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Numerical computation is often involved in software of embedded control systems, cyber-physical systems, artificial neural network
systems, big data processing systems, etc. Automatically discovering numerical loop invariants is fundamental for checking the safety
of such software. Abstract interpretation provides a framework to automatically discover sound invariants but which may be not
precise enough due to over-approximations. One major source of precision loss is due to the limited linear expressiveness of most
widely-used numerical abstract domains and the widening operation. This becomes more serious when analyzing all variables
simultaneously as a whole for programs that involve non-linear behaviors. Based on the observation that the dependency among
variables in a loop can be hierarchical, in this paper, we propose a hierarchical static analysis to analyze a loop by utilizing relaxed
abstract transformers. The main idea is to first partition all variables involved in a loop into different hierarchical layers, then
compute invariants over the variables layer by layer in a bottom-up manner. During the iterative process, the computed invariants
over lower-layer variables are then used to relax transfer functions when analyzing the higher-layer variables. One benefit of our
method lies in that it can generate linear invariants to soundly enclose non-linear behaviors in a loop. Finally, we present encouraging
experimental results on benchmark programs involving non-linear behaviors.

Index Terms—Static analysis, abstract interpretation, loop invariant, hierarchical analysis, relaxing operator, abstract transformer

I. INTRODUCTION

SOFTWARE in traditional embedded control systems or
nowadays cyber-physical systems, artificial neural network

systems, big data processing systems, often involves numerical
computation in their source code, due to their dependence
on the underlying mathematical, physical, or computational
model. Moreover, many kinds of such numerical software
play an important role in safety-critical fields, which suggests
the importance of their dependability. Hence, there is a
need for numerical static analysis techniques and tools to
discover numerical invariants automatically. Since the strongest
invariants are not computable in general, we need to conduct
sound over-approximations. Abstract interpretation [1] is a
theory of sound approximation of the semantics of computer
programs, and provides a general framework for static analysis.

Static analysis based on abstract interpretation essentially
over-approximates the concrete semantics of programs by
abstract semantics, and then computes a super-set of all
reachable program states at every program point. It is a
popular techniques to check for run-time errors in programs.
However, it may also raise false alarms, due to the underlying
over-approximation. To reduce the rate of false alarms, one
immediate idea is improving the precision of the analysis,
which remains challenging.

The main causes of the precision loss of abstract inter-
pretation based static analysis lie in two aspects: (1) Most
widely used numerical abstract domains only have linear,
convex expressiveness (such as the abstract domains of in-
terval [1], octagon [2], polyhedra [3]) or limited non-convex
expressiveness(such as the abstract domains of zonotope [4],
congruence [5] and donut [6]). On contrast, the set of reachable
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program states are often non-convex or non-linear; (2) The
widening operator on which abstract interpretation relies to
ensure the convergence of fixpoint iteration for computing
loop invariants, may bring severe precision loss because
widening often aggressively weakens unstable predicates in
each iteration. In particular, when using an abstract domain
of linear constraints to analyze a program, one would easily
get infinite boundaries for those variables whose values are
essentially non-linear with respect to other variables.

1 void main(){
2 int x = -10;
3 int y = 0;
4 while(x <= 20){
5 x = x + 1;
6 y = y + x; // y = y + x * x * x;
7 }
8 }

Fig. 1. A motivating example.

x

y

Fig. 2. Loop invariants of the motivating example.

Consider the program in Figure 1, which computes the sum
of all integers from −9 to 21 through a loop and stores the result
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into variable y. At line 5, the most precise invariant would be:
y = (x−9)∗ (x+10)/2 ∧ −10 ≤ x ≤ 20. All program states
satisfying this invariant is shown as the red crosses in Figure 2.
From this quadratic invariant, one can conclude that the value
of y is always between −45 and 165 at line 5. Thus there is
no integer overflow at line 6. However, a static analyzer based
on linear constraint abstract domains (e.g., polyhedra abstract
domain) may fail to infer any boundary information on variable
y (i.e., it infers y ∈ [−∞,+∞]). As a consequence, a false
alarm of integer overflow would be raised at line 6. To infer non-
linear invariants, several specific non-linear abstract domains
[7] [8] have been proposed, some of which have been shown
their usefulness in real-word applications [9]. However, such
domains often rely on predefined templates or limit the degree
of polynomials (e.g., quadratic) before conducting analysis.
Limiting the degree of polynomials to be 2 would work for
the case of the motivating example. However, if we modify
the statement at line 6 to y = y+x ∗x ∗x; these work would
fail to infer new polynomial invariants with higher degree.

In this paper, we propose to use a hierarchical analysis
approach to improve the precision of loop analysis, with
the help of relaxed abstract transformers. More clearly, we
first partition all variables involved in a loop into different
hierarchical layers, and then compute loop invariants over
variables layer by layer, from lower-layer to higher-layer.
During the process of the whole analysis, the computed
invariants over lower-layer variables (that we call “partial
invariants”), are used to relax transfer functions when analyzing
higher-layer variables. During the analysis, we make use of
relaxing abstract transformers to reduce unstable ingredients,
and to keep more stable ingredients. One benefit of our method
lies in that it can generate linear invariants through conventional
linear abstract domains to soundly enclose non-linear behaviors
in a loop.

For the motivating example, our approach can generate the
following linear loop invariants using the polyhedra abstract
domain: {x ≤ 20 ∧ −x ≤ 10 ∧ −9x− y ≤ 90 ∧ −21x +
y ≤ 210}. These constraints over-approximate all reachable
program states in the loop with a reasonable precision (every
variable is bounded). To illustrate this, we depict the state
space represented by these constraints as the green triangle
region in Figure 2. Before the statement at line 6 (y = y+x;),
our analysis can infer {x ∈ [−9, 21] ∧ y ∈ [−270, 630]}
following the above linear loop invariants. Thus it proves that
there is no integer overflow at line 6.

The rest of the paper is organized as follows. Section II
illustrates the main framework of our approach. Section III
introduces hierarchical variable dependency graph and the
corresponding program slicing techniques. Section IV presents
relaxing techniques on transfer functions. Section V discusses
soundness and precision of analysis via relaxing transformers.
Section VI provides experimental results on benchmarks.
Section VII discusses related work. Finally, conclusions as
well as future work are given in Section VIII.

