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Abstract. In the verification of loop programs, disjunctive invariants
are essential to capture complex loop dynamics such as phase and mode
changes. In this work, we develop a novel approach for the automated
generation of affine disjunctive invariants for affine while loops via Farkas’
Lemma, a fundamental theorem on linear inequalities. Our main contri-
butions are two-fold. First, we combine Farkas’ Lemma with a succinct
control flow transformation to derive disjunctive invariants from the condi-
tional branches in the loop. Second, we propose an invariant propagation
technique that minimizes the invariant computation effort by propagating
previously solved invariants to yet unsolved locations as much as possible.
Furthermore, we resolve the infeasibility checking in the application of
Farkas’ Lemma which has not been addressed previously, and extend our
approach to nested loops via loop summary. Experimental evaluation
over more than 100 affine while loops (mostly from SV-COMP 2023)
demonstrates that our approach is promising to generate tight linear
invariants over affine programs.

1 Introduction

An invariant at a program location is an assertion that over-approximates the set
of program states reachable to that location, i.e., every reachable program state
to the location is guaranteed to satisfy the assertion. Since invariants provide
an over-approximation for reachable program states, they play a fundamental
role in program verification and can be used for safety [56,62,2], reachabil-
ity [20,10,3,63,16,29,4] and time-complexity [14] analysis. Invariant generation
targets the automated generation of invariants which can be used to aid the
verification of critical program properties.

Automated approaches for invariant generation have been studied for decades
and there have been an abundance of literature along this line of research. From
different program objects, invariant generation targets numerical values (e.g.,
integers or real numbers) [19,15,65,76,5,9], arrays [51,78], pointers [52,12], alge-
braic data types [46], etc. By different methodologies, invariant generation can be
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solved by abstract interpretation [22,24,9,37], constraint solving [21,19,39,15], in-
ference [30,12,71,35,86,34,77,57,31], recurrence analysis [33,49,50], machine learn-
ing [36,41,88,67], data-driven approaches [52,73,58,26,17,64], etc. Most results
in the literature consider a strengthened version of invariants, called inductive
invariants, that requires the inductive condition that the invariant at a program
location is preserved upon every execution back and forth to the location.

In this work, we consider the automated generation of disjunctive invariants,
i.e., invariants that are in the form of a disjunction of assertions. Compared with
conjunctive invariants, disjunctive invariants capture disjunctive features such as
multiple phases and mode transitions in loops. Although extensive research has
been conducted on conjunctive invariant generation, verification of programs with
complex disjunctive loops still demands a more precise and scalable approach,
rather than merely generating conjunctive invariants at the loop entry point to
summarize the entire loop.

Moreover, most of the existing disjunctive invariant analyses rely on spe-
cific program patterns, such as alternating loop paths [72] or periodic regular
loops [85,54], which cannot be effectively generalized to real-world programs
with arbitrary execution traces. Methods based on abstract interpretation or
symbolic execution often fail to converge, or converge to low-precision invariants,
when dealing with loops that are deeply nested or have large constant iteration
counts. To address this, we propose a modular approach capable of handling
complex loops and efficiently mitigating the computational explosion caused by
the interleaving of paths in disjunctive loops.

We use constraint solving to generate real-valued affine disjunctive invariants.
A typical constraint solving method is via Farkas’ Lemma [19,69,45,55] that
provides a complete characterization for affine invariants. However, the application
of Farkas’ Lemma is mostly limited to the conjunction of affine inequalities. The
question on how to leverage Farkas’ Lemma to affine disjunctive invariants remains
to be a challenge. In this paper, we focus on the generation of affine disjunctive
invariants in affine loops. An affine loop is a while loop where all conditional and
assignment statements are in the form of linear expressions.

Our contributions. First, we introduce a novel control flow transformation that
extracts loop paths (from entry to exit) as standalone locations in a transition
system and establishes transitions between them. Second, to alleviate the expo-
nential computational overhead introduced by the control flow transformation,
we propose an invariant propagation technique that propagates already-computed
invariants to locations whose invariants yet need to be computed as much as pos-
sible. Third, we fully resolve the infeasible situation in the application of Farkas’
Lemma [69,55] and extend our approach to nested loops through loop summary.
Fourth, we implement our approach as a prototype DInvG‡. Experimental evalu-
ation with various state-of-the-art verification tools using over 100 benchmarks
from SV-COMP 2023 [80] and [9], shows that our approach is both tight (in

‡The tool implementation is available on GitHub: https://github.com/WindOctober/
DInvG.

https://github.com/WindOctober/DInvG
https://github.com/WindOctober/DInvG
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the accuracy of the generated invariant) and is time efficient for real-valued
disjunctive affine invariant generation.

The remainder of this paper is structured as follows. Sec. 2 revisits the
fundamental definitions of affine transition systems and invariants, providing a
variant of Farkas’ Lemma as well as the basic definitions of polyhedra. Sec. 3
offers an overview of how our tool DInvG transforms programs and solves for
disjunctive invariants. In Sec. 4, we formalize the definition of control flow
transformation and extract the corresponding affine transition systems, present
the pseudocode for invariant propagation as well as optimizations for nested
loop and infeasible traces, and prove that the disjunctive invariants generated
are inductive. Sec. 5 demonstrates the efficiency and precision advantages of
DInvG compared to several state-of-the-art tools and conducts an ablation study
on invariant propagation. Sec. 6 compares our method with related verification
approaches, elaborating on the conceptual and implementation differences between
invariant propagation and control flow transformation. A full version of this paper
can be found at [48].

2 Preliminaries

Below we revisit affine transition systems [69] and their associated invariants,
elucidate Farkas’ Lemma, and outline fundamental principles from polyhedra
theory. It is important to note that, within the scope of this paper, we treat
linear and affine concepts equivalently.

2.1 Affine Transition Systems and Invariants

An affine inequality over a set V = {x1, . . . , xn} of real-valued variables is of the
form a1x1 + · · ·+ anxn + b ≥ 0, where ai’s and b are real coefficients. An affine
assertion over V is a conjunction of affine inequalities over V .

An affine transition system possesses a finite number of locations as well
as real-valued variables, and specifies transitions between locations with affine
guards and affine updates on the values of the variables.

Definition 1 (Affine Transition Systems [69]). An affine transition system
(ATS) is a tuple Γ = ⟨X,X ′, L,T, ℓ∗, θ⟩:

– X is a finite set of real-valued variables and X ′ = {x′ | x ∈ X} is the set of
primed variables.

