𝑛 covered by 𝑗 poten-

tial boxes B𝑎𝑔𝑔1
,...,B𝑎𝑔𝑔𝑗 , such that BS𝑎𝑔𝑔 = BS𝑜𝑟𝑖 and 𝑗 ≤ 𝑘 , i.e.

∀B𝑜𝑟𝑖𝑞 . ∃B𝑎𝑔𝑔𝑝 . (B𝑜𝑟𝑖𝑞 ⊆ B𝑎𝑔𝑔𝑝 ) ∧ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (B𝑎𝑔𝑔𝑝 ) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙),
where 𝑞 ∈ {1, ..., 𝑘} , 𝑝 ∈ {1, ..., 𝑗}. Subscripts are omitted by default

to indicate objects in common situations like B𝑎𝑔𝑔 and B𝑜𝑟𝑖 .
It would be ideal to construct the larger potential box B𝑎𝑔𝑔 as

the maximal expansion of B𝑜𝑟𝑖 intuitively. That is if there exists



Synthesizing Boxes Preconditions for Deep Neural Networks ISSTA ’24, September 16–20, 2024, Vienna, Austria

another box B such that B𝑎𝑔𝑔 ⊆ B and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (B) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ,

then B = B𝑎𝑔𝑔. However, it has to enumerate every larger box

containing B𝑜𝑟𝑖 and check whether it is valid maximal expansion
by using brute-force search. The sheer size of such search space,

compounded by the exponential increase in dimensionality, renders

brute-force search impractical, even for low-dimensional B𝑜𝑟𝑖 .

Algorithm 1 Aggregation

Input: the refined boxes obtained by input splitting I and the

according prediction states of refined boxes S
Output: candidates C waiting for verification

1: C← {} ⊲ BS𝑎𝑔𝑔 =
⋃𝑗

𝑖=1
B𝑎𝑔𝑔𝑖 ,𝑤ℎ𝑒𝑟𝑒 B𝑎𝑔𝑔𝑖 ∈ C, 𝑖 ∈ {1, ..., 𝑗}

2: B𝑜𝑟𝑖 ,B𝑣𝑖𝑜 ← classify(I, S)
3: d ← pickMainSequence({1, ..., n})
4: B𝑜𝑟𝑖 ← ascendingSort(B𝑜𝑟𝑖 , d)
5: for each B𝑜𝑟𝑖 =

{
x ∈ R𝑛 |∧𝑛

𝑖=1
(xi ∈ [xil , x

i
u])

}
in B𝑜𝑟𝑖 do

6: B𝐴2 ← findingAboveAdjacentORI(B𝑜𝑟𝑖 , d, I, S)
⊲ The value decreasing direction on 𝑑 is designated as above.

7: if 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (B𝐴2 ) = 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 then
8: B𝑜𝑟𝑖 .height ← B𝐴2 .height + (B𝑜𝑟𝑖 .xdu − B𝑜𝑟𝑖 .xdl )
9: else
10: B𝑜𝑟𝑖 .height ← B𝑜𝑟𝑖 .xdu − B𝑜𝑟𝑖 .xdl
11: end if
12: for each i in {1, ..., n} /{d} do
13: B𝑜𝑟𝑖 .i.leftTemp← traverse(B𝑜𝑟𝑖 , i, I, S, left)
14: B𝑜𝑟𝑖 .i.rightTemp← traverse(B𝑜𝑟𝑖 , i, I, S, right)

⊲ The value decreasing direction on 𝑖 is designated as left

while the opposite is right.

15: if 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (B𝐴2 ) = potential then
16: B𝑜𝑟𝑖 .i.left ← max(B𝑜𝑟𝑖 .i.leftTemp,B𝐴2 .i.left)
17: B𝑜𝑟𝑖 .i.right ← min(B𝑜𝑟𝑖 .i.rightTemp,B𝐴2 .i.right)
18: else
19: B𝑜𝑟𝑖 .i.left ← B𝑜𝑟𝑖 .i.leftTemp
20: B𝑜𝑟𝑖 .i.right ← B𝑜𝑟𝑖 .i.rightTemp
21: end if
22: end for
23: B𝑎𝑔𝑔 ← span(B𝑜𝑟𝑖 .height, (B𝑜𝑟𝑖 .i.left,B𝑜𝑟𝑖 .i.right), i ∈

{1, ..., n} /{d})
24: if B𝑎𝑔𝑔 ⊆ BS𝑜𝑟𝑖 then
25: C ← C ∪

{
B𝑎𝑔𝑔

}
⊲ BS𝑜𝑟𝑖 =

⋃𝑘
𝑖=1
B𝑜𝑟𝑖𝑖 ,𝑤ℎ𝑒𝑟𝑒 B𝑜𝑟𝑖𝑖 ∈

B𝑜𝑟𝑖 , i ∈ {1, ..., k}
26: end if
27: end for

To alleviate such a dilemma, we design a cost-effective practical

algorithm (Algorithm 1) to instantiate B𝑎𝑔𝑔 as constrained maximal
expansion of B𝑜𝑟𝑖 . Such expansion specifies the priority of dimen-

sions compared to themaximal expansion. The constrained maximal
expansion for a potential box B𝑎𝑔𝑔 makes a maximal expansion

along a predefined specific dimension (called priority dimension) in
uni-direction first (Lines 6-11) and then B𝑜𝑟𝑖 , as the center, expands
to both the value decreasing and increasing directions as large as

possible for the other dimensions (Lines 12-26). In this paper, we

call the priority dimension 𝑑 as main sequence and set the value de-

creasing direction as the one-way on 𝑑 (Line 3). Let 𝑖 ∈ {1, ..., 𝑛} be

Figure 4: Demonstration of Aggregation. I is divided into
2*3*3 sub-boxes for illustration. The blue boxes are poten-
tial while the pink ones are violated. The arrows denote the
direction of the value increasing.

a dimension. Themaximal expansion in one specified direction along
𝑖 of B𝑜𝑟𝑖 refers to traversing the align boxes from B𝑜𝑟𝑖 itself as
start until the first box with 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑 prediction is encountered. The

range of all traversals along main sequence is called the maximum
height of the B𝑎𝑔𝑔 corresponding to the B𝑜𝑟𝑖 (Lines 7-10).

For example, Figure 4(a) shows BS𝑜𝑟𝑖 ∈ BS3
made up with 7

predicted potential boxes B𝑜𝑟𝑖1 ,...,B𝑜𝑟𝑖7 . We pick the blue axis as

the main sequence 𝑑 . As for B𝑜𝑟𝑖1 , it itself is already the end along 𝑑
in the one-way direction, so themaximum height of B𝑜𝑟𝑖1 is its own
range on 𝑑 . Because B𝑜𝑟𝑖1 is surrounded by violation boxes within

maximum height, the other dimensions could not make expansion

any more, making B𝑎𝑔𝑔1
be B𝑜𝑟𝑖1 itself shown in Figure 4(b).