II. OVERVIEW

Standard abstract interpretation computes the invariants on all
the variables in the loop simultaneously. This may cause much

loss of precision, since widening is applied on abstract states
that may involve many potentially unstable variables at the
same time. Especially for programs with non-linear behaviors
(e.g., the motivating example in Figure 1), static analysis using
abstract domain with linear expressiveness could easily lose
boundary information on variables that are non-linear with
respective to other variables. However, it is common to find
hierarchical dependency relations among variables in loop
bodies. For example, the values of loop control variables (such
as loop counters) usually do not depend on other variables
in the loop. Other variables in the loop may depend on loop
control variables directly or indirectly. In Figure 1, the value of
variable x only depends on itself and that of y depends on x.
One idea is to compute the invariants on x and then y, in order
to reduce the unstable variables during widening. Widening
is an important technique to ensure the convergency of the
fix-point iteration procedure over a given abstract domain in
abstract interpretation. Consider the following code segment
{x=0; while(true) x=x+1;}. Suppose that we use abstract
interpretation with the Interval domain to analyze this code.
During the fix-point iteration procedure, after the loop iterates
one (two) times, collected interval bounds at the loop head are
x=[0,1] (x=[0,2]) respectively, which are unstable. It is easy to
see that this iteration for this example, the fix-point iteration
procedure will not terminate without widening operation. If
we perform widening after the second iteration, the widening
operation of the interval abstract domain keeps stable lower
or upper bounds, and convert unstable upper (lower) bound
to +∞ (-∞), and thus will results in x=[0,+∞], which is in
fact the invariant (stable bounds). In this paper, we use the
standard widening operators defined in [1][3] for our analysis.

Inspired by the observation above, our analysis first construct-
s a hierarchical variable dependency graph on the variables
involved in the loop, and then carries out an iterative refinement
method to compute the loop invariants incrementally. In the
hierarchical variable dependency graph, the variables that do
not depend on others are put in the lowest layer, and the
variables that need the same number of intermediate nodes
to reach the variables of the lowest layer are put in the same
layer. With this graph, our method carries out an iterative
refinement analysis as follows: (1) Our analysis first computes
the partial invariants on the lowest layer variables (those do
not depend on other variables). To do that, the original loop in
the program is sliced, so that only those statements involving
the lowest layer variables are left. A regular abstract domain
is then used to compute the invariants of the sliced loop;
(2) Our method makes use of the already computed partial
invariants on lower-layer variables to compute the invariants
on higher-layer variables. The iterative process continues until
reaching the highest layer. More clearly, when analyzing the
i-th layer variables, the original program is sliced, so that only
variables in layers lower than or equal to i are left. Our analysis
utilizes computed partial invariants on variables in layers lower
than i to to relax the expressions in the sliced program. After
relaxing, there will be fewer unstable ingredients (e.g., variables,
expressions, etc, where “unstable” means that their valuations
change between two iterations), which potentially makes the
widening more precise.
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One key point of our method is designing a proper relaxing
operator, which should provide relaxed transfer functions with
more stable constraints before widening. In the loop body,
some statements can contain unstable expressions (i.e., their
valuations change between two iterations) that cannot be
expressed precisely by the employed abstract domain (e.g.,
polyhedra abstract domain cannot express squared or higher-
order constraints). These expressions are the main target to
relax. Our analysis substitutes these target expressions with
over-approximations derived from the computed partial loop
invariants. The above process is called “semantic relaxing”. It
is worth mentioning that the partial loop invariants needed by
“semantic relaxing” only involve lower-layer variables rather
than all variables. In practice, they only need to constrain those
lower-layer variables that appear in the target expression of
relaxing.

 

Relaxed Semantic Equations 

Partial Loop 

Invariant 

Input: a loop 

Fixpoint solver 

Relaxing  

Abstract 

Domain  

Sliced 
Versions 

HVDG  

Fig. 3. The main framework of our method.

Our method improves the analysis precision of abstract
interpretation by combining hierarchical analysis and abstract
transformers relaxing. (1) Hierarchical analysis can help to
generate more precise invariants for lower-layer variables. This
observation can be indicated by our motivating example. If we
take abstract interpreter (e.g., Interproc) with the polyhedra
domain to analyze it as a whole, we can only get x=[-
oo, 20] at the loop head. The lower bound of x is missed
during the widening operation, since the constraints relating
x and y are unstable. However, if we analyze the program
without assignment “y=y+x” in loop body (i.e., the program
in Figure 4(a)), we can get x=[-10,20] at loop head, which is
more precise. (2) Relaxing abstract transformers can help to get
more precise constraints between higher-layer and lower-layer
variables. For our motivating example, if relaxing technique is
not applied after first-pass analysis, although bounded range
can be inferred for x, we still can not get finite bounds for
y during the second-pass analysis on the program shown in
Figure 4(b)).

Figure 3 shows the framework of our method. It mainly
contains the following four steps: building a hierarchical
variable dependency graph, program slicing based on variable

hierarchy, semantic relaxing based on partial invariants, and
fix-point solving. These steps will be described in detail in the
subsequent sections.

1void main(){
2 int x=-10;
3
4 while(x<=20){
5 x=x+1;
6
7 }
8}

(a)

1void main(){
2 int x=-10;
3 int y=0;
4 while(x<=20){
5 x=x+1;
6 y=y+x;
7 }
8}

(b)

1void main(){
2int x=-10;
3int y=0;
4while(x<=20){
5 x=x+1;
6 y=y+[-9,21];
7 }
8}

(c)
Fig. 4. Slicing and relaxing of our motivating example.

As we have shown in Section I, standard abstract in-
terpretation without using our technique fails to infer any
boundary information on variable y for our motivating example.
We now illustrate how our method analyzes the motivating
example in Figure 1. First, our analysis infers data and control
dependencies between all the variables in the loop body ( i.e.,
variables x and y). In this example, it finds that the variable
x only depends on itself and the variable y depends on x as
well as y. Thus our analysis builds a so-called hierarchical
variable dependency graph with two variables x and y, where
x is placed in layer 0 and y in layer 1. Next, the program is
first sliced into program P0 with only the layer 0 variable x,
as shown in Figure 4(a). Since P0 only involves the lowest-
layer variable, no relaxing is needed. Then we use the classic
polyhedra abstract domain to compute the partial loop invariants
in P0, which obtains x ∈ [−9, 21] at line 6. Then, our analysis
slices the program into P1 (as shown in Figure 4(b)) with the
variables in layer 0 and 1. Note that P1 is actually the original
program. In P1, the assignment at line 6 can be relaxed by
the partial invariants computed from the previous step. That is,
the appearance of variable x is replaced by its range [-9,21].
The relaxed program P 1 is shown in Figure 4(c). Note that
now the variable y in layer 1 only depends on itself. Using
the polyhedra abstract domain to analyze the program P 1, our
method can obtain the following loop invariant at line 5:

x ≤ 20 ∧ −x ≤ 10 ∧ −9x− y ≤ 90 ∧ −21x + y ≤ 210

The linear invariants above are the final invariants computed
by our method. They are more precise than the invariants
computed by the standard non-hierarchical analysis using the
polyhedra polyhedra domain, which infers no boundary on
variable y.

III. SLICING BASED ON HIERARCHICAL VARIABLE
DEPENDENCY GRAPH

This section introduces Hierarchical Variable Dependency
Graph (HVDG), based on which we perform program slicing.
First, we clarify some definitions. Then, we talk about how to
construct the Hierarchical Variable Dependency Graph. Finally,
we illustrate how to slice.

