
Jiahong Jiang, Liqian Chen, Xueguang Wu, Ji Wang

National University of Defense Technology, China

Block-wise abstract interpretation by
combining abstract domains with SMT

01/16/2017 VMCAI 2017

Overview

• Motivation

• Block-wise Abstract Interpretation (BWAI) Framework

• Practical Concerns for BWAI

• Implementation and Experiments

• Conclusion

2

Statement-wise Abstract Interpretation (SWAI)

• SWAI

• each statement as an individual transfer function

• Advantage

• scalable

3

Statement-wise Abstract Interpretation (SWAI)

• SWAI

• each statement as an individual transfer function

• Advantage

• scalable

• Disadvantage

• may cause precision loss

// x ∈ [-2, 2], y ∈ [-3, 3]

x = y + 1; // x ∈ [-2, 4], y ∈ [-3, 3]

y = x – y; // x ∈ [-2, 4], y ∈ [-5, 7]

y = 1 / (y - 2); // y ∈ [-5, 7]

Ex. 1
4

if (brandom())

y = 1;

else

y = -1;

x = 1 / y; // y ∈ [-1, 1]

Ex. 2

Main Idea

• Block-wise abstract interpretation (BWAI)

• partition the program into several blocks

• analyze the program block by block under AI

5

s2 s3

s1

SWAI BWAI

s4

s1

s2 s3

s4

multiple statements

as a block

Main Idea

• Block-wise abstract interpretation (BWAI)

• partition the program into several blocks

• analyze the program block by block under AI

6

s2 s3

s1

SWAI BWAI

s4

s1

s2 s3

s4

multiple statements

as a block

BWAI could see

more information than

SWAI at one step

Overview

• Motivation

• Block-wise Abstract Interpretation (BWAI) Framework

• Practical Concerns for BWAI

• Implementation and Experiments

• Conclusion

7

Questions

• How to partition the program into blocks

• How to encode semanics of a block

• How to transmit information between blocks

8

Choices for Expressing Transfer
Semantics of a Block

• Abstract domains

• pros: efficient

• cons: most domains have limitations in expressing disjunctions

• SMT

• pros: expressive for disjunctions

• E.g., (cond == true ∧ x1== 2) ∨ (cond == false ∧ x1 == -2)

• cons: loops are challenging to cope with when using SMT

9

Workflow of BWAI

• BWAI by combining abstract domains (AD) with SMT

• partition the program into several blocks

• encode transfer semantics of a block via SMT

• use abstract domains between blocks

• use widening of abstract domains at loop heads

...

...

while(brandom()){

...

}

...

...

SMT

AD

...

...

...

10

𝛻

Block Partitioning

• Partitioning based on cutpoints

• a set of cutpoints : a subset of program points

• entry/exit points, loop heads, ...

• two extreme partitioning strategies

• minimize the size of a block

• each statement as a block (SWAI)

• maximize the size of a block

• only at necessary points (loop heads, etc.)

11

[Beyer et al., FMCAD’09]

ite(phase0 == 1,

(x1 = x0 – 1)∧(y1 = y0 + 2),

(x1 = x0 + 2)∧(y1 = y0 – 1))

∧ (phase1 = 1 – phase0)

Block Encoding

• Encoding of the transfer semantics of a block

• via SMT formula in T -theroy (e.g, Linear Real Arithmetic)

while(brandom()){

if(phase == 1){

x = x – 1;

y = y +2;

}else{

x = x + 2;

y = y – 1;

}

phase = 1 – phase;

}

12

Representation Conversion

• Conversion between abstract domain representation

and SMT

...

a1

a2

φ1
pre

≜ ν(a1)

abstract domain

representation
SMT formula

ν

a2 ≜ ζ(φ1
pre

∧ φ1
trans)

abstract domain

representation
SMT formula

ζ
φ1
pre

∧ φ1
trans

φ1
trans

a1

13

• Symbolic abstraction

• the consequence “a” of an SMT formula φ in the abstract

domain

• sound symbolic abstraction “a”

• Sol(φ) ⊆ Sol (a)

Symbolic Abstraction :
SMT to Abstract Domain Representation

14

[Thakur et al., SAS’12]

Symbolic Abstraction :
SMT to Abstract Domain Representation

• Using optimization techniques based on SMT (SMT-opt)

• SMT-opt problem: “max e s.t. φ”

• fit for abstract domains based on templates

• e.g., boxes, octagons, TCMs

“max(x + y) s.t. (2x+y >10 ∨ 3x-2y < -5)” for Octagon domain

15

[Li et al., POPL’14]

Block-wise Iteration Strategy

• “iteration + widening” on abstract domains

• iterating on CFG with blocks

• use widening at loop heads

16

SMT

AD

...