The construction of constrained maximal expansion will draw

on the bottom-up dynamic programming to design the heuristic,

so as to effectively reduce the computational overhead introduced

by huge search space and repeated computation. After sorting all

B𝑜𝑟𝑖 in the one-way direction on 𝑑 (Lines 2-4), we could model the

solution into dynamic programming from two perspectives. On the

one hand, for the potential boxes only differing the range on main

sequence 𝑑 , when they respectively traverse to search for maxi-
mum height, the B𝑜𝑟𝑖 with larger value on 𝑑 repeatedly visit the

align boxes on the part of its maximum height overlapped with the

B𝑜𝑟𝑖 having a smaller value on 𝑑 . On the other hand, if the adjacent

B𝐴2 ∈ B𝑛
with [𝑥B

𝐴2

𝑑
𝑙
, 𝑥B

𝐴2

𝑑
𝑢
] ofB𝑜𝑟𝑖 with [𝑥B𝑜𝑟𝑖𝑑𝑙 , 𝑥B𝑜𝑟𝑖

𝑑
𝑢
] along

𝑑 satisfying 𝑥B
𝐴2

𝑑
𝑢
= 𝑥B𝑜𝑟𝑖

𝑑
𝑙
is also potential (Line 6), then themax-

imum height of B𝑜𝑟𝑖 can be directly the sum of B𝐴2 ’s maximum
height and itself projected on 𝑑 without traversing again (Lines

7-8), and the expansions of all other dimensions except 𝑑 of B𝑜𝑟𝑖
are limited by the expansion of B𝐴2 . As Figure 4(d) explains, after

determining the maximum height of B𝑜𝑟𝑖2 , although the longest

traversing only considering red and green axes respectively are

shown as the white arrows, the valid expansion along these two

dimensions of B𝑜𝑟𝑖2 ’s constrained maximal expansion is the black

range, without beyond the scope of B𝐴2 ’s constrained maximal ex-
pansion. This implicitly keeps the maximum height found of B𝑜𝑟𝑖2
still be the range of B𝑜𝑟𝑖2 ’s constrained maximal expansion pro-

jected on 𝑑 . Therefore, there is also a relationship between B𝐴2 ’s

constrained maximal expansion and B𝑜𝑟𝑖 on all dimensions. The



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang

above two aspects separately reflect the overlapping sub-problems

and optimal substructure properties of dynamic programming.

We further use a greedy strategy to optimize the operation with

the expansion of other dimensions (Lines 12-26) after the operation

on main sequence. We separately solve the expansion in both direc-

tions on each dimension while keeping maximum height of B𝑜𝑟𝑖
(Lines 12-22) and then span all dimensional intervals to be a Box
hoping to directly make the new space as large as possible (Line 23),

like Figure 4(e) to (h). We need to determine whether the new box is

a potential candidate by checking whether the sub-boxes it covers

are all potential as predicted before (Lines 24-26). Considering the

restriction of B𝐴2 , we make endpoints for each dimension align

with the one closer toB𝑜𝑟𝑖 between the corresponding expansion of
B𝐴2 and the longest traversing only considering single-dimension

(Lines 12-22). Such greedy heuristic may introduce violation spaces

not in BS𝑜𝑟𝑖 ; thus, we discard the invalid space like Figure 4(g)

and (h). Our heuristic maintains the same potential space as BS𝑜𝑟𝑖 ,
as in Proposition 3.2 through proof by contradiction and induction.

Proposition 3.2. Our aggregation method exactly covers all the
potential boxes as predicted before, that is, BS𝑎𝑔𝑔 = BS𝑜𝑟𝑖 .

3.2.5 Ordered Verification. We temporarily keep the nested struc-

ture introduced by the optimal structure among B𝑎𝑔𝑔 of sorted

B𝑜𝑟𝑖 on main sequence if existing, e.g. Figure 4(b) and (c), which is

beneficial for making up for prediction errors.

We commence by enumerating the quantity of potential parti-

tioned sub-boxes within each candidate B𝑎𝑔𝑔 . Subsequently, we
arrange them in descending order based on this count and sys-

tematically engage the verifier to furnish formal assurances. In

the sequential process, if any larger one in the nested structure is

verified to be the true precondition itself, then the other contained

smaller candidates would be discarded without invoking the ver-

ifier anymore. If the larger potential one violates property, there

are still smaller nested candidates implicitly representing part of

a division of the larger failure candidate rather than deliberately

starting the process for input splitting again. The candidates finally

determined as property satisfaction by the verifier are the sufficient

preconditions we pursue.

3.2.6 Overall. We summarize the whole inference process shown

in Algorithm 2, and the details of each function work in concert

with each section above in order.

Algorithm 2 Infer Non-Trivial Sufficient Precondition

Input: the desired property P, DNN 𝑓 : R𝑛 → R𝑚 and the input

box domain I.
Output: the sufficient Boxes precondition OS
1:

¯𝑓 ← buildingDNN(P, f )
2: I← inputSplitting(𝑑𝑜𝑚𝑎𝑖𝑛, 𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑)
3: S← statePrediction(I, ¯𝑓 )
4: C← aggregation(I, S)
5: Q← orderedVerify(C,P, f )

⊲ Q = {(𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 C, 𝑙𝑎𝑏𝑒𝑙)} , 𝑙𝑎𝑏𝑒𝑙 ∈ {𝑝𝑎𝑠𝑠,𝑢𝑛𝑠𝑎𝑓 𝑒,𝑢𝑛𝑘𝑛𝑜𝑤𝑛}
6: OS ← {(c, label) | (c, label) ∈ Q ∧ label = 𝑝𝑎𝑠𝑠}

3.3 Make Sufficient Precondition Weaker
The granularity of the input domain impacts state prediction and

challenges the verifier’s solving capability. As for the space partially

containing preconditions, the finer the splitting is, the more precise

the positioning of preconditions and violations will be. Coarse

splitting may overlook the presence of preconditions inside, while

excessively fine splitting will be computationally expensive. Thus,

we propose to iterate on inferring preconditions as a compromise,

progressively refining the division of specific space as needed.

We provide how to make sufficient precondition as weak as

possible, that is, cover as much space as possible, based on the

process shown in Algorithm 3. We take the maximum iteration

times𝑅 as the termination condition for example, and can also adapt

to others such as time or the lower limit of precondition coverage

(Line 4). The featured DNN
¯𝑓 only needs to be handled once because

nothing relevant changes through iterations (Line 3). The only

difference is the target input domains dealt with in each turn for

precondition inference (Lines 5, 20). The iteration adaptively selects

input splitting schemes as discussed in Section 3.2.2 for different

domains (Lines 7-12). As for the initial input domain I, we don’t
know whether it meets P or not (Line 2) and get no hint for it, so

it’s natural to make input splitting by dimension splitting. If the
domain has any additional information, splitting with information

is a tailored choice, e.g. counterexamples offered by the verifier. The

subsequent processing of each domain is basically consistent with

Section 3.2, except that we have conducted a detailed classification

and application based on the results of the verifier (Lines 15-18).

We sample 𝑁 input points uniformly in each candidate without

the pass label and then evaluate whether such a sub-domain still

has the potential for further processing as an input domain for the

next round. We count the number of samples meeting P among

these 𝑁 points denoted as 𝑃𝑁 and use their ratio 𝜔 = 𝑃𝑁 /𝑁 to

represent the proportion of preconditions that may be ignored in

such candidate discarded by the verifier. We finally choose the ones

beyond our expected potential threshold 𝛿 to further participate in

iteration later (Lines 17-18, 20).