A. Variable Dependency
Let v1 and v2 be two program variables in a loop. We

say v1 is directly control dependent on v2, if there exists an
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assignment s to v1 which appears in a branch of a conditional
statement whose branch condition involves v2. Variable v1 is
said to be directly data dependent on v2 if v2 appears in the
right-hand expression of an assignment to v1. We say variable
v1 directly depends on v2 if v1 is directly control or data
dependent on v2. Suppose there exists a variable sequence
v0, v1, . . . , vn(n >= 2), and for every i (0 ≤ i < n), we have
vi+1 directly depends on vi. Then we say vn indirectly depends
on v0. Variable v1 depends on variable v2 if v1 directly or
indirectly depends on v2.

B. Hierarchical Variable Dependency Graph

Let Var denote the set of all program variables in a loop.
Let A and B be two subsets of Var . We say A (directly)
depends on B if there exists v1 ∈ A, v2 ∈ B, such that v1
(directly) depends on v2. Given a program loop, we define its
corresponding Variable Dependency Graph (VDG) as a directed
acyclic graph (DAG) G = (N,E), where each node n ∈ N
corresponds to a subset of Var (denoted as Varn), and each
edge e ∈ E from node n1 to node n2 represents that Varn2

directly depends on Varn1 . For the sake of concision, even if
Varn depends on Varn, we do not add a loop on node n. Note
that such convention does not affect our results because we
aim at deriving the dependencies between different variables.

Given a DAG G = (N,E), a layering of G is a partition of
its node set N into a sequence of disjoint subsets (called layers)
N0, N1, ..., Nh−1, such that if (u, v) ∈ E where u ∈ Ni and
v ∈ Nj then i < j. For each i (0 ≤ i ≤ h− 1), Ni is called
the i-th layer (or layer i). A DAG with a layering is called a
layered (or hierarchical) graph [10]. The height of a layered
graph is the number of layers h. Note that, since layered graph
has represented the direction (i.e., the dependency relation)
between nodes by layers, it is treated as an undirected graph
for the sake of simplicity.

A Hierarchical Variable Dependency Graph (HVDG) is an
undirected layered graph derived from a variable dependence
graph (VDG), denoted as G = (N,E), wherein there is an
undirected edge e ∈ E connecting nodes n1, n2 and node
n1 ∈ N is put in the next higher layer of n2 ∈ N , if Varn1

directly depends on Varn2
. Note that the nodes in G with no

input edges are placed in the lowest layer (layer 0), and the other
nodes are placed as low layer as possible under the constraints
of variable dependencies. Actually, HVDG is a sort of Hasse
graph derived from VDG. The nodes in HVDG are ordered
from bottom to top w.r.t. the dependencies of the variable sets.
According to the hierarchical relationship between different
nodes in HVDG, we can derive the hierarchical relationship
between the variables directly. Obviously, assume the height of
HVDG is h, then all the variables in the loop can be divided
into h layers according to the variable dependencies. If node
n appears in the i-th layer of HVDG (0 ≤ i ≤ h − 1), then
we say all the variables in Varn are the i-th layer variables of
the loop.

We construct the HVDG for a loop in four steps :
1) Constructing original VDG: If variable v appears in the

loop, then create a node n in VDG denoting the variable
set {v}. If variable v2 directly depends on v1, then draw

a directed edge from node n1 (denoting {v1}) to node n2
(denoting {v2});

2) Merging nodes: If there exists a directed edge from n1 to
n2 and a directed edge from n2 to n1, then merge n1 and
n2 as a new node n3, where Varn3

= Varn1
∪ Varn2

.
In addition, the other edges from or to n1 and n2 are
transferred to the output or input edges of n3. In other
words, if Varn1 and Varn2 depends on each other, we
merge them;

3) Deleting redundant edges: Let n0, n1, . . . , nk be nodes in
VDG. If there exists an edge from n0 to nk and for each
i(0 ≤ i ≤ k − 1) there exists an edge from ni to ni+1,
then we delete the directed edge from n0 to nk. It means
that if Varnk

both directly and indirectly depends on
Varn0 , we remove their direct dependency in the graph.

4) Deriving HVDG from VDG: We keep all the nodes of
VDG (after the previous 3 steps, which is a DAG) as the
nodes of HVDG. If there is a directed edge from node n1
to n2 in VDG, we add an indirected edge between n1, n2
and put n1 in the next higher layer of n2. Note that, for
those nodes with no input edges in VDG, we put them
in the lowest layer in HVDG. For the other nodes, we
put them as low layer as possible under the constraints
of variable dependencies.

Note that the proposed notion of HVDG in this paper is
different from the concept of conventional program dependence
graph (PDG). First, our HVDG describes the dependency
between variables, while PDG describes the dependency
between statements. Second, our HVDG organizes the whole
graph in a hierarchical way while PDG does not.

1 while(t<=1000)
2 {
3 t=t + 1;
4 x=x+y+2;
5 y=y+2*x;
6 if(z+y>100)
7 z=z+y+1;
8 else
9 z=x+u;
10}

Fig. 5. An illustrating example for variable dependency.
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Fig. 6. Constructing HVDG for the program shown in Fig. 5.

Example 1. Consider the program snippet in Figure 5. In
this program, we can see that variable x is directly control
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dependent on variable t (from statements at lines 1&4), x is
directly data dependent on y (from the statement at line 4),
and z indirectly depends on x (from statements at lines 5&7).
The initial VDG is shown in Figure 6(a). Figure 6(b) gives the
resulting VDG after merging nodes {x} and {y}. Figure 6(c)
is the resulting VDG after deleting the edge from node {t} to
node {z}. Figure 6(d) gives the final HVDG. Based on this
HVDG, we could see that t and u are the 0th layer variables,
x and y is 1st layer variable, and z is the 2nd layer variable.

C. HVDG based Program slicing

We first introduce some notations before detailing the
workflow of slicing. Suppose the variables in a loop have
n+ 1 layers in the corresponding HDVG, and Var≤i denotes
the variables from layer 0 to layer i. Given a statement s,
USE[s] represents the variables read in the s, while DEF [s]
stands for the variables written in s.

For i-th layer, we perform the slicing [11] with respect
to Var≤i, i.e., the variables in and below layer i in HDVG.
More precisely, it is a two-staged work: 1) For an assignment
statement s, we keep it in the resulting sliced program if
DEF [s] ⊆ Var≤i, otherwise we remove it. 2) For a branch
condition s, we keep it if USE[s] ⊆ Var≤i, otherwise we
replace it with a non-deterministic condition brandom. In
addition, we insert a skip statement for an empty branch.

Note that, when i = n, Var≤i contains all the variables in
the loop, then the slicing result will be the original program.
Example 2. Consider the program snippet in Figure 5 again.
For the slicing criterions Var≤0, Var≤1, and Var≤2, the
slicing results will be the programs shown in Figure 7(a),
Figure 7(b), and Figure 7(c) respectively.

1while(t<=1000)
2{
3 t=t+1;
4
5
6
7
8
9
10}

(a)

1while(t<=1000)
2{
3 t=t+1;
4 x=x+y+2;
5 y=y+2*x;
6 if(brandom)
7 skip;
8 else
9 skip;
10}

(b)

1while(t<=1000)
2{
3 t=t+1;
4 x=x+y+2;
5 y=y+2*x;
6 if(z+y>100)
7 z=z+y+1;
8 else
9 z=x+u;
10}

(c)
Fig. 7. Slicing based on HVDG.