– L is a finite set of locations and ℓ∗ ∈ L is the initial location.
– T is a finite set of transitions where each transition τ is a triple ⟨ℓ, ℓ′, ρ⟩

from location ℓ to location ℓ′ with the guard affine assertion ρ over X ∪X ′.
– θ is a disjunction of affine assertions over X that specifies the initial condition

at ℓ∗.

The directed graph DG(Γ ) of the ATS Γ is defined as the graph where the vertices
are the locations of Γ and there is an edge (ℓ, ℓ′) if and only if there is a transition
⟨ℓ, ℓ′, ρ⟩ with source location ℓ and target location ℓ′.
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The intuition of an ATS Γ = ⟨X,X ′, L,T, ℓ∗, θ⟩ is as follows. Each variable
x ∈ X represents the current value of the variable and each primed variable
x′ ∈ X ′ represents the next value of its unprimed variable x ∈ X after one
step of transition. The transition ⟨ℓ, ℓ′, ρ⟩ specifies the jump from the current
location ℓ to the next location ℓ′ with the guard condition ρ specifying the
condition to enable the transition. The guard condition involves both the current
values (represented by X) and the next values (by X ′), so that it can specify the
relationship between the current and next values.

Below we describe the semantics of an ATS. A valuation over a finite set V of
variables is a function σ : V → R that assigns to each variable x ∈ V a real value
σ(x) ∈ R. We mostly consider valuations over the variables X of an ATS and
simply abbreviate “valuation over X” as “valuation” (i.e., omitting X). Given
an ATS, a configuration is a pair (ℓ, σ) with the intuition that ℓ is the current
location and σ is a valuation that specifies the current values for the variables.

Given an affine assertion φ and a valuation σ over a variable set V , we
write σ |= φ to mean that σ satisfies φ, i.e., φ is true when one substitutes the
corresponding values σ(x) into all the variables x in φ. Given an ATS Γ , two
valuations σ, σ′ and an affine assertion φ over X ∪ X ′, we write σ, σ′ |= φ to
mean that φ is true when one substitutes every variable x ∈ X by σ(x) and
every variable x′ ∈ X ′ with σ′(x) in φ. Moreover, given two affine assertions φ,ψ
over a variable set V , we write φ |= ψ to mean that φ implies ψ, i.e., for every
valuation σ over V we have that σ |= φ implies σ |= ψ. The case of disjunction
of affine assertions is similar.

The semantics of an ATS Γ is given by its paths. A path π of the ATS Γ is a
finite sequence of configurations (ℓ0, σ0) . . . (ℓk, σk) such that

– (Initialization) ℓ0 = ℓ∗ and σ0 |= θ, and
– (Consecution) for every 0 ≤ j ≤ k− 1, there exists a transition τ = ⟨ℓ, ℓ′, ρ⟩

such that ℓ = ℓj , ℓ′ = ℓj+1 and σj , σj+1 |= ρ.

We say that a configuration (ℓ, σ) is reachable if there exists a path (ℓ0, σ0) . . .
(ℓk, σk) such that (ℓk, σk) = (ℓ, σ). An invariant at a location ℓ of an ATS is an
assertion φ such that for every path π = (ℓ0, σ0) . . . (ℓk, σk) of the ATS and each
0 ≤ i ≤ k, it holds that ℓi = ℓ implies σi |= φ. An invariant φ is affine if φ is
an affine assertion over the variable set X, and is disjunctively affine if φ is a
disjunction of affine assertions.

In invariant generation, one often investigates a strengthened version of
invariants called inductive invariants. In this work, we present affine inductive
invariants in the form of inductive affine assertion maps [19,69,55] as follows.

An affine assertion map (AAM) over an ATS is a function η that maps every
location ℓ of the ATS to an affine assertion η(ℓ) over the variables X. An AAM
η is called inductive if the following holds:

– (Initialization) θ |= η(ℓ∗);
– (Consecution) For every transition τ = ⟨ℓ, ℓ′, ρ⟩, we have that η(ℓ) ∧ ρ |=
η(ℓ′)′, where η(ℓ′)′ is the affine assertion obtained by replacing every variable
x ∈ X in η(ℓ′) with its next-value counterpart x′ ∈ X ′.
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By a straightforward induction on the length of a path under an ATS, one could
verify that every affine assertion in an inductive AAM is indeed an invariant.

2.2 Farkas’ Lemma and Polyhedra

Farkas’ Lemma [32] is a classical theorem in the theory of affine inequalities and
previous results [19,69,55] have applied the theorem to affine invariant generation.
In these results, the form of Farkas’ Lemma follows [70, Corollary 7.1h].

Theorem 1 (Farkas’ Lemma). Consider an affine assertion φ over a set
V = {x1, . . . , xn} of real-valued variables as in Figure 1a. When φ is satisfiable
(i.e., there is a valuation over V that satisfies φ), it implies an affine inequality
ψ as in Figure 1b (i.e., φ |= ψ) if and only if there exist non-negative real
numbers λ0, λ1, . . . , λm such that (i) cj =

∑m
i=1 λi · aij for all 1 ≤ j ≤ n, and

(ii) d = λ0 +
∑m

i=1 λi · bi as in Figure 1c. Moreover, φ is unsatisfiable if and only
if the inequality −1 ≥ 0 (as ψ) can be derived from above.

φ :

a11 ·x1+· · ·+a1n ·xn+ b1≥0
...

...
...

am1·x1+· · ·+amn·xn+bm≥0

(a) φ in Farkas’ Lemma

ψ : c1·x1+· · ·+cn·xn+d≥0

(b) ψ in Farkas’ Lemma

λ0 1≥0
λ1 a11 · x1+· · ·+ a1n · xn+ b1≥0
...

...
...

...
λmam1 · x1+· · ·+amn · xn+bm≥0

c1 · x1+· · ·+ cn · xn+ d≥0
−1≥0

 φ

← ψ
←false

(c) The Tabular Form for Farkas’ Lemma

Fig. 1: The φ, ψ and Tabular Form for Farkas’ Lemma [19,69]

Farkas’ Lemma simplifies the inclusion of a polyhedron inside a halfspace
into the satisfiability of a system of affine inequalities. We refer to the case of
unsatisfiable φ with ψ := −1 ≥ 0 in the statement of Theorem 1 as infeasible
implication. The application of Farkas’ Lemma can be visualized by the tabular
form in Figure 1c (taken from [19]), and we multiply λ0, λ1, . . . , λm with their
inequalities in φ and sum up them together to get ψ. For 1 ≤ j ≤ m, we require
λj ≥ 0.