4 Implementation and Evaluation
We have implemented our methods into a tool called PreBoxes
and evaluated it with a series of experiments. Firstly, we discuss

the experimental setup in Section 4.1. Next, we design a set of

research questions to evaluate PreBoxes in Section 4.2 and present

the corresponding results and discussions in Section 4.3. Finally,

we discuss the limitation in Section 4.4.

4.1 Experimental Settings
4.1.1 Implement. We have implemented PreBoxes using Python

under the framework of PyTorch to integrate with 𝛼𝛽-CROWN
1

as the verifier. We have conducted all the experiments on a ma-

chine with 12th Gen Intel Core i9-12900K, 128 GB DDR4 3200MHz

RAM, and NVIDIA GeForce RTX 4090, running Windows 11 with

subsystem for Linux.

1
https://github.com/Verified-Intelligence/alpha-beta-CROWN



Synthesizing Boxes Preconditions for Deep Neural Networks ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 3 Synthesize Weaker Sufficient Precondition

Input: the desired property P, DNN 𝑓 : R𝑛 → R𝑚 , the input

box domain I, maximum iterations 𝑅 and potential assessment

threshold 𝛿 .

Output: the sufficient Boxes precondition OS
1: OS ← {}
2: IS ← {(I, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛)}
3:

¯𝑓 ← buildingDNN(P, f )
4: while iteration ≤ 𝑅 do
5: IS𝑡𝑒𝑚𝑝 ← {}
6: for each (domain, label) in IS do
7: if label = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 then
8: splittingMethod ← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔

9: else if label = 𝑢𝑛𝑠𝑎𝑓 𝑒 then
10: splittingMethod ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔

11: end if
12: I← inputSplitting(domain, splittingMethod)
13: S← statePrediction(I, ¯𝑓 )
14: C← aggregation(I, S)
15: Q← orderedVerify(C,P, f ) ⊲ Q = {(𝑒𝑎𝑐ℎ 𝑐 𝑖𝑛 C, 𝑙𝑎𝑏𝑒𝑙)},

𝑙𝑎𝑏𝑒𝑙 ∈ {𝑝𝑎𝑠𝑠, 𝑢𝑛𝑠𝑎𝑓 𝑒, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛}
16: OS ← OS ∪ {(c, label) | (c, label) ∈ Q ∧ label = 𝑝𝑎𝑠𝑠}
17: IS𝑝𝑜𝑡 ← pick({(c, label) | (c, label) ∈ Q ∧ (label =

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ∨ label = 𝑢𝑛𝑠𝑎𝑓 𝑒)}, 𝛿)
18: IS𝑡𝑒𝑚𝑝 ← IS𝑡𝑒𝑚𝑝 ∪ IS𝑝𝑜𝑡
19: end for
20: IS ← IS𝑡𝑒𝑚𝑝

21: end while

4.1.2 Competitors. We consider three typical under-approximation

schemes for precondition synthesis, namely Uniform [19], NonUni-
form [19] and PreimageAppro [36]. Uniform and NonUniform imple-

ment the ideas of solving certified adversary-free regions as large

as possible separately in the form of uniform and non-uniform

bounds across all input features respectively [19]. Both of them rely

on incomplete verification algorithm [35] and provide sufficient

preconditions as the union of all adversary-free regions around

massive inputs in the format of Boxes as well. Following both the

incomplete [32] and complete [30] verification algorithms, Preim-
ageAppro [36] takes sufficient precondition as the goal in a less

restricted way to adapt these verification works and optimize on

the whole bounded input domain. PreimageAppro provides the re-
sults in the format of a disjoint union of polytopes. However, the

methods above solely synthesize preconditions for desired prop-

erties representing a convex output set as conjunctions of linear

constraints, referred to as simple properties in this paper.

4.1.3 Benchmark. We gather four benchmarks as shown in Table 1.

We use the same index of ACASXu models as VNN-COMP
2
abbre-

viating as 𝑛𝑛_𝑖_ 𝑗 , where 𝑖 ∈ {1, 2, 3, 4, 5}, 𝑗 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}
and use NN4Sys models mscn_128d and mscn_128d_dual. As far as
we know, we accomplish precondition synthesis on a Non-ReLU
complex structured network like NN4Sys, a multi-set feed-forward

network [14] where tables, joins, and predicates are represented as

2
https://github.com/ChristopherBrix/vnncomp2022_benchmarks

separate modules with concatenation operations. The number of

effective input dimensions is marked as ♯Dim.

We have set rich trustworthiness properties for different bench-

marks, as shown in Table 6. Beyond simple properties considered
in the previous work, we introduce all complex properties in [13]

(original indices provided in parentheses). Although ACASXu has

been discussed in the previous work, PreBoxes does not fix the nu-
merical value of any input features and completes the precondition

synthesis with respect to complex properties.

4.1.4 Evaluation Metrics. Firstly, we use the metric the geometric

average diameter 𝜖 =
∑𝑑
𝑖=1
(𝑥𝑢

𝑖
− 𝑥𝑙

𝑖
)/𝑑 in [19] to evaluate the

weakness extent of the precondition when concerning robustness.

𝜖𝑎𝑣𝑔 represents the mean diameter of all Box preconditions in Boxes,
and 𝜖𝑚𝑎𝑥 is the maximum diameter among Boxes.

Secondly, we use the metric in [36] as a normalized measure

for assessing the quality of the sufficient precondition, that is the

coverage ratio 𝑅𝑐𝑜𝑣 to be the ratio of volume covered by precon-
dition solutions to the volume of the exact precondition. The esti-
mation of the exact precondition’s volume 𝑣𝑜𝑙 (𝑒𝑝) is consistent
with [36] using the input domain I relevant to property 𝑃 as

𝑣𝑜𝑙 (𝑒𝑝) ≈ 𝑣𝑜𝑙 (I)× (∑𝑁
𝑖=1

1𝑓 (𝑥𝑖 ) ∈P/𝑁 ), where 𝑥1, ...𝑥𝑁 are samples

from I. Further, 𝑅𝑐𝑜𝑣 ≈ (
∑𝑁
𝑖=1

1𝑓 (𝑥𝑖 ) ∈OS/𝑁 )/(
∑𝑁
𝑖=1

1𝑓 (𝑥𝑖 ) ∈P/𝑁 )
is defined in practice, where OS presents the synthesis solution.

4.2 Research Questions
To evaluate the effectiveness, utility, and factors of PreBoxes, we
consider the following research questions.

RQ1(Effectiveness): Can PreBoxes solve the non-trivial sufficient
preconditions? How effective is PreBoxes in synthesizing weaker suffi-
cient preconditions compared to the prior approaches? Beyond that,
what functionality does PreBoxes contribute and how does it perform?