IV. RELAXING BASED ON PARTIAL LOOP INVARIANTS

In this section, we introduce the relaxing operator which
is used to over-approximate abstract transformers. It aims to
reduce the number of unstable ingredients (such as variables,
expressions, etc.), thus improving the precision of loop analysis.
This section first gives the definition and soundness condition of
relaxing operator, and then introduces some general strategies
for arbitrary abstract domains.

A. Relaxing Operator

We first introduce some notations. Let I ∈ {R,Q,Z} be
the set of numerical values, Var be the set of all program

variables in the loop, ρ ∈ S = V ar → I be an environment
which assigns each variable a value.

We assume that our target programs support interval ex-
pressions e. More clearly, we have the following syntax for
expressions:

e := x x ∈ V ar
| [a, b] a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}
| e⊕ e ⊕ ∈ {+,−,×,÷}

This syntax covers expressions of scalar values (when a = b).
The semantics of interval expressions are standard [12]. Here
we just show some of the semantics that are relevant in this
paper. The semantics of an expression [[e]] : S 7→ P(I) maps an
environment to a set of values. The semantics of an assignment
statement [[x := e]] : P(S)→ P(S) updates the store of x by
the valuation of expression e. Let S ⊆ S, the semantics of
expressions and assignment statements are defined as follows.

[[x]](ρ) := {ρ(x)}
[[[a, b]]](ρ) := {v ∈ I | a ≤ v ≤ b}
[[e0 ⊕ e1]](ρ) := {v0 ⊕ v1 | v0 ∈ [[e0]](ρ), v1 ∈ [[e1]](ρ)}
[[x := e]](S) := {ρ[x 7→ v] | ρ ∈ S, v ∈ [[e]](ρ)}

We define the following partial order between expressions:
e0 � e1 ⇔ ∀ρ ∈ S, [[e0]](ρ) ⊆ [[e1]](ρ). This partial order
defines the inclusion relationship between the valuation of
expressions. During the iteration of a loop, the valuation of
the variables always satisfies loop invariants denoted as Inv,
i.e., ρ ∈ Inv where Inv ⊆ S. Then we define the following
partial order under the given loop invariants Inv:

Inv ` e0 � e1 ⇔ ∀ρ ∈ Inv, [[e0]](ρ) ⊆ [[e1]](ρ)

If Inv ` e0 � e1, replacing [[x := e0]] with [[x := e1]]
is called relaxing on transfer function under the given loop
invariants Inv. Such operator is called a relaxing operator
(denoted as <).

The < Operator is sound in the following sense.

Theorem 1 (Soundness of Relaxing). If Inv ` e0 � e1, then

[[x := e0]](Inv) ⊆ [[x := e1]](Inv)

Proof. Following the definition of Inv ` e0 � e1, thus ∀ρ ∈
Inv, [[e0]](ρ) ⊆ [[e1]](ρ). Following the definition of [[x := e]],
[[x := e0]](ρ) ⊆ [[x := e1]](ρ).

B. Relaxing Strategies

In this subsection, we introduce several relaxing strategies.
These strategies are heuristic and may fit into different
programs. All the strategies are under the following two
assumptions.

• The program sequence P0, P1, . . . , Pn has been obtained
by slicing based on HVDG, and the partial loop invariants
Inv]i−1 has been already computed by analyzing relaxed
program Pi−1(1 ≤ i ≤ n) with our analysis. In this
section, we show the strategies of relaxing Pi;

• The employed abstract domain D] provides an operator
bound exp(e) that finds the lower and upper bounds of
an expression e in an abstract environment.
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1) Relaxing based on bounds of expressions
The basic idea of this relaxing strategy is utilizing the partial

invariants Inv]i−1 to relax all new statements in Pi compared
to Pi−1. We use s to denote a new statement, e to denote the
righthand expression of s, and let MBE (e) be the set of all
the “maximum” bounded expressions in e that only involves
variables in Var≤i−1. Note that in this paper, an expression
is seen as a syntactic tree, and the sub-expressions are also
defined along the syntactic tree. More formally, MBE (e) can
be deductively defined as following:

MBE(e)=


∅ if (e ∈ V ar ∧ bound exp(e) = >)

∨ e ∈ Intvs
e if e /∈ Intvs ∧ bound exp(e) 6= >
MBE(e1)∪MBE(e2) if bound exp(e) = > ∧ e = e1 ⊕ e2

where Intvs is the set of all interval constants and ⊕ ∈ {+,
−,×,÷}.

For each e′ ∈ MBE (e), its appearance is replaced by
its value range orderly, which is obtained from Inv]i−1 by
bound exp(e′). This replacement results in relaxed transfer
functions for those new statements. Note that we do not
include unbounded expressions in MBE (e). In other words, if
bound exp(e′) returns >, our analysis does not relax e′, since
it brings no benefit for improving precision. That is to say our
analysis only relaxes statements on bounded expressions. This
strategy is called Bounded Expression Strategy (BES).

In some abstract domains, operator bound exp can be
expensive in time and space. For the sake of efficiency, we
define a simpler strategy called Bounded Variable Strategy
(BVS). This strategy follows a similar process, but relaxing
BV (e) rather than MBE (e), where BV (e) is a set of variables
in V≤i−1 and also appearing in e. This means that it relaxes
e by replacing each low-layer variables with intervals, rather
than considering the maximum expressions. Compared with
BES, BVS is more efficient, but less precise.
Example 3. Suppose Inv]i−1 = {5 ≤ x + y ≤ 10 ∧ x ≥
0 ∧ y ≥ 0 ∧ z = [−∞,+∞]} the new statement in Pi is
s : {t = x ∗ t + x + y + z; } and only t is the variable
in the i-th layer. Then, we have MBE (x ∗ t+ x+ y + z) =
{x, x+y} (Note that, if “y+z” is also bounded, we will also add
“y+z” into MBE (x ∗ t+ x+ y + z)). If our analysis utilizes
BES to relax s, we finally get relaxed statement s′ : {t =
[0, 10]t+z+[5, 10]; }. If we take BVS, since bound exp(x) =
[0, 10], bound exp(y) = [0, 10], bound exp(z) = [−∞,+∞],
we finally get relaxed statement s′ : {t = [0, 10]t+z+[0, 20]; }.