...

...

𝛻

Overview

• Motivation

• Block-wise Abstract Interpretation (BWAI) Framework

• Practical Concerns for BWAI

• precision

• efficiency

• Implementation and Experiments

• Conclusion

17

phase = [0, 1];

x = y = 0;

while(brandom()){

if(phase == 1){

x = x – 1;

y = y +2;

}else{

x = x +2;

y = y – 1;

}

phase = 1 – phase;

}

if(x – y > 3) { /* error() */ };

...

Precision Loss Problem in BWAI

𝛗𝟐
𝐩𝐫𝐞

∧ 𝛗𝟐
𝐭𝐫𝐚𝐧𝐬 ≜

(0 ≤ phase0 ≤ 1)∧(x0 ==1)∧(y0 ==1)

∧(ite(phase0 ==1),

(x1= x0 – 1)∧(y1= y0 +2),

(x1= x0 +2)∧(y1= y0 – 1))

∧(phase1=1 – phase0)

SMT-opt

for Octagon

• SMT is often more expressive than abstract domain

...

((-3 ≤ x – y ≤ 3)∧(0 ≤ phase ≤ 1)

∧(-1 ≤ x ≤ 2)∧(-1 ≤ y ≤ 2)∧...)

((-oo ≤ x – y ≤ +oo)∧...)
18

phase = [0, 1];

x = y = 0;

while(brandom()){

if(phase == 1){

x = x – 1;

y = y +2;

}else{

x = x +2;

y = y – 1;

}

phase = 1 – phase;

}

if(x – y > 3) { /* error() */ };

...

Precision Loss Problem in BWAI

𝛗𝟐
𝐩𝐫𝐞

∧ 𝛗𝟐
𝐭𝐫𝐚𝐧𝐬 ≜

(0 ≤ phase0 ≤ 1)∧(x0 ==1)∧(y0 ==1)

∧(ite(phase0 ==1),

(x1= x0 – 1)∧(y1= y0 +2),

(x1= x0 +2)∧(y1= y0 – 1))

∧(phase1=1 – phase0)

SMT-opt

for Octagon

• SMT is often more expressive than abstract domain

...

((-3 ≤ x – y ≤ 3)∧(0 ≤ phase ≤ 1)

∧(-1 ≤ x ≤ 2)∧(-1 ≤ y ≤ 2)∧...)

((-oo ≤ x – y ≤ +oo)∧...)
19

loss of disjunctive information

Our Solution

• Abstract domain lifting functor for BWAI

• goal: pass necessary disjunctive information between

blocks

• idea:

• choose a set of predicates for each block

• branch conditions in direct syntactic successor blocks

• partition the post-state according to predicate values

20

{p }

b2

a2

a3 (p ∧ a3′) ∨ (¬p ∧ a3′′)

phase = [0, 1];

x = y = 0;

while(brandom()){

if(phase == 1){

x = x – 1;

y = y +2;

}else{

x = x +2;

y = y – 1;

}

phase = 1 – phase;

}

if(x – y > 3) { /* error() */ };

...

Our Solution

𝛗𝟐
𝐩𝐫𝐞

∧ 𝛗𝟐
𝐭𝐫𝐚𝐧𝐬 ≜

(0 ≤ phase0 ≤ 1)∧(x0 ==1)∧(y0 ==1)

∧(ite(phase0 ==1),

(x1= x0 – 1)∧(y1= y0 +2),

(x1= x0 +2)∧(y1= y0 – 1))

∧(phase1=1 – phase0)

SMT-opt

for Octagon

• SMT is often more expressive than abstract domain

...

check “x - y > 3”
21

((phase == 1) ∧ ...)

∨ ((phase != 1) ∧ ...)

Overview

• Motivation

• Block-wise Abstract Interpretation (BWAI) framework

• Practical Concerns for BWAI

• precision

• efficiency

• Implementation and Experiments

• Conclusion

22

Scalability Problem due to Large Blocks

while(brandom()){

if(p1 != 0)

lk1 = 1;

if(p2 != 0)

lk2 = 1;

if(p1 != 0 && lk1 != 0)

// ...

if(p2 != 0 && lk2 != 0)

// ...

}

• Big-size formula for a large block

• Large predicate set

• when many braches in a large block

at least 4 predicates

for this large block

23

Our Solution
• Dividing a large block into small blocks

• exploiting variable clustering based on data dependency

24

while(brandom()){

if(p1 != 0)

lk1 = 1;

if(p2 != 0)

lk2 = 1;

if(p1 != 0 && lk1 != 0)

// ...

if(p2 != 0 && lk2 != 0)

// ...