Due to the support of the verifier in the check phase, the cor-

rectness of any synthetic preconditions of PreBoxes is naturally
guaranteed if existing. We have designed various scenes to assess

the effectiveness of PreBoxes as a whole from two perspectives:

scenes that can be completed by existing works and functions that

PreBoxes expands. At first, we make comparisons with three typical

methodologies mentioned in Section 4.1.2 to show the weaknesses

degree of sufficient precondition results as well as the ability to cope

with different sizes of input domains within an effective time. Then,

we separately demonstrate its competitive capabilities to handle

complex properties and Non-ReLU complex structured networks in
Section 4.1.3.

RQ2(Utility): Does each functional module in PreBoxes contribute
to continuously reducing the overhead of verifier calls? Is the assump-
tion used in the design of state prediction reasonable? Does iterative
running of PreBoxes help obtain weaker sufficient preconditions?

We evaluate the utility of functional modules in PreBoxes on
Algorithm 2 and Algorithm 3 from three perspectives. Firstly, the

results of modules Input Splitting, State Prediction, and Aggregation
in the guess phase can theoretically be passed directly to the check
phase for verification. They skip subsequent steps as they provide

different sets of precondition candidates. However, their interre-

lationship is designed to reduce the cost caused by large numbers

of verifications. We evaluate whether such expectation holds. Sec-

ondly, the subsequent modules of State Prediction only consider



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang

Table 1: DNN Benchmark for Precondition Synthesis

Benchmark ♯ Model Source Application Network Types ♯ Neurons ♯ Dim

Syn 1 [19] Classification FC.+ReLU 20 2

CartPole 1 [22] Reinforcement Learning FC.+ReLU 128 4

ACASXu 17 [22] Airborne Collision Avoidance FC.+ReLU 300 5

NN4Sys 2 [22] Cardinality Estimation Part Complex(ReLU+Sigmoid) 1024-2048 4-6

Table 2: Desired Properties for Precondition Synthesis

Benchmark Property Index Property Meaning Source Property Types Simple

Syn 𝑝𝑟𝑜𝑝𝑖 ,𝑖 ∈ {1, ..., 10} the network will predict label 𝑖 [19] Robustness ✓

CartPole 𝑝𝑟𝑜𝑝1 push cart to the left [22] Safety ✓

CartPole 𝑝𝑟𝑜𝑝2 push cart to the right [22] Safety ✓

ACASXu 𝑝𝑟𝑜𝑝1 the score for weak left will be maximal Custom Safety ✓

ACASXu 𝑝𝑟𝑜𝑝2 the score for weak right will be maximal Custom Safety ✓

ACASXu 𝑝𝑟𝑜𝑝3 the score for strong left will be maximal Custom Safety ✓

ACASXu 𝑝𝑟𝑜𝑝4 the score for strong right will be maximal Custom Safety ✓

ACASXu 𝑝𝑟𝑜𝑝5(3/4) the score for COC will not be minimal [13] Safety ✗

ACASXu 𝑝𝑟𝑜𝑝6(7) the scores for strong right and strong left will be

never the minimal scores

[13] Safety ✗

ACASXu 𝑝𝑟𝑜𝑝7(8) the network will either output COC or continue

advising weakleft

[13] Safety ✗

ACASXu 𝑝𝑟𝑜𝑝8(2) the score for COC will not be maximal [13] Safety ✗

ACASXu 𝑝𝑟𝑜𝑝9(6/10) the score for COC will be minimal [13] Safety ✓

NN4Sys 𝑝𝑟𝑜𝑝1 the score will always be in a certain range Custom Safety ✓

NN4Sys 𝑝𝑟𝑜𝑝2 the score will always be below a certain threshold [22] Safety ✓

sub-boxes predicted to be potential. There is an assumption under-

lying that it is better to consider boxes predicted as potential rather

than unsafe. Here, we tend to define better as how close the sub-box
is to the true precondition, meaning the actual coverage of the true

precondition in potential boxes is greater than that in unsafe boxes.

The first two perspectives are related to both Algorithm 2 and Algo-

rithm 3. Finally, we also verify whether Algorithm 3 helps weaken

results based on Algorithm 2.

RQ3(Factors): How do different hyper-parameter settings affect
the effectiveness of PreBoxes?

According to the experimental settings on iteration in RQ2, it

is obvious that the fineness of Input Splitting and the potential

assessment threshold 𝛿 in iterative running affect the weakness of
results. To avoid redundant description, we evaluate the impact

of the solving capability of verifier and the density of boundary

sampling in State Prediction.

4.3 Results and Analysis
4.3.1 Answers to RQ1. We first separately compare PreBoxes with
the competitors in Section 4.1.2 and then display its competitive

capabilities on complex properties and DNNs in the Section 4.1.3.

Comparison with Uniform and NonUniform: We compare Pre-
Boxes with Uniform and NonUniform on Syn and ACASXu to show

their non-trivial sufficient preconditions on simple properties be-
cause both competitors can only apply such properties.Wemaintain

the default parameter configuration of competitors without a time

limit. As for PreBoxes, we set a 100s timeout with 10
4
input-splitting

sub-boxes on Syn and a 10 min timeout with 5
5
input-splitting

sub-boxes on ACASXu.

Figure 5: Comparison with Uniform and NonUniform on Syn

The results for 𝑝𝑟𝑜𝑝𝑖 , 𝑖 ∈ {1, ..., 10} on Syn are shown in Fig-

ure 5. The orange rectangles represent the Boxes covered by the

sufficient precondition found by Uniform and green corresponds

to NonUniform. The blue region depicts the Boxes solution of Pre-
Boxes. The black lines depict decision boundary solved by brute



Synthesizing Boxes Preconditions for Deep Neural Networks ISSTA ’24, September 16–20, 2024, Vienna, Austria

force search. Firstly, PreBoxes covers a significantly larger area in

the entire input domain compared to both Uniform and NonUniform,

indicating its efficient synthesis of weaker sufficient preconditions

than others. Secondly, although some preconditions solved by Uni-
form or NonUniform are not included in the solutions of PreBoxes,
we observe that PreBoxes offers a better correctness guarantee. We

observed an orange rectangle spanning multiple black boundaries,

indicating that a Box precondition solved by Uniform for a spe-

cific robustness property incorrectly covers multiple preconditions

related to other properties. However, thanks to the check phase,

PreBoxes will never synthesize incorrect preconditions.
Table 3 shows the results of 𝑝𝑟𝑜𝑝1-𝑝𝑟𝑜𝑝4 on ACASXu. The av-

erage time for each solution is 761.3s for Uniform and 710.7s for

NonUniform, while we set 600s timeout for PreBoxes. On the one

hand, PreBoxes solves much weaker sufficient preconditions in gen-

eral than both Uniform and NonUniform. Based on 𝜖𝑎𝑣𝑔 and 𝜖𝑚𝑎𝑥

in Section 4.1.4, 𝑅𝑚𝑎𝑥 = 𝜖𝑃𝑟𝑒𝐵𝑜𝑥𝑒𝑠𝑚𝑎𝑥 /𝑚𝑎𝑥

(
𝜖
𝑈𝑛𝑖𝑓 𝑜𝑟𝑚
𝑚𝑎𝑥 , 𝜖

𝑁𝑜𝑛𝑈𝑛𝑖𝑓 𝑜𝑟𝑚
𝑚𝑎𝑥

)
and

𝑅𝑎𝑣𝑔 = 𝜖𝑃𝑟𝑒𝐵𝑜𝑥𝑒𝑠𝑎𝑣𝑔 /𝑚𝑎𝑥

(
𝜖
𝑈𝑛𝑖𝑓 𝑜𝑟𝑚
𝑎𝑣𝑔 , 𝜖

𝑁𝑜𝑛𝑈𝑛𝑖𝑓 𝑜𝑟𝑚
𝑎𝑣𝑔

)
are defined here for

clearness. Whether it is the overall situation of Boxes as 𝑅𝑎𝑣𝑔 or

individual situations as 𝑅𝑚𝑎𝑥 , they are all greater than 1 when

being able to compare. On the other hand, PreBoxes shows better
stability on ACASXu. Both Uniform and NonUniform have 𝑁𝑎𝑁

solutions, which means that there is a numerical error in results,

i.e., the method failed for a certain instance.