A subset P of Rn is a polyhedron if P = {x ∈ Rn | A · x ≤ b} for some
real matrix A ∈ Rm×n and real vector b ∈ Rm, where x is treated as a column
vector and the comparison A · x ≤ b is defined in the coordinate-wise fashion. A
polyhedron P is a polyhedral cone if P = {x ∈ Rn | A·x ≤ 0} for some real matrix
A ∈ Rm×n, where 0 is the m-dimensional zero column vector. It is well-known
from the Farkas-Minkowski-Weyl Theorem [70, Corollary 7.1a] that any polyhedral
cone P can be represented as P = {

∑k
i=1 λi · gi | λi ≥ 0 for all 1 ≤ i ≤ k} for

some real vectors g1, . . . ,gk, where such vectors gi’s are called a collection of
generators for the polyhedral cone P .
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int x = 0, y = 50;

while ( x < 100 ){
    x = x + 1;
    if  ( x > 50 )
        y = y + 1;
}

while ( x < 100 ){
    case x > 49 :
        x = x + 1;
        y = y + 1;
    case x ≤ 49 :
        x = x + 1;   
}

P1 P2

(a) Source P1 and Its Transforma-
tion P2.

X = {x, y}, L = {ℓ1, ℓ∗2}, T = {τ1, τ2, τ3, τ4},
θ : x = 0 ∧ y = 50, τ1 : ⟨ℓ1, ℓ1, ρ1⟩,

τ2 : ⟨ℓ1, ℓ2, ρ2⟩, τ3 : ⟨ℓ2, ℓ2, ρ3⟩, τ4 : ⟨ℓ2, ℓ1, ρ4⟩,

ρ1 :

 50 ≤ x ≤ 99
50 ≤ x′ ≤ 99
x′ = x+ 1
y′ = y + 1

 , ρ2 :

50 ≤ x ≤ 99
x′ ≤ 49

x′ = x+ 1
y′ = y + 1



ρ3 :

 x ≤ 49
x′ ≤ 49

x′ = x+ 1
y′ = y

 , ρ4 :

 x ≤ 49
50 ≤ x′ ≤ 99
x′ = x+ 1

y′ = y


(b) The ATS Corresponding to P2

Fig. 2: An example from [72] and its transformed form and corresponding ATS

3 An Overview of Our Approach

Consider the affine program P1 in Figure 2a. Our approach has three parts, namely
control flow transformation, invariant computation and invariant propagation.
Control Flow Transformation. For the non-nested loop P1, we extract each
execution path from the loop entry to the exit and transform it into the form
of loop P2. Each case statement corresponds to a possible path in the original
loop with a path condition ϕ of taking the path specified by the conjunction of a
conditional formula ϕc and an assignment formula ϕa. For example, in the first
case of P2 that corresponds to the case of entering the if-branch in P1, we have
ϕa is (x′ = x+ 1 ∧ y′ = y + 1), ϕc is x > 49, and ϕ is ϕa ∧ ϕc.

Then, an ATS in Figure 2b is directly derived from the transformed program.
In this example, each case statement is considered as an independent location
in the ATS, e.g., the location ℓ1 stands for the first case in P2. The transitions
between the locations are derived from the jumps between different paths, where
each transition guard ρ for a transition τ , can be obtained through the formula:

ρ := ϕc ∧ ϕ′c[x′/x] ∧ ϕa ∧G ∧G[x′/x]

where, ϕa and ϕc represent the assignment and conditional formulas at the
transition’s start location, ϕ′c represents the conditional formula at the transition’s
end location, and G is the loop guard. After the ATS is constructed, we apply the
approaches [69,55] in Farkas’ Lemma combined with the technique of invariant
propagation to obtain invariants at all locations, and group them disjunctively
together to obtain result invariants for original loop. Note that the construction
of the ATS is the key connection to apply Farkas’ Lemma.
Invariant Computation. We first establish affine invariant templates at each
location in the ATS by setting:

η(ℓi) := cℓi,1x+ cℓi,2y + dℓi ≥ 0 ,∀i ∈ {1, 2}

where, cℓi,1, cℓi,2, dℓi are unknown coefficients to be resolved. Then, we generate
the constraints from the initialization as well as consecution conditions via the



Affine Disjunctive Invariant Generation with Farkas’ Lemma 7

λ0 1 ≥ 0
λ1 a11x1+· · ·+ a1nxn+ b1⋊⋉1 0
...

...
...

...
λm am1x1+· · ·+ amnxn+ bm⋊⋉m0

cℓ∗,1x1+· · ·+cℓ∗,nxn+dℓ∗ ≥ 0
−1 ≥ 0

 θ

←η(ℓ∗)
← false

(a) Initialization Tabular

µ cℓ,1x1+· · ·+ cℓ,nxn + dℓ ≥ 0
λ0 1 ≥ 0
λ1 a11x1+· · ·+ a1nxn+ a′11x

′
1+· · ·+ a′1nx

′
n+ b1 ⋊⋉1 0

...
...

...
...

...
...

λmam1x1+· · ·+amnxn+a
′
m1x

′
1+· · ·+a′mnx

′
n+bm⋊⋉m0

cℓ′,1x
′
1+· · ·+cℓ′,nx′n+dℓ′ ≥ 0

−1 ≥ 0

← η(ℓ) ρ

←η(ℓ′)′
← false

(b) Consecution Tabular

Fig. 3: Tabular for Initialization and Consecution [55]

Farkas’ tabular in Figure 1c and derive the initialization tabular and consecution
tabular as shown in Figure 3. Setting φ = θ and ψ = η(ℓ∗) in Theorem 1, the
initialization of θ |= η(ℓ∗) results in linear constraints, while the consecution
condition η(ℓ) ∧ ρ |= η(ℓ′)′ by setting φ = η(ℓ) ∧ ρ and ψ = η(ℓ′)′ results in
quadratic constraints since we have a fresh λ, which we denote as µ, multiplied
by η(ℓ).

In this context, we adopt a unified notation by employing η(ℓ) to represent
both affine expressions and affine inequalities interchangeably throughout the
manuscript. To resolve the quadratic constraints from the consecution, the
previous approach [69] has considered heuristics to guess the value of the multiplier
µ through either practical rules such as factorization or setting µ manually to 0
or 1. These settings relax the original consecution definition into two stronger
forms:

– Local Consecution: For transition τ : ⟨ℓi, ℓj , ρ⟩, ρ |= η(ℓj)
′ ≥ 0,

– Incremental Consecution: For transition τ : ⟨ℓi, ℓj , ρ⟩, ρ |= η(ℓj)
′ ≥ η(ℓi).