2) Relaxing based on interval linearization
In this subsection, we define a relaxing strategy that is

not as general as those defined in the last subsection, but is
more precise on specific cases. This relaxing strategy is called
relaxing based on interval linearization (RIL). RIL first relaxes
expressions only involving lower layer variables into interval
affine forms [13]: i0 + Σk(ik × vk), where ik is an interval
and vk is an variable. When encountering a product of two
variables (x1×x2), where neither of x1 and x2 is constant, we
need to choose one of the factor to be replaced by its interval
range. The choice of which factor to be replaced may influence
the analysis result. Our heuristic strategy is to replace the factor

with narrower interval range. For more heuristic strategies, we
refer the readers to [14].
Example 4. Suppose y and z are lower-layer variables,
Inv]i−1 = {y = [c, d] ∧ z = [e, f ]}, and the new statement
in Pi is s : {x = y ∗ y + z; } compared to Pi−1. If we take
the BES or BVS strategies, our analysis will get s′ : {x =
[c, d][c, d] + [e, f ]; }. If we take RIL to relax this expression
to interval affine form, we will get s′ : {x = [c, d] ∗ y + z; }.

The interval affine forms can be handled by the existing inter-
val polyhedra domain [15]. We may further adopt linearization
techniques [14] to further relax interval affine forms into linear
forms as i′0 + Σk(ck × vk), where ck is constant. In practice,
ck usually takes the middle point of ik as its value. Then
the linear form can be dealt with by conventional numerical
abstract domains of linear constraints (such as the polyhedra
abstract domain).
Example 5. Continue Example 4. Given the assignment {x =
[c, d] ∗ y + z; }, we can derive a liner form, such as {x =
((c+ d)/2) ∗ y+ z+ [m,n]}; where [m,n] = [(c− d)/2, [d−
c]/2]� [e, f ], and � is interval arithmetic multiplication. We
can then fit it into the polyhedra abstract domain as Inv]i =
{x− (c+ d) ∗ y/2− z <= n ∧ x− (c+ d) ∗ /2− z >= m},
which contains linear constraints between x, y, z.

Note that, the interval linearization technique in our method
is different from the standard interval linearization technique
used in [14], which uses variables interval ranges of current
iteration (not loop invariants) to perform interval linearization,
while we utlize variable bounds derived from invariants.

3) Relaxing based on one-variable interval linear form
The previous strategies only consider local information on

a sole statement. We can also design relaxing strategies that
consider multiple statements as a whole (such as statements
in block). In this part, we propose relaxing strategies of such
kind. They are all based on one-variable interval linear form
(OVILF).

a) Assignments in one-variable interval linear form: The
following assignment form is called one-variable interval linear
form (OVILF)

vk = i1 × vk + i2;

where i1 and i2 are interval constants.
If in an assignment to a current layer variable, the right-hand

side expression contains only lower-layer variables and the
left-hand variable, then this assignment can be transformed into
OVILF. This transformation can be easily obtained by relaxing
all lower-layer variables into intervals. Our strategy assumes
that assignments to current layer variables can be transformed
into OVILF. Furthermore, these OVILFs can be transformed
into the form such that in a loop the assignment to each variable
appears only once. To reach this target form, we use symbolic
techniques [16] [17] to transfer several OVILF assignments to
vk into one. Now we show how two assignments to vk are
combined into one. This process can be repeated to deal with
the case of more than two assignments. If the two assignments
are sequential in the loop, as shown in Figure 8, with symbolic
propagation techniques, these two assignments are replaced
with the following OVILF assignment

vk = (i1 � i3)vk + (i2 � i3 � i4);
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where �, � represent interval addition and multiplication
operations.

1 while(cond){
2 ...;
3 vk = i1vk + i2;

//where i1, i2 are interval constants;
4 vk = i3vk + i4;

//where i3, i4 are interval constants;
5 }

Fig. 8. Sequential assignments inside a loop.

If the two assignments are in different branches of the same
conditional block, as shown in Figure 9. We delete these two
statements, and insert a new assignment as follows to the end
of conditional block.

vk = (i1 t i3)vk + (i2 t i4);

where t is the union of two intervals.

1 while(cond){
2 ...;
3 if(*)
4 vk = i1vk + i2;

//where i1, i2 are interval constants;
5 else
6 vk = i3vk + i4;

//where i3, i4 are interval constants;
7 }

Fig. 9. Assignments in different branches inside a loop.

Inside a loop body, we conduct the transformation into
OVILF from the inner most branches to the outmost ones by
utilizing the above symbolic combinations repeatedly. Finally,
we can get the target form such that inside a loop there exists
only one OVILF for each variable.

b) Analyzing loops with one-variable interval linear
assignments: This part introduces the method for solving fix-
point for OVILF (i.e., vk = i1 × vk + i2;). In general, if i1 is
not one of the three constants 1, -1, 0, then the value of vk
is always exponential to loop counter variables. Conventional
abstract interpretation with linear constraint abstract domain
can hardly find bounds on such variables. We propose a quick
fix-point solving technique called formula method to deal with
such cases.

¬ Utilizing Formula Method for the general term
Our analysis first introduces a counter n to the loop by

inserting n = 0; before the loop, and n = n+ 1; at the end of
the loop. Even n may be control dependent on other variables
in HVDG, we still consider n as the 0th layer variable. Suppose
that for the i-th layer variable x, the loop body only contains
one OVILF assignment on x as following:

x = [a, b]x+ [c, d]; (a, b, c, d ∈ I, and a ≤ b, c ≤ d)

Assume that the initial value of x is x0, and that xn
represents the interval range of x after n iterations. Then
by substitution of x, we obtain the following formula:

xn = [a, b]nx0 + ([a, b]n−1 + [a, b]n−2 + · · ·+ 1)[c, d] (1)

Formula (1) needs a lot of interval addition and multiplication
operations. Therefore, we further simplify it based on the sign
of a.

If a ≥ 0, then for each 0 ≤ i ≤ n, ai ≤ bi holds. Then
Formula (1) can be simplified to the following formula:

xn = [an, bn]x0 + [g, h][c, d] (2)

where

[g, h] =


[ 1−a

n

1−a ,
1−bn
1−b ] a, b 6= 1

[n, 1−b
n

1−b ] a = 1, b 6= 1

[ 1−a
n

1−a , n] a 6= 1.b = 1

[n, n] a, b = 1

If a < 0, then for every 0 ≤ i ≤ n, there is no deterministic
relation between ai and bi, and the value of xi may change
its sign during the iterations. Thus Formula (2) does not work
for this case. We propose a more general formula with some
loss of precision. To do that, we first relax Formula (1) into
the following form:

xn =[−tn,tn]x0 + ([−tn−1,tn−1]+[−tn−2,tn−2]+. . .+ 1)[c,d]

where t = max{|a|, |b|}. Then the above formula can be
simplified to following formula:

xn = [−tn, tn]x0 + [j, k][c, d] (3)

where

[j, k] =

{
[− 1−tn

1−t ,
1−tn
(1−t ] t 6= 1

[−n, n] t = 1

Example 6. In the program in Figure 10, variable y has
exponential relation with x. From HVDG, we find x and
n (loop counter inserted by our method) are the 0th layer
variables, and y is 1st layer variable. Our analysis utilizes the
polyhedra domain to compute the loop invariants of the sliced
program with 0th layer variables x and n, and get invariant
{x = [0, 10] ∧ n = [0, 5]} at loop head. Then the assignment
{y = 2 ∗ y + x; } is relaxed to {y = 2 ∗ y + [2, 12]; }. We
cannot get the upper bound of y by conventional widening
operator. But with Formula (2), our analysis gets y = [1, 404]
at line 3 quickly.