Comparison with PreimageAppro: We compare PreBoxes with
the PreimageAppro on ACASXu and CartPole to show their precondi-

tion synthesis abilities also on simple properties due to the limitation

of PreimageAppro. Both PreBoxes and PreimageAppro synthesize pre-
conditions within a given initial input domain.

As for ACASXu, we use the same instances listed in Table 3 and

set coverage ratio as the metric. The experimental setup of PreBoxes
is the same as before. PreimageAppro is set to the same time thresh-

old as PreBoxes, and both have the same initial input domain. As

shown in Table 4, although PreimageAppro solves weaker precondi-
tions than PreBoxes in some instances, in most cases PreimageAppro
cannot solve any answer at all. PreBoxes has a relatively stable

solving ability.

Table 4: Comparison 𝑅𝑐𝑜𝑣 with PreimageAppro on ACASXu

Model Property PreBoxes PreimageAppro

𝑛𝑛_1_1 𝑝𝑟𝑜𝑝1 0.2828 0.5006

𝑛𝑛_1_7 𝑝𝑟𝑜𝑝1 0.1954 0.0

𝑛𝑛_1_5 𝑝𝑟𝑜𝑝2 0.3047 0.6265

𝑛𝑛_1_8 𝑝𝑟𝑜𝑝2 0.3403 0.5018

𝑛𝑛_1_2 𝑝𝑟𝑜𝑝3 0.0613 0.0

𝑛𝑛_1_4 𝑝𝑟𝑜𝑝3 0.0467 0.0

𝑛𝑛_1_3 𝑝𝑟𝑜𝑝4 0.3337 0.0

𝑛𝑛_2_8 𝑝𝑟𝑜𝑝4 0.2678 0.0

As for CartPole, we first initialize two different ranges of input

domains: the Small is consistent with the default setting of Preim-
ageAppro3, which is ((−0.5, 0.5), (−1, 1), (−0.1, 0.1), (−1, 1)) , and
3
https://github.com/Zhang-Xiyue/PreimageApproxForNNs

the Large is instantiated from [9], which is ((−4.8, 4.8), (−100, 100),
(−0.418, 0.418), (−100, 100)) . Large is 401.28K times Small. We keep

default configurations of PreimageAppro. As for PreBoxes, we set
input-splitting granularity to 6

4
for both domain types for conve-

nience. When PreimageAppro offers solutions, we align the running

time of PreBoxes with PreimageAppro and compare 𝑅𝑐𝑜𝑣 . If Preim-
ageAppro fails to provide results by the default timeout, no runtime

is set for PreBoxes.
We found that PreimageAppro’s ability to synthesize precondi-

tions is related to the size of the input domain, while PreBoxes
generally shows good stability. As shown in Table 5, PreimageAp-
pro cannot offer any results until timeout under the Large , but it
shows a relatively faster convergence than PreBoxes on the Small.
This is because the size of the domain will directly affect the tight-

ness of PreimageAppro’s approximate optimization of preconditions

through linear relaxation. Even if using global branching, large do-

mains still make the resulting bounds relatively loose. In PreBoxes,
the domain partitioned by input splitting or iteration transfers to

effective candidates through state prediction and aggregation.

Table 5: Comparison with PreimageAppro on CartPole

Property Domain Competitors 𝑅𝑐𝑜𝑣 Time(s)

𝑝𝑟𝑜𝑝1 Large

PreimageAppro 0.0 2130.866

PreBoxes 0.805 20.513

𝑝𝑟𝑜𝑝1 Small

PreimageAppro 0.752 80.747

PreBoxes 0.602 81.374

𝑝𝑟𝑜𝑝2 Large

PreimageAppro 0.0 2691.926

PreBoxes 0.782 16.392

𝑝𝑟𝑜𝑝2 Small

PreimageAppro 0.754 19.625

PreBoxes 0.335 20.314

Dealing with Complex Properties on Huge Domain: As shown
in Table 6, we evaluate PreBoxes with all such complex properties
in [13] on the huge domain of ACASXu sourced from [22]. The do-

main here ((0, 60760), (−𝜋, 𝜋), (−𝜋, 𝜋),(0, 1200), (0, 1200)) is about
10.76𝑀 times Large. We set 3600s as a timeout for each instance.

Table 6: Sufficient Precondition Synthesis for Complex Prop-
erties on Huge Domain of ACASXu

Property Model 𝑅𝑐𝑜𝑣 𝜖𝑎𝑣𝑔 𝜖𝑚𝑎𝑥

𝑝𝑟𝑜𝑝5 𝑛𝑛_1_6 0.013 1527.166 2205.543

𝑝𝑟𝑜𝑝5 𝑛𝑛_5_2 0.008 1619.726 2185.542

𝑝𝑟𝑜𝑝6 𝑛𝑛_4_3 0.402 8980.456 11113.629

𝑝𝑟𝑜𝑝6 𝑛𝑛_3_1 0.076 8998.609 9504.942

𝑝𝑟𝑜𝑝7 𝑛𝑛_2_3 0.376 9507.988 11113.942

𝑝𝑟𝑜𝑝7 𝑛𝑛_4_2 0.056 9028.138 11083.472

𝑝𝑟𝑜𝑝8 𝑛𝑛_2_6 0.469 9338.675 12602.472

𝑝𝑟𝑜𝑝8 𝑛𝑛_3_1 0.430 9672.194 11113.942

As Table 6 shows, PreBoxes offers provable sufficient precondi-

tions for each instance and has the capability of directly dealing



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang

Table 3: Comparison with Uniform and NonUniform on ACASXu

Model Property

Uniform NonUniform PreBoxes
𝑅𝑎𝑣𝑔 𝑅𝑚𝑎𝑥

𝜖𝑎𝑣𝑔 𝜖𝑚𝑎𝑥 𝜖𝑎𝑣𝑔 𝜖𝑚𝑎𝑥 𝜖𝑎𝑣𝑔 𝜖𝑚𝑎𝑥

𝑛𝑛_1_1 𝑝𝑟𝑜𝑝1 NaN 4230.669 4209.0618 4277.2188 7090.2351 10154.1026 1.6845 2.4001

𝑛𝑛_1_7 𝑝𝑟𝑜𝑝1 4477.736 5087.5273 4637.2815 5368.5503 8095.5597 10106.1026 1.7458 1.8825