Then, we collect the derived constraints to constitute a formula Φ in CNF,
which further expands into a DNF Φ′. Note that each disjunctive clause in the
DNF Φ′ is an affine assertion defining a polyhedral cone, and we solve for the
unknown coefficients of the templates by computing the generators of these
polyhedral cones. We present a polyhedral cone in the DNF Φ′ of the ATS in
Figure 4b, along with corresponding generators, as shown in Figure 4a, where
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
c12 − c22 = 0,

c21 ≥ 0,
c11 + c12 ≥ 0,

50c12 + d2 ≥ 0,
50c11 + d1 − 49c21 − d2 ≥ 0


(a) A clause in the DNF

type c11 c12 d1 c21 c22 d2 η(ℓ1) η(ℓ2)
point 0 0 0 0 0 0 0 ≥ 0 0 ≥ 0
line 1 −1 0 0 −1 50 x− y = 0 −y + 50 = 0
ray 0 0 49 1 0 0 49 ≥ 0 x ≥ 0
ray 0 0 1 0 0 0 1 ≥ 0 0 ≥ 0
ray 1 0 −50 0 0 0 x− 50 ≥ 0 0 ≥ 0
ray 0 0 1 0 0 1 1 ≥ 0 1 ≥ 0

(b) generators and their invariants

Fig. 4: Example of a clause in the DNF with its generators and invariants

"point" means a single vector, "ray" means a vector that can be scaled by
an arbitrary positive value, and "line" means a vector that can be scaled by
any positive or negative value. When putting the generators back to invariants,
we obtain the invariants shown in the right part of Figure 4b. The resulting
disjunctive invariant is the disjunction of invariants at all locations over an ATS
Γ , corresponding to the invariants required on different loop paths.

Invariant Propagation. In the preceding exposition, the computation of con-
junctive affine invariants adheres to existing approaches [69,55]. However, the
strategies employed to resolve invariants at each location across the entire ATS
result in a significant decline in computational efficiency. To address this limi-
tation, we introduce a propagation technique predicated on existing invariant
computation results:

𝑙2

𝑙1

𝜏3

𝜏4

𝜏1

𝜏2

(a) DG(Γ )

𝑙2

𝑙1

𝜏4

𝜏1

(b) DG(Γ ) After Elimination

𝑙1
𝜏1

(c) DG(Γ ) After Propagation

Fig. 5: Procedure of Invariant Propagation for example in Figure 2

Consider the affine transition system Γ in Figure 2b. Its underlying directed
graph DG(Γ ) is given in Figure 5a. We first compute the invariant η(ℓ2) :=
y = 50 ∧ 0 ≤ x ≤ 49 at the initial location ℓ2 as above. Then, we can eliminate
all transitions pointing to ℓ2 (the correctness of which is demonstrated in the
following section), obtaining the graph in Figure 5b. Notably, there exists a
topological order, where ℓ2 precedes ℓ1. Thus, we propagate the invariants at ℓ2
along the transition τ4’s transition guard ρ to establish the initial condition θ of
the ATS over ℓ1 in Figure 5c, which is derived from removing ℓ2 after propagation.
Finally, by solving the invariants for the simplified ATS instead of the original
ATS, we obtain the affine invariant η(ℓ1) = (x = y ∧ 50 ≤ x ≤ 99). Note that our
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invariant propagation is different from abstract interpretation, see Section 6 for
details.

Moreover, η(ℓ1) corresponds to the invariant within the loop, specifically
representing the invariant at the first case. For the exit state x = 100, the
disjunctive invariant generated within the loop, in conjunction with the loop
exit condition ¬G, derives the program state x = 100 outside the loop through
stepwise deduction.

4 Algorithmic Details in Our Approach

Below we present our approach for generating affine disjunctive invariants over
affine programs. We first illustrate our control flow transformation for non-nested
loops, then our invariant propagation to reduce invariant computation, and finally
the resolution of the infeasible implication and the extension to nested loops.

4.1 Control Flow Transformation

We fix the set of program variables in a loop as X = {x1, . . . , xn} and identify it
as the set of variables in the ATS to be derived from the loop. We consider the
canonical form of a non-nested affine while loop as in Figure 6 similar to [45],
where we have:

– The column vector x = (x1, . . . , xn)
T represents the vector of program

variables, and G is a disjunction of affine assertions that serves as the loop
condition.

– Each Fi (1 ≤ i ≤ m) is an affine function, i.e., Fi(x) = Ax + b where A
(resp. b) is an n× n square matrix (resp. n-dimensional column vector) that
specifies the affine update under the function Fi in the conditional branch ϕi.
The assignment x := Fi(x) is considered simultaneously for the variables in
x so that in one execution step, the current valuation σ is updated to Fi(σ).

– The statements δ1, . . . , δm specify whether the loop continues after the affine
update of the conditional branches ϕ1, . . . , ϕm. Each statement δi is either
the skip statement that has no effect or the break statement that exits.

while (G) {
case ϕ1 : x := F1(x) ; δ1 ;

...
case ϕm : x := Fm(x) ; δm ;

}

Fig. 6: The canonical form of a non-nested affine while loop
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Any non-nested affine while loop with a break statement can be transformed
into the canonical form in Figure 6 by recursively examining the substructures
of the loop body. A detailed recursive transformation process is provided in our
extended version [48]. Note that although the transformation into our canonical
form may cause exponential growth in the number of conditional branches in the
loop body, in practice a loop typically has a small number of conditional branches
and further improvement can be carried out by removing invalid branches (i.e.,
those whose branch condition is unsatisfiable, such as τ2 in Figure 2).

Moreover, such a canonical form is often necessary to capture precise dis-
junctive information in a while loop. Each case corresponds not merely to an
individual loop path but also encapsulates the set of states at the entry of a loop.
By finely partitioning the incoming program states according to branching condi-
tions and formulating constraints among these states, we endeavor to precisely
characterize the dynamics of internal state transitions within loops exhibiting
multi-phase behavior. Below we demonstrate our control flow transformation
that transforms the canonical form into an ATS.

Formally, the ATS ΓW for a loop W in our canonical form is given as follows:

– The set of locations is {ℓ1, . . . , ℓm, ℓe}, where each ℓi (1 ≤ i ≤ m) corresponds
to i-th case in the canonical form and ℓe is the termination location of the
loop.