1 int x=0,y=1,n=0
2 while(x<=10){
3 x=x+2;
4 y=2*y+x;
5 n=n+1;
6 }

Fig. 10. An example with exponential invariants.

 Loop bound computation
For the inserted loop counter n, conventional abstract

interpretation sometimes can generate linear invariants between
n and other 0th layer variables, so the upper bound of n may
be inferred from the invariant directly. Take the program in
Figure 10 for instance, the upper bound of n can be inferred as
5. However, if the upper bound of n cannot be inferred directly
from the invariant, our method will treat n as a symbolic
constant, and keep it in the formula, and derive the upper
bound of n by constraints solver.
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1 int x=0,y=0,n=0;
2 while((y-x)<100){
3 x=x+2;
4 if(*)
5 y=2*y+1;
6 else
7 y=3*y+2;
8 n=n+1;
9 }

Fig. 11. An example for computing loop bounds.

Example 7. We use the program in Figure 11 to illustrate
the process of inferring the upper bound of loop counter n.
Our method first relaxes the statements in the loop to OVILF:
{x = x+ 2; y = [2, 3] ∗ y + [1, 2]; }, and then obtains {xn =
2n; yn = [2n− 1, 3n− 1]; } by the formula method. Following
loop condition y − x ≤ 100, we find [2n − 2n − 1, 3n −
2n− 1] ≤ 100. By solving this inequality on n, our method
gets n ≤ 6, with which we can get bounds for x and y, i.e.,
{x = [0, 12] ∧ y = [0, 728]}.

® Further Optimization
Our formula method computes interval information on

variables, which contains no relational constraints between
variables. Now we propose a strategy that makes use of the
interval information to further relax the transfer functions of
all statements in a loop to the following form:

v1 = cv1 + i1;
v2 = cv2 + i2;

where i1, i2 are intervals, and c is constant.
For these relaxed statements, a linear invariant between v1

and v2 will be generated by conventional abstract interpretation
with linear constraint abstract domains, such as the polyhedra
abstract domain.
Example 8. Consider again the program in Figure 11. Based
on the previous interval invariant {x = [0, 12] ∧ y = [0, 728]}
which is generated in Example 7, we perform further relaxing
on previously relaxed statements {x = x+ 2; y = [2, 3] ∗ y +
[1, 2]; } to obtain the above general form as {x = x+ 2; y =
y + [1, 1458]; } (where the coefficients of variable x and y in
the right-hand expressions are both 1 after relaxing). Then we
can utilize the polyhedra domain to perform analysis, which
results in the following invariants:

{2y ≥ x ∧ y ≤ 729x ∧ x ≥ 0 ∧ x ≤ 12 ∧ y ≤ 728}.

V. SOUNDNESS AND PRECISION OF ANALYSIS VIA
RELAXING TRANSFORMERS

In this section, we discuss the soundness and precision of
our hierarchical analysis using relaxed transformers.

First, the soundness of the analysis using relaxed transform-
ers is straightforward. In Section IV, Theorem 1 has shown
the soundness of the relaxed transformer itself, that is, given
the same abstract pre-state, the resulting post-state given by
the relaxed transformer will be an over-approximation of that
given by the concrete transfer semantics. And all the other
abstract operations that are required during the analysis reuse
the same operations provided by the regular abstract domains,

including meet, join, widening, etc. Then, the framework of
abstract interpretation guarantees the soundness of the whole
analysis using relaxed transformers.

This paper mainly aims to leverage the technique of relaxing
abstract transformers to improve the precision of the analysis.
One may wonder why we could improve the precision of
the final analysis results via relaxing transformers, since
relaxing transformers itself means a kind of precision loss. It is
known that the widening operator in the abstract interpretation
framework may not be monotone [18]. First, the widening
operator is not monotone with respective to the left parameter.
In other words, even though I1 v I2, we may not have
I1OI v I2OI . E.g., suppose I1 = [0, 1], I2 = [0, 2], I = [0, 2],
which implies that I1 v I2. However, we have I1OI =
[0,+∞] 6v I2OI = [0, 2]. Also, the widening operator is
not monotone with respective to the second parameter. E.g.,
suppose we use the polyhedra abstract domain with standard
widening, and I = {0 ≥ x−y ≥ −1, x ≥ 0}, I1 = {−x+2y ≥
0, 2x−y ≥ −2}, I2 = {x ≥ 0, y ≥ 0}, which implies I1 v I2.
However, we have IOI1 = > 6v IOI2 = {x ≥ 0}.

In other words, due to the above fact that the widening
operator is not monotone, the whole analysis using relaxed
abstract transformers may get more precise final results than
that using the original abstract transformers. Of course, using
relaxed abstract transformers may also get less precise final
results. In fact, when using a proper relaxing operator, although
it may cause more precision loss temporally at that statement,
the relaxing operator may utilize the already computed partial
invariants to reduce unstable ingredients, and helps to get
more precise final results after the whole analysis. Take our
motivating example in Figure 1 for example,

VI. EXPERIMENT AND EVALUATION

We have implemented a prototype static analyzer RelaxAIer
to support our hierarchical analysis using relaxed abstract
transformers, on top of Interproc [19], which is one of the
available and widely used invariant generation tools based on
abstract interpretation [20][21][22]. Compared with Interproc,
RelaxAIer has used the same abstract domain library and
fixpoint solver library. We use Box (an implementation of the
interval abstract domain) and Polka (an implementation of
the polyhedra abstract domain) from the APRON numerical
abstract domain library [23] in our experiment.

A. Evaluation Setup

We evaluate RelaxAIer along the following two research
questions:

(1) RQ1: How frequently can loop variables in non-linear
programs be partitioned into multiple layers?

(2) RQ2: How effective is our technique in improving the
precision of abstract interpretation?

To address these research questions, we have conducted
experiments on a benchmark consisting of 46 programs on
Table I, 35 of which are taken from the whole set of NLA
(Non-linear Algorithmic) Benchmark [24] [25], and 3 of which
are taken from [26] (the program namely mul2) and [27] (the
programs namely prod, petter) and the last 8 of which are from
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[28]. These programs often appear as sets of test cases in the
work of non-linear invariant generation [29] [30] [31] [32] [33].
Although all these program are within 100 lines of code, they
implement non-linear mathematical functions and are very
subtle to analyze or verify. Many of them contain symbolic
inputs (whose value ranges are not restricted). To conduct
experimental comparisons, we thus assume a set of fixed
parameter values as symbolic inputs for these programs. In
addition, 5 programs have infinite loops (such as while(true)).
These infinite loops cause all variables in the programs to take
infinite bounds. For the sake of experimental comparisons, we
have modified the loop conditions for these 5 programs, so
that the numbers of loop iterations are bounded. RelaxAIer is
compared with Interproc to evaluate the effectiveness of our
technique in improving the precision of abstract interpretation.