𝑛𝑛_1_5 𝑝𝑟𝑜𝑝2 NaN 4824.229 4382.5498 5078.711 7038.2416 10154.1026 1.6060 1.9993

𝑛𝑛_1_8 𝑝𝑟𝑜𝑝2 NaN 4208.251 4208.2491 4208.284 8423.7711 10154.1027 2.0017 2.4129

𝑛𝑛_1_2 𝑝𝑟𝑜𝑝3 NaN 4237.2437 NaN 4251.794 10058.6053 10058.6053 NaN 2.3657

𝑛𝑛_1_4 𝑝𝑟𝑜𝑝3 NaN 4248.6064 4213.2214 4325.551 7628.2053 7628.2053 1.8105 1.7635

𝑛𝑛_1_3 𝑝𝑟𝑜𝑝4 NaN 5034.0156 4671.1998 5388.9443 7540.2427 10202.1027 1.6142 1.8932

𝑛𝑛_2_8 𝑝𝑟𝑜𝑝4 NaN NaN NaN 5794.353 10154.6053 10154.6053 NaN 1.7525

Table 7: Sufficient Precondition Synthesis on NN4Sys

Model Property ♯ Dim 𝑅𝑐𝑜𝑣 Time(s)

mscn_128d 𝑝𝑟𝑜𝑝1 4 0.999 8.598

mscn_128d 𝑝𝑟𝑜𝑝1 5 0.989 35.777

mscn_128d 𝑝𝑟𝑜𝑝1 6 0.931 182.961

mscn_128d_dual 𝑝𝑟𝑜𝑝2 4 0.701 150.682

mscn_128d_dual 𝑝𝑟𝑜𝑝2 5 0.606 503.327

mscn_128d_dual 𝑝𝑟𝑜𝑝2 6 0.552 1775.867

with such properties as formulas over linear inequalities support-

ing mixed conjunctive and disjunctive form. Although 𝑅𝑐𝑜𝑣 of our

method within the time threshold is relatively low for some in-

stances due to the overhead balance caused by the huge domain,

we observe that the solved range of provable preconditions is still

considerably non-trivial based on 𝜖𝑎𝑣𝑔 and 𝜖𝑚𝑎𝑥 .

Dealing with Non-ReLU Complex Structured DNNs:We select

NN4Sys to examine the capability of PreBoxes for dealing with Non-

ReLU DNN. We formulate the input domain as well as property

type with reference to the settings of VNN-COMP and randomly

generate variable input dimensions based on ♯Dim. We set the ini-

tial splitting granularity of 5
♯𝐷𝑖𝑚

for each instance in Table 7. To

the best of our knowledge, no previous work has achieved such ca-

pability. As shown in Table 7, our method can still efficiently solve

provable sufficient preconditions with considerable coverage, even

for networks with complex structures, thousands of parameters,

and non-ReLU activation functions.

4.3.2 Answers to RQ2. We evaluate the utility of functional mod-

ules in PreBoxes as follows.
Functional Certificate: If PreBoxes terminates at a specific step,

the number of boxes generated here is the number of verifier

calls with skipping the next steps. We conducted experiments on

two benchmarks: CartPole (evaluated with 𝑝𝑟𝑜𝑝1 and 𝑝𝑟𝑜𝑝2) and

ACASXu (evaluated with 𝑛𝑛_2_3 using 𝑝𝑟𝑜𝑝7 and 𝑛𝑛_2_4 using

𝑝𝑟𝑜𝑝9). As Figure 6 shows, the interrelationship design of each

functional module contributes to continuously reducing the over-

head of verifier calls where the first four columns represent the

number of candidate boxes in Input Splitting, State Prediction, Ag-
gregation and Ordered Verification respectively with ablation, and

Figure 6: Ablation Evaluation of Functional Certificate

the last column represents the number of provable boxes passed by

the verifier.

Assumption Justification: In practice, we define 𝜑 (𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙)
and 𝜑 (𝑢𝑛𝑠𝑎𝑓 𝑒) separately as the mean of all 𝑅𝑐𝑜𝑣 of sub-boxes pre-

dicted as the according state, which evaluates the average degree of

closeness to preconditions themselves. We conducted experiments

on two benchmarks: CartPole (evaluated with 𝑝𝑟𝑜𝑝1 and 𝑝𝑟𝑜𝑝2) and

ACASXu (evaluated with 𝑛𝑛_5_2 using 𝑝𝑟𝑜𝑝8). As shown in Figure

7(a), 𝜑 (𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙) is generally greater than 𝜑 (𝑢𝑛𝑠𝑎𝑓 𝑒). Therefore,
even if the sub-boxes predicted as unsafe are discarded, PreBoxes
can obtain a reasonable cost-effective benefit.

Iterative Running: Take ACASXu evaluated with 𝑛𝑛_3_1 sepa-

rately using 𝑝𝑟𝑜𝑝6 and 𝑝𝑟𝑜𝑝9 as examples. We set each instance

to iterate three times and obtain 𝑅𝑐𝑜𝑣 of the provable sufficient

preconditions for each round. As shown in Figure 7(b), the upward

trend of lines shows that iterative running helps to cover more

candidates, indicating weaker preconditions.

4.3.3 Answers to RQ3. Hyper-parameter evaluations are as follows.

Density of Boundary Sampling:We takeACASXu instancewith
𝑛𝑛_2_2 and 𝑝𝑟𝑜𝑝8 as examples and other instances show similar

patterns. Except for the vertices of the sub-box, we separately uni-

formly sample 1, 3, and 5 points on each edge to assist in prediction

(The total is 37, 47, and 57 respectively). With the same input split-

ting, we compare the number of candidates generated by each

subsequent module as shown in Figure 8(a). Through the down-

ward trend of ♯Predict, ♯Aggregate, and ♯Invoke, the increase in



Synthesizing Boxes Preconditions for Deep Neural Networks ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 7: Assumption Justification and Iterative Running

Figure 8: Impact of Typical Hyper-Parameter Settings

the number helps to improve the accuracy of prediction, thereby

reducing redundant operation overhead for subsequent functional

modules due to prediction mistakes. From the rise to the gentle

trend of 𝑅𝑐𝑜𝑣 , appropriately increasing the density will help find

weaker results, but there will be an inflection point helping the

trade-off.

Solving Capability of Verifier: We use three representative ver-

ification algorithms as the verifier, and other settings are the same.

They are the incomplete verification algorithms CROWN [35], 𝛼-

CROWN [32], and the complete verification algorithm 𝛼𝛽-CROWN

[30]. We take CartPole instance 𝑝𝑟𝑜𝑝2 as an example shown in Fig-

ure 8(b). The verifier with strong capabilities effectively reduces

overhead and helps prove weaker preconditions under the same

operation.

4.4 Limitations
The first limitation is that we work on the bounded input domain.

Second, although we have made efforts such as aggregation to

reduce the cost caused by the dimension disaster, scalability is still

needed to justify and improve.