– For each 1 ≤ i ≤ m such that δi = break, we have the transition (we denote
x′ := (x′1, . . . , x

′
n)

T)

τi = (ℓi, ℓe, G ∧ ϕi ∧ x′ = Fi(x))

that specifies the one-step jump from ℓi to the termination location ℓe.
– For each 1 ≤ i, j ≤ m such that δi ̸= break, we have the transition

τij = (ℓi, ℓj , G ∧ ϕi ∧G[x′/x] ∧ ϕj [x′/x] ∧ x′ = Fi(x))

that specifies the jump from ℓi in the current loop iteration to ℓj in the next
loop iteration.

– For each 1 ≤ i ≤ m such that δi ̸= break, we have the transition

τ ′i = (ℓi, ℓe, G ∧ ϕi ∧ (¬G)[x′/x] ∧ x′ = Fi(x))

for the jump from ℓi to the termination location ℓe.

After the transformation, we remove transitions with an unsatisfiable guard
condition to reduce the size of the derived ATS. The transformation for our
running example has been given in Figure 2. The transformed ATS ΓW enables
us to apply existing approaches [69,55] to generate invariants at the locations of
the ATS ΓW . Finally, recall that the overall disjunctive invariant for the ATS
ΓW is the disjunction of the invariants at all the locations.

As for the previous approaches [69,55] that only set locations at the initial
location of the loop, our control flow transformation has different locations
corresponding to different paths of the original loop, thereby achieving fine-grained
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piecewise invariants. Moreover, contrary to the granular program translations
employed in traditional software model checking, which is similar to the control
flow transformation, our motivation is mainly to integrate this transformation
with Farkas’ Lemma. By analyzing the transition patterns among internal loop
paths, we aim to more effectively capture the phase-specific characteristics of
multi-stage programs.

As demonstrated by our experiments, considering transitions between any
pair of paths (ℓi, ℓj), rather than partitioning the loop into more complex path
regular expressions (using regular expressions to abstract loop behaviors over
multiple iterations) allows us to maintain a balance between the precision of
invariant generated and the efficiency of constraint solving. To further improve
the efficiency, we have designed the invariant propagation algorithm shown below
for these directed graphs constructed from paths.

4.2 Invariant Propagation

In the computation of invariants, previous approaches [69,55] require to generate
the invariants at all the locations of an ATS. As invariant computation is usually
expensive, it is important to explore optimizations that avoid redundant compu-
tations. In this section, we propose a novel invariant propagation technique that
is applicable to any directed graph of an ATS and achieves maximal efficiency
in specific graph structures such as directed cycles. Below we demonstrate the
procedure of invariant propagation via Algorithm 1.

The algorithm consists of the following steps: First, we initialize the assertion
map and use the classical Tarjan’s algorithm [81] to compute a list of strongly
connected components (SCCs) in the directed graphDG(Γ ) (lines 1-2). Depending
on whether the graph is decomposable, i.e., whether the size of the SCC list is
more than one, we consider two cases:

(i) For a directed graph that can be decomposed into multiple SCCs, we
start from the entry SCC and traverse the list of SCCs in breadth-first order,
computing invariants for each SCC recursively and integrating them into the
final assertion map η (lines 3-19).

(ii) For a directed graph that is a single SCC, we compute the initial invariants
at the starting location using the previous method [55], then eliminate the start
location ℓ∗, traverse each edge originating from ℓ∗ , propagate the invariants to
the remaining sub-graph, and disjunctively merge the returned inductive assertion
mappings to produce the final disjunctive invariant (lines 20-26).

We formally define the specific functions involved in the algorithm as follows:

1. Merge(η1, η2) (line 16 and line 24). We extend η to a mapping from the
set of locations L to disjunction of affine assertions, specifically representing
affine inequalities in DNF. The Merge function is thereby defined as a new
mapping such that, for any location ℓ ∈ L:

Merge(η1, η2)(ℓ) = η1(ℓ) ∨ η2(ℓ)
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Algorithm 1 InvProp(Γ ,DG(Γ ),ℓ∗)

Require: Γ — ATS, DG(Γ ) — directed graph of Γ , ℓ∗ — initial location of Γ .
Ensure: η — an inductive assertion map for Γ .
1: Init assertion map η for Γ .
2: SCCs← Tarjan(DG(Γ ), Γ ) ▷ Find all SCCs in the directed graph
3: if Len(SCCs) ̸= 1 then
4: id← FindSCC(ℓ∗, SCCs) ▷ Find the SCC containing ℓ∗
5: stack.push(id, ℓ∗)
6: while ¬stack.isEmpty() do
7: (cur, ℓs)← stack.pop() ▷ ℓs is the initial location of current SCC
8: Γs ← SCCs[cur] ▷ cur is the index of current traversed SCC
9: ηs ← InvProp(Γs, DG(Γs), ℓs) ▷ Process single SCC

10: for each transition τ directed from ℓs to ℓt do
11: next← FindSCC(ℓt, SCCs)
12: if next ̸= cur then
13: stack.push(next, ℓt) ▷ Traverse SCCs in BFS order
14: end if
15: end for
16: η ← Merge(η, ηs) ▷ Combine assertion maps disjunctively
17: end while
18: return η
19: end if
20: η ← InitInv(Γ, ℓ∗) ▷ Compute invariant only in initial location
21: Γs ← Project(Γ, ℓ∗) ▷ Derive sub-ATS Γs by removing l∗
22: for each transition τ directed from ℓ∗ to ℓt do
23: ηs ← InvProp(Γs, DG(Γs), ℓt)
24: η ← Merge(η, ηs)
25: end for
26: return η

2. Project(Γ, ℓ∗) (line 21). Considering the directed graph DG(Γ ) correspond-
ing to the ATS Γ , we remove all edges associated with the node ℓ∗, as well
as the node itself. The derived ATS corresponding to the resulting sub-graph
is denoted by Project(Γ, ℓ∗).

Note that in Algorithm 1, we omitted the initial condition θ and the propa-
gation effect along the transitions. At each point of our algorithm (line 10 and
line 22) that tackles a transition ⟨ℓs, ℓt, ρ⟩, the propagation effect is computed
as the post image of the conjunction of the invariant on ℓs and the guard ρ
via polyhedral projection onto the primed variables X ′ and serves as the initial
condition θ of the new ATS including ℓt.