B. Evaluation Results

The result of our experiments are shown on Table I. The
“Disc.” column gives a short description of the functionality of
the program. The “#V” column gives the number of variables.
The “#D” column reports the maximum degree of underlying
strongest loop invariant on loop control variable, where “p”
means polynomial invariant, the number ahead of “p” means
the maximum degree of polynomial invariant, and “e” means
exponential invariant. The “#H” column provides height of
HVDG (i.e., the number of hierarchical layers over variables).
The “Interproc” column reports the results obtained by Interproc
when using the polyhedra abstract domain. “RelaxAIer” reports
the result of our tool with previous designed relaxing strategies.
“#B” column reports the number of bounded variables that the
analysis infers at the loop head. “T(ms)” column reports the
time overhead of generating invariant in millisecond when the
analysis runs on a virtual machine (using VMware Workstation)
, with a guest OS of Ubuntu 14.04 (2GB Memory), host OS
of Windows 8, and a 3.2 GHz quad-core Intel(R) Core(TM)
i7-5500U host CPU. “P” column compares the precision of the
resulting loop invariants generated by Interproc and RelaxAIer.
A “>” (“<”, “=”) indicates that Interproc outputs stronger
(weaker, equivalent) invariants than RelaxAIer.

1) RQ1 – Frequency of layered loop variables in programs
Utilizing the hierarchical dependency relationships among

variables is one basic idea of our approach. Note that “#H=1”
means that the loop variables cannot be partitioned into layers
in programs. From the “#H“ column in Table I, we can see
that 40 out of 46 programs (around 87.0%) have at least 2
hierarchical layers among variables. We have further manually
checked the source code of most programs, and found that only
a few variables (i.e., 0th layer variables) count for controlling
the number of loop iterations, while most of the functionality of
the program are implemented via higher-layer variables. This
observation further provides a confirmation from practice that
the dependency among variables in a loop can be hierarchical.

2) RQ2 – Effectiveness of our technique in improving
precision of abstract interpretation

Considering the accuracy, comparing the “P” columns
in Table I, we find that RelaxAIer improves precision for
39(84.8%) out of 46 programs. The main reasons for these

improvements lie in that for these programs with non-linear
invariants, the analysis precision of Interproc is limited by
the linear expressiveness of the polyhedra abstract domain.
And the widening operator may cause severe loss of precision,
and fails to find finite boundaries for variables, which is one
of the main sources of high false alarm rate when checking
for run-time errors. Our hierarchical analysis with relaxed
abstract transformers makes it more possible to enclose the non-
linear invariants through polyhedral invariants, and infer finite
boundaries for more variables. Comparing the “#B” columns
between Interproc and RelaxAIer, we find that for 35 out of
46 programs (76.1%), RelaxAIer can infer finite boundaries
for more variables compared to Interproc. And for these 35
programs, RelaxAIer also infers more precise invariants. For
the remaining 11 programs, RelaxAIer and Interproc result in
the same number of bounded variables. For these 11 programs,
we then further compare the accuracy of the loop invariants by
comparing the resulting interval range for each variable. And
we highlight the comparison results for these 11 programs in
the column “P”. RelaxAIer get more precise variable ranges
for 4 programs (column “P” is “<”). For 5 programs (4 of
which involve only linear invariants after providing fixed values
for symbolic inputs, i.e., #D is 1p), RelaxAIer is as precise
as Interproc in variable ranges (column “P” is “=”). And
RelaxAIer get less precise variable ranges for 2 programs
(column “P” is “>”). For these 2 programs, parts of the most
accurate loop invariant can be represented by linear equalities,
which can not be discovered any more after relaxing transfer
functions in RelaxAIer.
Example 9. We take the program in Figure 12 to show this
precision loss. This program is simplified from “hard.c” in
our experiment. If we analyze it as a whole, we can find the
invariant at the loop head using the polyhedra domain:{x ≤
128 ∧ −x ≤ 1 ∧ −x+y = 128}, thus we know y = [−127, 0]
at the loop head. However, if we relax the value of x into
[1, 128] at line 6 (Note that this range is got by the first-pass
analysis on x only), we find that the relationship between x
and y (i.e., −x + y = 128) does not hold any more. Thus,
we can only get y = [−∞, 0] at the loop head, which is less
precise than y = [−127, 0].

1 void main(){
2 int x = 128;
3 int y = 0;
4 while(x >= 1){
5 x = x/2;
6 y = y-x;
7 }
8 }

Fig. 12. An example with precision loss for RelaxAIer.

In addition, for 6 programs with 1-layer HVDG (whose “#H”
is 1 in Table I), we also implemented a strategy to utilize the
partial invariants of 0-th layer variables to relax the statements
in the loop, and RelaxAIer can increase the number of bounded
variables of 4 programs.
Example 10. Among these 4 programs, we take the program
in Figure 13 for example to show this improvement, which
is simplified from “fermat2.c” in our experiment. For this
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TABLE I
EXPERIMENTAL RESULTS.

Interproc RelaxAIer
Program Disc. #V #D #H #B T(ms) #B T(ms) P

mul2 product 2 1p 2 2 8 2 16 =
prod product 3 e 3 0 28 3 84 <

cohendiv division 6 e 3 4 28 6 96 <
mannadiv division 3 1p 2 3 16 3 36 =

divbin division 3 e 3 0 36 3 128 <

hard division 4 e 2 4 28 4 120 >

wensley division 4 e 2 4 36 4 96 >

dijkstra square root 4 e 2 0 40 4 284 <
sqrt square root 3 2p 2 0 12 3 32 <

z3sqrt square root 3 e 1 2 24 2 44 =
freire1 square root 2 2p 1 0 8 2 8 <
freire2 cubic root 3 3p 1 0 16 3 36 <

euclidex1 extended gcd 9 e 3 0 96 4 420 <

euclidex2 extended gcd 6 e 2 0 36 0 72 <

euclidex3 extended gcd 11 e 4 0 96 3 312 <

fermat divisor 3 2p 1 0 36 0 112 <

fermat2 divisor 3 2p 1 2 28 3 84 <
knuth divisor 5 e 1 0 124 5 300 <

lcm lcm 4 e 2 0 28 0 46 <

lcm2 lcm 4 e 2 0 32 0 68 <

illinois protocol 4 3p 3 0 116 2 176 <
berkeley protocol 4 3p 3 0 60 3 188 <

firefly protocol 4 3p 3 0 76 2 140 <
mesi protocol 4 3p 3 0 52 3 220 <

moesi protocol 5 3p 3 0 72 4 136 <
prod4br product 4 e 3 0 168 4 244 <

readers writers simulation 3 1p 2 0 36 0 76 =
cohencu cubic sum 4 3p 4 2 16 4 76 <

petter power sum 2 6p 2 1 8 2 16 <
ps1 power sum 3 1p 2 3 8 3 20 =
ps2 power sum 3 2p 3 0 8 3 36 <
ps3 power sum 3 3p 3 0 12 3 40 <
ps4 power sum 3 4p 3 0 12 3 40 <
ps5 power sum 3 5p 3 0 12 3 44 <
ps6 power sum 3 6p 3 0 12 3 44 <

geo1 geo series 3 e 2 0 16 3 60 <
geo2 geo series 3 e 2 0 20 3 64 <
geo3 geo series 3 e 2 0 24 3 68 <