5 Related Work
Precondition synthesis has already been studied in program analy-

sis and verification [2, 4, 15, 18, 33]. Recently, precondition synthesis

for DNN is gradually attracting attention for developing trustwor-

thy learning-enabled systems. Pasareanu et al. evaluate the DNN

module’s expectation within the safety framework, focusing on

traditional program modules rather than directly analyzing the

network itself [25]. Ahmed et al. adhere to Dijkstra’s predicate

transformer semantics rules to derive preconditions with abstract-

ing DNNs [1]. Naik and Nuzzo introduce robustness contracts for

compositional specification in cyber-physical systems with DNN

components [23].

Inspired by the maximum local robust radius solution in DNN

verificationwork [16, 28, 35], Liu et al. adapt the original verification

algorithm to transform the optimizing objectives from uniform

to non-uniform space [19]. Gopinath et al. analyze feed-forward

DNNs layer by layer, proposing to extract patterns from neuron

decisions as preconditions [10]. However, it is difficult to expand

large-scale networks in this way. Some researchers further combine

and optimize both incomplete and complete verificationmethods for

precondition generation. Zhang et al. use input and ReLU splitting

to generate sufficient under-approximation preconditions in the

format of disjoint union of polytopes representation [36]. Kotha et al.

make a convex over-approximation over the necessary precondition

of DNNs in the format of a linearly constrained output set [17].

There are also researches focusing on exact preimage generation

[21, 24]. However, such an exact solution is intractable, taking time

exponentially in the number of neurons in neural networks. So

far, most of these works often support solving piecewise linear

DNNs and are restricted by the type of activation functions and

properties as a convex output set in the form of conjunctions of

linear constraints.

Moreover, there are a few existing works on splitting input re-

gions to quantify robustness and fairness properties. Biswas et

al. partition attributes based on whether each attribute is relaxed

or the threshold size [5]. Bunel et al. design to split the input do-

main in half along its largest input feature range [6]. Wang et al.

regard the gradient information as the influence on the output

and pick the largest axis as the first to bisect [29]. Most of them

obtain sub-regions waiting for independent verification at once.

Our guess phase provides a process of first going from complete to

fragmented, but then aggregating in a targeted manner to achieve

partial completeness.

6 Conclusion
We propose a guess-and-check framework PreBoxes to synthesize

sufficient Boxes preconditions for DNN concerning the given post-

condition. PreBoxes under-approximates the exact precondition in

a gray-box way, i.e. the guess phase is black-box-based for efficient

generation of candidates, while the check phase is white-box-based
formal verification. PreBoxes shows its competitive capabilities com-

pared with three representative existing schemes when evaluated

across four benchmarks. Moreover, PreBoxes expands functionality
for complex properties and DNNs. In future research, we would

like to explore more expressive forms of precondition to provide

technical support for the security and interpretability of DNNs.

Data Availability
The source code of PreBoxes with the experimental data is available

at Zenodo [20].

Acknowledgments
We thank the ISSTA 2024 reviewers for their constructive feedback.

This work is supported by the National Key R&D Program of China

(No.2022YFA1005101) and the National Natural Science Foundation

of China (No.62032024).



ISSTA ’24, September 16–20, 2024, Vienna, Austria Zengyu Liu, Liqian Chen, Wanwei Liu, and Ji Wang

References
[1] Shibbir Ahmed, Hongyang Gao, and Hridesh Rajan. 2024. Inferring Data Precon-

ditions from Deep Learning Models for Trustworthy Prediction in Deployment.

In ICSE’2024: The 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Lisbon, Portugal).

[2] Angello Astorga, P. Madhusudan, Shambwaditya Saha, Shiyu Wang, and Tao Xie.

2019. Learning stateful preconditions modulo a test generator. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (Phoenix, AZ, USA) (PLDI 2019). Association for ComputingMachinery,

New York, NY, USA, 775–787. https://doi.org/10.1145/3314221.3314641

[3] Mark R. Baker and Rajendra B. Patil. 1998. Universal Approximation Theorem

for Interval Neural Networks. Reliable Computing 4, 3 (01 Aug 1998), 235–239.

https://doi.org/10.1023/A:1009951412412

[4] Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,

Antoine Miné, and Xavier Rival. 2015. Static Analysis and Verification of

Aerospace Software by Abstract Interpretation. Found. Trends Program. Lang. 2,
2–3 (dec 2015), 71–190. https://doi.org/10.1561/2500000002

[5] Sumon Biswas and Hridesh Rajan. 2023. Fairify: Fairness Verification of Neu-

ral Networks. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1546–1558.

https://doi.org/10.1109/ICSE48619.2023.00134

[6] Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan

Kumar. 2018. A Unified View of Piecewise Linear Neural Network Verification. In

Proceedings of the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY,

USA, 4795–4804.

[7] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen Koltun, and Alexey

Dosovitskiy. 2018. End-to-End Driving Via Conditional Imitation Learning. In

2018 IEEE International Conference on Robotics and Automation (ICRA) (Brisbane,
Australia). IEEE Press, 1–9. https://doi.org/10.1109/ICRA.2018.8460487

[8] Marcelo Forets and Christian Schilling. 2023. The Inverse Problem for Neural
Networks. Springer Nature Switzerland, 241–255. https://doi.org/10.1007/978-3-

031-46002-9_14

[9] Farama Foundation. 2022. Gym Documentation. https://www.gymlibrary.dev/

environments/classic_control/cart_pole/

[10] Divya Gopinath, Hayes Converse, Corina S. Păsăreanu, and Ankur Taly. 2020.

Property inference for deep neural networks. In Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (San Diego, Califor-

nia) (ASE ’19). IEEE Press, 797–809. https://doi.org/10.1109/ASE.2019.00079

[11] Arie Gurfinkel and Sagar Chaki. 2010. Boxes: A Symbolic Abstract Domain of

Boxes. In Static Analysis, Radhia Cousot and Matthieu Martel (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 287–303.

[12] Anan Kabaha and Dana Drachsler-Cohen. 2023. Maximal Robust Neural Network

Specifications via Oracle-Guided Numerical Optimization. In Verification, Model
Checking, and Abstract Interpretation, Cezara Dragoi, Michael Emmi, and Jingbo

Wang (Eds.). Springer Nature Switzerland, Cham, 203–227.

[13] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.

2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In

Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer

International Publishing, Cham, 97–117.

[14] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons

Kemper. 2018. Learned Cardinalities: Estimating Correlated Joins with Deep

Learning. arXiv:1809.00677 [cs.DB]

[15] Marko Kleine Büning, Johannes Meuer, and Carsten Sinz. 2022. Refined Mod-

ularization for Bounded Model Checking Through Precondition Generation.