Example 1. Recall the example in Section 3, specifically Figure 5. Here, Γ is
an indivisible SCC. After computing the invariant η(ℓ2) of the ATS Γ at the
initial location ℓ2, we consider all transitions (i.e. {τ4}) starting from the initial
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location ℓ2, as depicted in the figure. Then, we propagate the invariant through
the transition τ4 to ℓ1. After project to obtain the remaining sub-ATS Γsub,
composed of ℓ1 and its self-loop transition, we recursively compute this indivisible
SCC to obtain the complete inductive assertion map. ⊓⊔

Our invariant propagation technique applies to all ATS. The main advantage
to incorporate this technique is that it allows the generation of invariants only at
the initial locations of (sub-)SCCs, thus avoiding the generation of the invariants
at all locations as adopted in [69,55]. In the case that the directed graph of the
input ATS is a cycle, our invariant propagation reaches the highest efficiency
that generates the invariant only at the initial location of the cycle and derives
invariants at other locations of the cycle by propagation, since the cycle has an
explicit topological order after the removal of the initial location. This advantage
becomes more prominent in loops with a non-neglectable amount of conditional
branches. The soundness of the invariant propagation is given in the following
theorem.

Theorem 2. The assertion maps generated by the invariant propagation algo-
rithm are inductive.

Proof. We prove by induction on the number k of locations in the input ATS Γ
that the assertion map obtained by our invariant propagation algorithm for the
ATS Γ is inductive.

We first consider the base case, i.e., k = 1. In this case, DG(Γ ) has only one
location, which is obviously indivisible. Here, the function InitInv(), previously
mentioned as applying Farkas’ Lemma for conjunctive invariant computation, is
called. Therefore, the resulting assertion map is inductive, and its correctness is
guaranteed by the prior results.

Assuming that the case when the size of Γ equals k holds, we prove that it
holds for Γ of size k + 1. For an ATS Γ with k + 1 locations, if it is divisible,
it can be decomposed into several sub-SCCs Γsub with sizes less than or equal
to k. After the call to function InvProp() at Line 8, we obtain an inductive
assertion mapping by the inductive condition. The Merge() function does not
affect the inductive condition of the combined mapping. On the other hand, if
it is indivisible, then our approach computes the invariant at its initial location
and, after projecting away the initial location ℓ∗, obtains a sub-ATS Γsub of size
k. Similarly, the recursive call to invariant propagation at Line 20 and merging
the returned results always yields an inductive assertion map by the inductive
condition. ⊓⊔

4.3 Other Optimizations

Loop Summary. To address more general control flow, such as nested loops, we
use the standard method of loop summary to express the input-output relationship
of the inner loops (while adding fresh variables for input values) to handle nested
loops, as described in our extended version [48].
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Infeasible Implication. In the previous results [69,55], the infeasible implication
is not handled in their prototype. Recall the infeasible implication corresponding
to η(ℓ) ∧ ρ |= −1 ≥ 0 illustrated in Figure 3b. To fully address this issue, we can
simply set µ = 1 in Figure 3b so that the nonlinear multiplier µ is eliminated.
The correctness is given by the following theorem.

Theorem 3. Let Γ be an ATS. For any AAM η that fulfills the initial and
consecution conditions derived from the ATS Γ with the original constraints for
the infeasible implication as in each consecution tabular of Figure 3b (aimed at
−1 >= 0) with each µ in an infeasible implication instantiated as k for some
k > 0, it is equivalent to setting all µ’s to 1 while preserving the constraints of
infeasible implication.

We present our proof in our extended version [48]. The main idea of the
proof is that, for the infeasible implication case, by scaling each λi other than
µ, the consecution tabular used to generate polyhedra is transformed into an
equivalent tabular with scaled lambda variables λ′i. so that it suffices to choose
the multiplier µ to be 1.

5 Experimental Evaluation

In this section, we present the evaluation of the implementation (referred to as
DInvG) of our approach to generate disjunctive affine invariants. We focus on
the following two questions (RQ1 and RQ2).

– RQ1: How competitive is DInvG when compared with other approaches?
– RQ2: How effective does invariant propagation enhance our approach?

5.1 Experimental Setup

Implementation. We implement our approach (including the algorithmic tech-
niques in Section 4) as a prototype DInvG, dividing the implementation into
front-end and back-end. The front-end utilizes Clang Static Analyzer [18] to
extract and transform C programs, processing programs into the format required
by the back-end. The back-end is an extension of StInG [79] written in C++
and uses PPL 1.2 [6] for polyhedra manipulation (e.g., projection, generator
computation, etc.), which generates invariants and propagate them to obtain a
disjuntive invariant as the loop invariant.

Environment. All experiments are conducted on a machine equipped with
a 12th-generation Intel(R) Core(TM) i7-12800HX CPU, 16 cores, 2304 MHz,
9.5GB RAM, running Ubuntu 20.04 (LTS). Following the competition settings of
SV-COMP, for studies RQ1 and RQ2, we impose a time limit of 900s.

Benchmarks. We have a total of 114 affine programs, 38.6% of which have
disjunctive features, sourced from: 1) 105 benchmarks from the SV-COMP,
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ReachSafety-Loop track. We excluded those with arrays, pointers, and other non-
numeric features, those with modulus, division, polynomial, and other non-linear
operations. 2) 9 benchmarks from the recent paper [9], which include complex
nested loops and examples with disjunctive features.

Methodology. In RQ1, we compare DInvG utilizing invariant propagation
techniques with several state-of-the-art software verifiers:

– Veriabs [28] is a state-of-the-art software verifier that is an integration of
various strategies such as fuzz testing, k-induction, loop shrinking, loop
pruning, full-program induction, explicit state model checking and other
invariant generation techniques, which is capable to deal with programs with
disjunctive features.

– CPAChecker [25] is a well-developed software verifier that is based on bounded
model checking and interpolation and has a comprehensive ability to verify
various kinds of properties.

– OOPSLA23 [82] is a recent recurrence analysis tool that handles only loops
with the ultimate strict alternation pattern that eventually the loop will
alternate between different modes periodically and performs good on such
class of programs, which thus excels in the verification of disjunctive programs
with alternating modes.

– DIG [59] is an invariant generation tool considering disjunctive features in
programs and utilizes front-end CIVL [74] to obtain symbolic execution traces.
It employs dynamic analysis along with efficient algorithms from algebra and
geometry to solve numerical invariant templates, thereby generating numerical
invariants at any position within a program, which is capable of extensively
handling the programs with array, nonlinear, linear and disjunctive features.