}

b1

b2

b3

b4

variable clusters :

{p1, lk1} for b1 and b3

{p2, lk2} for b2 and b4

Our Solution
• Considering direct semantic successive blocks

• the closest successive blocks that share the same variable

cluster with the current block

• Benefits of using direct semantic successive blocks

• more effective information transfer

• more useful predicates

25

• BWAI by considering direct semantic successive blocks

while(brandom()){

if(p1 != 0)

lk1 = 1;

if(p2 != 0)

lk2 = 1;

if(p1 != 0 && lk1 != 0)

// ...

if(p2 != 0 && lk2 != 0)

// ...

}

b1

b2

b3

b4

26

Our Solution

• BWAI by considering direct semantic successive blocks

while(brandom()){

if(p1 != 0)

lk1 = 1;

if(p2 != 0)

lk2 = 1;

if(p1 != 0 && lk1 != 0)

// ...

if(p2 != 0 && lk2 != 0)

// ...

}

b1

b2

b3

b4

27

Our Solution

{p1 != 0 && lk1 != 0}

Overview

• Motivation

• Block-wise Abstract Interpretation (BWAI) Framework

• Practical Concerns for BWAI

• Implementation and Experiments

• Conclusion

28

Implementation

• BWCAI: a prototype under BWAI framework

29

Block partitioning

Fixpoint

solver

Semantic

equations

SMT

Abstract

domains

CFG with blocks
inside
blocks

between blocks

invariants

Programs

Implementation

• BWCAI: a prototype under BWAI framework

Block partitioning

Fixpoint

solver

Semantic

equations

SMT

Abstract

domains

CFG with blocks
inside
blocks

between blocks

invariants

Programs

30

SV-COMP

Directories

(Numbers of files)

SWAI BWAI

Box Oct Box Oct

#Y t(s) #Y t(s) #Y t(s) #Y t(s)

locks(11) 0 0.28 0 6.40 11 9.13 11 435.14

loop-lit(14) 1 0.09 2 0.12 3 0.95 7 6.77

systemc(20) 0 24.77 0 89.74 1 846.35 5 4733.16

termination-

crafted(16)

13 0.08 13 0.09 14 0.35 16 5.22

termination-

crafted-lit(12)

10 0.08 10 0.09 10 0.44 10 2.13

termination-

restricted-15(12)

6 0.09 8 0.09 10 3.05 16 16.75

Experiments
• BWAI vs. SWAI

31

SV-COMP

Directories

(Numbers of files)

SWAI BWAI

Box Oct Box Oct

#Y t(s) #Y t(s) #Y t(s) #Y t(s)

locks(11) 0 0.28 0 6.40 11 9.13 11 435.14

loop-lit(14) 1 0.09 2 0.12 3 0.95 7 6.77

systemc(20) 0 24.77 0 89.74 1 846.35 5 4733.16

termination-

crafted(16)

13 0.08 13 0.09 14 0.35 16 5.22

termination-

crafted-lit(12)

10 0.08 10 0.09 10 0.44 10 2.13

termination-

restricted-15(12)

6 0.09 8 0.09 10 3.05 16 16.75

Experiments
• BWAI vs. SWAI

BWAI could check around 66% properties (65 out of 98 ones),

around one times more than SWAI (33 out of 98 ones)

32

Overview

• Motivation

• Block-wise Abstract Interpretation (BWAI) Framework

• Practical Concerns under BWAI

• Implementation and Experiments

• Conclusion

33

Conclusion

• Block-wise AI instead of statement-wise AI

• by combining abstract domains with SMT

Block partitioning

Fixpoint

solver

Semantic

equations

SMT

Abstract

domains

CFG with blocks
inside
blocks

between blocks

invariants

Programs

34

Conclusion

• A block-wise AI instead of statement-wise AI

• by combining abstract domains with SMT

Block partitioning

Fixpoint

solver

Semantic

equations

SMT

Abstract

domains

CFG with blocks
inside
blocks

between blocks

invariants

Programs

abstract domain lifting functor
(precision)

35

Conclusion

• A block-wise AI instead of statement-wise AI

• by combining abstract domains with SMT

Block partitioning

Fixpoint

solver

Semantic

equations

SMT

Abstract

domains

CFG with blocks
inside
blocks

between blocks

invariants

Programs

divide a large block

into small blocks
(efficiency)

36

semantic successive blocks
(efficiency)

Future Work

•More flexible block partitioning strategies

• trade off between precision and efficiency

• Support more SMT theories

• e.g., floating point, array, ...

37