In Formal Methods and Software Engineering: 23rd International Conference on
Formal Engineering Methods, ICFEM 2022, Madrid, Spain, October 24–27, 2022,
Proceedings (Madrid, Spain). Springer-Verlag, Berlin, Heidelberg, 209–226. https:

//doi.org/10.1007/978-3-031-17244-1_13

[16] J. Zico Kolter and Eric Wong. 2017. Provable defenses against adversarial ex-

amples via the convex outer adversarial polytope. CoRR abs/1711.00851 (2017).

arXiv:1711.00851 http://arxiv.org/abs/1711.00851

[17] Suhas Kotha, Christopher Brix, Zico Kolter, Krishnamurthy Dvijotham,

and Huan Zhang. 2023. Provably Bounding Neural Network Preimages.

arXiv:2302.01404 [cs.LG]

[18] Jonas Krämer, Lionel Blatter, Eva Darulova, and Mattias Ulbrich. 2022. In-

ferring Interval-Valued Floating-Point Preconditions. In Tools and Algorithms
for the Construction and Analysis of Systems: 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceed-
ings, Part I (Munich, Germany). Springer-Verlag, Berlin, Heidelberg, 303–321.

https://doi.org/10.1007/978-3-030-99524-9_16

[19] Chen Liu, Ryota Tomioka, and Volkan Cevher. 2019. On Certifying Non-uniform

Bound against Adversarial Attacks. CoRR abs/1903.06603 (2019). arXiv:1903.06603

http://arxiv.org/abs/1903.06603

[20] Zengyu Liu. 2024. Synthesizing Boxes Preconditions for Deep Neural Networks.

https://doi.org/10.5281/zenodo.12673450

[21] Kyle Matoba. 2020. Exact Preimages of Neural Network Aircraft Collision Avoid-

ance Systems. https://api.semanticscholar.org/CorpusID:231854560

[22] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T.

Johnson. 2023. The Third International Verification of Neural Networks Compe-

tition (VNN-COMP 2022): Summary and Results. arXiv:2212.10376 [cs.LG]

[23] Nikhil Naik and Pierluigi Nuzzo. 2020. Robustness Contracts for Scalable Verifica-

tion of Neural Network-Enabled Cyber-Physical Systems. In 2020 18th ACM-IEEE
International Conference on Formal Methods and Models for System Design (MEM-
OCODE). 1–12. https://doi.org/10.1109/MEMOCODE51338.2020.9315118

[24] Théo Nancy, Vassili Maillet, and Johann Barbier. 2022. An Analytical Ap-

proach to Compute the Exact Preimage of Feed-Forward Neural Networks.

arXiv:2203.00438 [cs.LG]

[25] Corina Pasareanu, Ravi Mangal, Divya Gopinath, and Huafeng Yu. 2023. Assump-

tion Generation for the Verification of Learning-Enabled Autonomous Systems.

arXiv:2305.18372 [cs.AI]

[26] Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, and Huafeng Yu. 2023. As-

sumption Generation for Learning-Enabled Autonomous Systems. In Runtime
Verification: 23rd International Conference, RV 2023, Thessaloniki, Greece, October
3–6, 2023, Proceedings (Thessaloniki, Greece). Springer-Verlag, Berlin, Heidelberg,
3–22. https://doi.org/10.1007/978-3-031-44267-4_1

[27] D. Seto, B. Krogh, L. Sha, and A. Chutinan. 1998. The Simplex architecture

for safe online control system upgrades. In Proceedings of the 1998 American
Control Conference. ACC (IEEE Cat. No.98CH36207), Vol. 6. 3504–3508 vol.6. https:

//doi.org/10.1109/ACC.1998.703255

[28] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and

Martin Vechev. 2018. Fast and Effective Robustness Certification. In Ad-
vances in Neural Information Processing Systems, S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2018/file/

f2f446980d8e971ef3da97af089481c3-Paper.pdf

[29] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.

Formal security analysis of neural networks using symbolic intervals. In Proceed-
ings of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA)

(SEC’18). USENIX Association, USA, 1599–1614.

[30] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and

J Zico Kolter. 2021. Beta-CROWN: Efficient bound propagation with per-neuron

split constraints for complete and incomplete neural network verification. Ad-
vances in Neural Information Processing Systems 34 (2021).

[31] Kaidi Xu, Zhouxing Shi, Huan Zhang, YihanWang, Kai-Wei Chang, Minlie Huang,

Bhavya Kailkhura, Xue Lin, and Cho-Jui Hsieh. 2020. Automatic perturbation

analysis for scalable certified robustness and beyond. Advances in Neural Infor-
mation Processing Systems 33 (2020).

[32] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and

Cho-Jui Hsieh. 2021. Fast and Complete: Enabling Complete Neural Network

Verification with Rapid and Massively Parallel Incomplete Verifiers. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=

nVZtXBI6LNn

[33] Xuejun Yang, Ji Wang, and Xiaodong Yi. 2010. Slicing Execution with Partial

Weakest Precondition for Model Abstraction of C Programs. Comput. J. 53, 1
(2010), 37–49. https://doi.org/10.1093/comjnl/bxn075

[34] Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin Yun, and Jin Young Choi.

2017. Action-Decision Networks for Visual Tracking with Deep Reinforcement

Learning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 1349–1358. https://doi.org/10.1109/CVPR.2017.148

[35] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.

2018. Efficient Neural Network Robustness Certification with General Activation

Functions. Advances in Neural Information Processing Systems 31 (2018), 4939–
4948. https://arxiv.org/pdf/1811.00866.pdf

[36] Xiyue Zhang, Benjie Wang, and Marta Kwiatkowska. 2024. Provable Preimage

Under-Approximation for Neural Networks. In Tools and Algorithms for the
Construction and Analysis of Systems: 30th International Conference, TACAS 2024,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6–11, 2024, Proceedings, Part
III (Luxembourg City, Luxembourg). Springer-Verlag, Berlin, Heidelberg, 3–23.

https://doi.org/10.1007/978-3-031-57256-2_1

Received 2024-04-12; accepted 2024-07-03

https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1023/A:1009951412412
https://doi.org/10.1561/2500000002
https://doi.org/10.1109/ICSE48619.2023.00134
https://doi.org/10.1109/ICRA.2018.8460487
https://doi.org/10.1007/978-3-031-46002-9_14
https://doi.org/10.1007/978-3-031-46002-9_14
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://doi.org/10.1109/ASE.2019.00079
https://arxiv.org/abs/1809.00677
https://doi.org/10.1007/978-3-031-17244-1_13
https://doi.org/10.1007/978-3-031-17244-1_13
https://arxiv.org/abs/1711.00851
http://arxiv.org/abs/1711.00851
https://arxiv.org/abs/2302.01404
https://doi.org/10.1007/978-3-030-99524-9_16
https://arxiv.org/abs/1903.06603
http://arxiv.org/abs/1903.06603
https://doi.org/10.5281/zenodo.12673450
https://api.semanticscholar.org/CorpusID:231854560
https://arxiv.org/abs/2212.10376
https://doi.org/10.1109/MEMOCODE51338.2020.9315118
https://arxiv.org/abs/2203.00438
https://arxiv.org/abs/2305.18372
https://doi.org/10.1007/978-3-031-44267-4_1
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/ACC.1998.703255
https://proceedings.neurips.cc/paper_files/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.1093/comjnl/bxn075
https://doi.org/10.1109/CVPR.2017.148
https://arxiv.org/pdf/1811.00866.pdf
https://doi.org/10.1007/978-3-031-57256-2_1

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Methodology
	3.1 Overview
	3.2 Infer Non-Trivial Sufficient Precondition
	3.3 Make Sufficient Precondition Weaker

	4 Implementation and Evaluation
	4.1 Experimental Settings
	4.2 Research Questions
	4.3 Results and Analysis
	4.4 Limitations

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