– IKOS with Polyset domain from PPLite [11,8] is a classic abstract interpreta-
tion framework with various interface supports. The Polyset abstract domain
is an efficient implementation of the powerset of polyhedra and serves as an
alternative to the trace partitioning strategy implemented in Astree [23].

In RQ2, we focus on comparing the impact of the invariant propagation
technique on the time efficiency. By contrasting the tool’s performance when
calculating invariants for each location individually against using invariant prop-
agation, we analyze the role of invariant propagation.

5.2 Tool Comparison (RQ1)

Our work primarily focuses on the generation of disjunctive invariants, whereas
tools like CPAChecker and Veriabs are specifically designed as bug finders for
verifying assertions. However, by integrating the PPL library [6] and Z3 [89], we
use the generated invariants to verify the correctness of assertions and demonstrate
the precision of the invariants generated by DInvG.

The complete comparison results of DInvG with other tools are presented
in Table 1. In the table, Source indicates the source category of the benchmark.
The term #Ver. represents the number of examples correctly verified by the
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Benchmark DInvG Veriabs CPAChecker
Source #Num #Ver. #Unk. Time (s) #Ver. #Unk. Time (s) #Ver. #Unk. Time (s)

loop-invariants 5 4 1 0.47 5 0 153.31 4 1 1001.49
loop-new 2 2 0 0.11 0 2 959.74 0 2 1807.20

loop-invgen 5 4 1 0.41 5 0 160.51 0 5 4518.19
loops-crafted-1 25 20 5 4.84 25 0 4010.55 0 25 22607.55

loop-simple 2 1 1 2 1 1 944.69 1 1 919.03
loop-zilu 26 26 0 0.77 25 1 1064.60 26 0 307.18

loops 18 15 3 3.26 17 1 536.33 17 1 1123.35
loop-lit 10 10 0 22.22 10 0 280.87 5 5 5655.33

loop-acceleration 10 9 1 0.32 9 1 493.13 9 1 1030.78
loop-crafted 2 2 0 0.09 2 0 49.59 2 0 27.97

[9] 9 8 1 2.12 9 0 286.24 4 5 4576.98
Total 114 101 13 34.65 108 6 8939.56 68 46 43573.42
Benchmark OOPSLA23 DIG IKOS + PPLite

Source #Num #Ver. #Unk. Time (s) #Ver. #Unk. Time (s) #Ver. #Unk. Time (s)
loop-invariants 5 1 4 14.09 0 5 2344.12 3 2 0.88

loop-new 2 0 2 5.83 0 2 241.68 1 1 988.06
loop-invgen 5 4 1 14.78 1 4 264.34 5 0 1.03

loops-crafted-1 25 22 3 82.03 10 15 6030.28 0 25 8270.92
loop-simple 2 0 2 5.82 0 2 493.24 2 0 10.01
loop-zilu 26 0 26 68.24 19 7 6878.38 17 9 1827.31

loops 18 4 14 48.36 3 15 5241.99 7 11 909.04
loop-lit 10 7 3 29.59 3 7 2024.29 5 5 3993.86

loop-acceleration 10 8 1 27.48 3 7 2263.40 6 4 1.66
loop-crafted 2 2 0 5.63 0 2 503.76 2 0 0.33

[9] 9 6 3 28.98 1 8 497.92 8 1 2.04
Total 114 55 59 330.83 40 74 26783.40 56 58 16005.15

Table 1: Comparisons Over 114 Benchmarks

verifier, and #Unk. (unknown) mainly arises from the following situations: a)
The front-end fails to parse correctly, resulting in program crashes. b) Returns
Unknown. c) Timeouts. For the benchmarks from [9], which do not contain
assertions to be verified, we modify the invariants generated by our DInvG as
assertions and test them over the other tools to obtain results.

From the table, it is evident that DInvG typically requires less than 0.3
seconds on average for verification, and its overall verification accuracy is very
close to that of the SV-COMP 2023 Reachability track winner Veriabs, while
significantly outperforming Veriabs in terms of time efficiency by 10X to 1000X.
This is mainly because Veriabs employs a rich strategy to assist verification,
granting it a stronger verification capability but also requiring more time for
most examples. CPAChecker experienced a broad range of timeouts in examples
with complex loops that could not be verified within a finite unfolding of loops.
This is due to the intrinsic limitations of its bounded model checking approach,
and its loop unwinding strategy also results in verification times on the dataset
that significantly exceed those of other tools.

Despite the fact that the tool from [82] has the second fewest number of
verified benchmarks, it outperforms other tools in examples suitable for recurrence
analysis. For DIG, we employ it to generate loop invariants and post conditions,
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Benchmark DInvG
No PPG PPG

Source #Num #Ver. #Unk. Time (s) #Ver. #Unk. Time (s)
SV-COMP 105 91 14 1825.53 93 12 32.53

paper 9 8 1 10.76 8 1 2.12

Table 2: Experiment for Invariant Propagation

and use Z3 [89] prover to verify the assertion. Nevertheless, the frontend of DIG
necessitates CIVL’s reliance on extracting symbolic execution paths from the
program. When processing loops, it similarly depends on loop unrolling, and if it
cannot fully unroll loops within a small bound, it determines that locations after
the loop are unreachable. Consequently, it exhibits issues analogous to those of
CPAChecker. Additionally, for some randomly assigned variables in SV-COMP,
DIG lacks a suitable modeling. We have already reported several bugs via issues
on GitHub. As a classical framework for abstract interpretation, IKOS with
PPLite did not deliver optimal verification outcomes on the dataset. In some
straightforward nested loops and more extensive loop iterations, it either failed
to converge to a fixed point, or the precision of the invariants obtained upon
convergence was insufficient to verify assertions, thereby causing timeouts or
unknown in certain instances.

In summary, we conclude that DInvG significantly outperforms other tools
such as Veriabs in time efficiency for affine numerical programs, while its ver-
ification capability is not inferior to the SV-COMP winner Veriabs. We also
conducted an in-depth analysis of the cases where our DInvG returns Unknown.
The primary reasons for the issues include: a) the absence of type range con-
straints at the front end, b) reliance on modular arithmetic, c) the need for
more complex loop generalizations, d) exceeding the computational precision
of the PPL library, and e) exponential arithmetic that surpasses the modeling
capabilities of linear templates. 7-8 of these cases could be further solved by opti-
mizing implementations. In the verifiable cases, the preliminary implementation
of DInvG has already far surpassed existing methods in efficiency.

5.3 Ablation Study in Invariant Propagation (RQ2)

In this section, we conduct an ablation study to evaluate the performance of the
invariant propagation technique within DInvG. In Table 2, we present the overall
results, where we can clearly observe that the use of invariant propagation leads
to a 5X-50X improvement in time efficiency.

More specifically, through the scatter plot in Figure 7, we compared the
time performance of individual examples before and after the application of
invariant propagation techniques. In some cases, invariant propagation led to
significant efficiency improvements (10X-1000X). This is due to the fact that for
more complex programs, the size of the ATS Γ is larger, and applying invariant
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Fig. 7: Comparison for Invariant Propagation

propagation techniques on this basis can maximize performance optimization.
Since the tool itself performs efficiently in most examples, the optimization
brought by this technique is not apparent in those cases in the graph where the
time is below 0.1 seconds. As the propagation itself, including the projection of
sub-ATS, incurs a certain time cost, which dilutes the time optimization brought
about by invariant propagation.

In conclusion, invariant propagation significantly enhances the tool’s scalability
and yields superior optimization results for complex examples. This also reveals
that, within our constraint-solving methodology, the cost of computing invariants
at any given location constitutes the principal computational bottleneck. By
reducing the number of locations that need to be computed and leveraging prior
results to avoid redundant polyhedral operations, we can effectively enhance
efficiency.

5.4 Caveat to Correctness

This section elucidates configurations that may induce subtle deviations from
real-world programs or alternative models during the empirical evaluation of our
tool.

– In our current experimental setup, we have not accounted for the behavior of
machine integers during overflow conditions. Consequently, our verification
process is confined to affine programs that do not encounter overflow errors.

– Within the context of control flow transformations, we introduce uncertainty
into conditional statements by adhering to the SV-COMP guidelines. This
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is achieved by replacing branch conditions with functions that return ran-
dom Boolean values, thereby emulating the semantics of non-deterministic
branches. Nonetheless, we have yet to effectively model uncertainty in variable
coefficients, specifically affine inequalities with coefficients represented as
intervals.

6 Related Works

Our methodology enhances conjunctive affine invariants by integrating optimiza-
tions from prior research [19,69,55,45] and utilizing control flow transformation
techniques to extend them to disjunctive forms. A principal contribution of this
paper is the mitigation of computational inefficiencies resulting from the expo-
nential state space expansion associated with disjunctive extensions, achieved
through invariant propagation. Consequently, this approach distinguishes our
work from existing studies. The work [39] generates disjunctive invariants by
predefining disjunctive templates, heuristically selecting physical cut points (while
we select abstract locations from loop paths) and transforming the quadratic con-
straints from Farkas’ Lemma into SAT solving. Other approaches for conjunctive
affine invariant generation include [61,40]. These approaches propose completely
different techniques, and thus are orthogonal to our approach.

Polynomial invariant generation [47,87,15,43,66,21,1,53,17,60,44,68] has been
widely investigated. Most of these approaches consider conjunctive polynomial
invariants only. Compared with conjunctive polynomial invariants, disjunctive
affine invariants capture the precise feature of phase and mode changes in affine
loops, and therefore are more precise.

The works [85,54] are based on path dependency automata, requiring precise
estimates of the number of iterations in loops, which limits their analysis to
programs with regular alternation and inductive variables (computable general
terms). The work [72] studies the detection of multiphase disjunctive invariants.
Multiphase invariants are a special case of our control flow transformation since
each phase in a multiphase loop cannot go back to previous phases, while in
our control flow transformation, locations can go back and forth via transitions.
Thus, we have a wider class of disjunctive invariants as compared with [72].

Our control flow transformation is related to control flow refinement [7,38,27,75]
in the literature. These approaches mostly focus on representing the control flow
of multiple loop iterations as regular expressions and refine these regular expres-
sions by various approaches such as abstract domains, simulation relation and
even invariant generation to reduce infeasible paths. Our control flow transforma-
tion considers the loop body within a single loop iteration, and is dedicated to
the application of Farkas’ Lemma. Thus, our control flow transformation has a
different focus compared with these results. Moreover, the use of Farkas’ Lemma
can circumvent the issue that finer control flow may not always lead to finer
analysis in control flow refinement [27].

Our invariant propagation is related to abstract interpretation [24,5,76,37,9,42].
The main difference is that it propagates the already-computed invariants (via



20 J. Ke et al.

Farkas’ Lemma) to yet not computed locations as much as possible to mini-
mize the invariant generation computation, while abstract interpretation usually
requires an involved fixed-point iteration to compute invariants.

Recurrence analysis [33,49,50] works well over programs with specific structure
that ensures closed form solutions. For example, the most related recurrence
analysis approach [82] (that also targets disjunctive invariants) solves the exact
invariant over the class of loops with (ultimate) strict alternation between different
modes. Compared with recurrence analysis, our approach does not require specific
program structure to ensure closed form solution, but is less precise over programs
that can be solved exactly by recurrence analysis.

Finally, we compare our approach with other methods such as machine
learning, inference and data-driven approaches. Unlike constraint solving that can
have an accuracy guarantee for the generated invariants based on the constraints,
these methods cannot have an accuracy guarantee. Furthermore, machine learning
and data-driven approaches themselves cannot guarantee that the generated
assertions are indeed invariants. Moreover, our approach can generate invariants
without the need of a goal property, while several approaches (such as IC3 [77],
CLN2INV [67], [64]) usually requires a goal property. Note that the invariant
generation without a given goal property is a classical setting (see e.g. [19,24]),
and has applications in loop summary and probabilistic program verification (see
e.g. [13,83]).

LLM-based invariant generation methods [84] performs poorly on certain
complex programs exhibiting disjunctive features. Those large-scale models have
been unable to precisely comprehend the disjunctive properties inherent in these
programs, and the invariants they produce often necessitate iterative interaction
with Frama-C until an invariant that can be successfully verified by Frama-C is
generated.

7 Conclusion

In this work, we propose a novel approach to generate affine disjunctive invariants
over affine loops. Our novelty lies in combining a control flow transformation
to extract the interleaving relationships between loop paths and employing
Farkas’ Lemma to solve the disjunctive invariants of loops. Additionally, we
apply invariant propagation techniques to mitigate the computational costs of
exponential explosion. A thorough resolution of the infeasible implication in
the application of Farkas’ Lemma and an extension to nested loops through
loop summary are proposed as optimizations for practical program verification.
Experimental results show that our approach is competitive with state-of-the-art
software verifiers in affine disjunctive invariant generation over affine loops.
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