BCK2011 gauss power sum 4 2p 2 0 16 4 40 <
BCK2011 strength reduction power sum 6 2p 3 0 72 4 276 <

BCK2011 strength reduction linear power sum 6 2p 3 0 60 6 168 <
CFD17-add-const product power sum 4 2p 3 0 32 4 128 <
fibonacci information flow fibonacci 3 e 2 0 32 1 48 <
exp with linear inner loop exponential 4 e 3 0 28 2 52 <

exp add linear exponential 3 e 3 0 16 2 56 <
exp add loop variable exponential 2 e 2 0 12 1 20 <

Total 178 110 27 1752 129 4870

program, y depends on x and x depends on y, so “#H=1”.
If we use Interproc with the polyhedra domain to analyze it,
we get x = [0,+∞],y = [1, 128] at the loop head. However,
if we use RelaxAIer, for the first-pass analysis (we analyze
the whole program), we can get x = [2,+∞] at line 6. Then
we relax y = y − x into y = y − [2,+∞], and perform the
second-pass analysis. This time, we can get the more precise
invariant for x, i.e., x = [2, 129] at the loop head, which shows
that x is bounded now.

Overall, in the last row of Table I, we show that totally
178 bounded variables appear in these 46 programs. Interproc
can infer finite boundaries for 27 variables (15.2%), while
RelaxAIer can infer finite boundaries for 129 variables (72.5%),

1 void main(){
2 int x = 0;
3 int y = 128;
4 while(y > 0){
5 x = x+2;
6 y = y-x;
7 }
8 }

Fig. 13. An one-layer example with precise result for RelaxAIer.

which is 4.78X of that of Interproc. Hence, the experimental
results show that the invariants generated by our method
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is obviously more precise than that given by standard non-
hierarchical analysis.

Considering the time overhead, since our method performs
multiple passes of constructing relaxed semantic equations and
fix-point solving, the time overhead is greater than the standard
non-hierarchical analysis which only takes one-pass analysis.
From the results shown in Table I, we find that RealxAIer takes
4870 milliseconds to analyze these 46 programs, whose average
overhead is 105.9 milliseconds, while Interproc takes 1752
milliseconds, whose average overhead is 38.1 milliseconds. The
average overhead of RelaxAIer is 2.78X of that of Interproc.
However, for these relatively small programs, time is not a big
issue.

Threats to validity. We identified the following threats to the
validity of our experiments: (1) Sample size: our experimental
programs are all from benchmark suites, which mainly contain
small-sized non-linear programs. (2) Underlying analyzers:
the efficiency and precision of computing invariants rely on
the underlying abstract interpretation based analyzers (our
implementation is based on Interproc), especially the chosen
of abstract domains. For our experiments, we mainly use a
combination of the interval abstract domain and the polyhedra
abstract domain.

VII. RELATED WORK

To improve the precision of static analysis by abstract
interpretation, Miné [14] proposed several generic symbolic
enhancement methods that can be applied to numerical abstract
domains, including linearization and symbolic constant propaga-
tion. These symbolic techniques also help to compensate for the
lack of non-linear transfer functions for those abstract domains
of linear constraints. During loop analysis, these techniques rely
on the immediate environments computed during iterations to
simplify expressions. Since these immediate environments are
unstable, it may cause much precision loss during widening.
By contrast, our method utilizes partial loop invariants on
lower-layer variables to relax transfer functions on higher-layer
variables. Since our relaxed transfer functions involve less
unstable ingredients (such as variables, expressions, etc.), our
method turns to suffer less precision loss during widening.

Much existing work has addressed on improving the preci-
sion of fix-point solving (e.g., by enhancing widening operator),
such as widening with thresholds, widening delaying [9], looka-
head widening [34], intertwining widening and narrowing [35],
etc. Our approach uses the chaotic iteration strategy [36] with
traditional widening technique. Our work does not focus on
enhancing fix-point solving directly, but by relaxing the abstract
transformers before conducting the fix-point computation. The
aforementioned improvement techniques over fix-point solving
are orthogonal to our approach, and they can be applied during
the fix-point solving period, on top of the relaxed abstract
transformers generated by our approach.

Generating non-linear loop invariants has been a challenging
topic for years. Many techniques like Gröbner bases [26],
abstract interpretation [37], interpolating theorem [38], Guess-
and-Check [27], counterexample-guided [33], and solving semi-
algebraic systems [39][40][41] have been proposed. These

works do not fully solve this challenge. In [27], Sharma et
al. proposed an algorithm for computing algebraic equation
invariants. Their method first guesses a candidate invariant by
date driven analysis and then check whether this candidate
invariant is indeed a true invariant. This Guess-and-Check
procedure iterates until a true invariant is found. However, this
method can only generate polynomial equation invariants, and
it is necessary to presume a small degree in advance due to the
fact that their overhead increases sharply with growing degree.
Our method does not directly compute non-linear invariant,
but uses approximated linear invariants that are captured by
linear constraint abstract domains to soundly enclose non-linear
invariants. Since our method only relies on conventional linear
constraint abstract domains, it is more general and efficient
than those methods generating polynomial invariants.

Gulavani et al. [42] used non-linear axioms such as log,
multiplication, square root and exponentiation to enhance the
expressiveness of the polyhedra domain. Their loop invariant is
used to handle the bounds of non-linear invariants in complexity
analysis. Recently, Kincaid et al. [28] proposed a wedge abstract
domain to obtain non-linear invariants in programs. The wedge
domain treats non-polynomial terms as independent dimensions,
and describes the linearity of non-polynomial terms through the
linear constraints expressed by the polyhedra domain. Both of
these methods introduce non-linear elements into the polyhedra
domain to express non-linear invariants. The precision of their
generated non-linear invariants depends on the precision of
linear invariants derived by the polyhedra domain. Our method
is devoted to generating more precise linear loop invariants
using conventional linear constraint abstract domains through
hierarchical analysis with relaxed transfer functions, which
is also helpful to improve the precision of the methods in
[42] [28].

The arithmetic-geometric domain [43] infers bounds on the
values of variables in terms of a clock counter (which models
the program execution time). The main idea is to approximate
the maximum value of each variable X by an expression of
the affine form [X 7→ a × X + b](n)(M), where a, b are
non-negative real numbers, M is the initial value, n is the
maximum value of the clock counter. This domain has been
successfully applied in certification of huge embedded software
involving floating-point rounding errors. Our relaxing based
on one-variable interval linear form shares the similar idea as
[43]. One of the main differences lies in that our approach
abstracts all assignment statements to variable X (even in
different branches) inside a loop into one statement of one-
variable interval linear form X = i1 ×X + i2, where i1 and
i2 are interval constants and then uses Formula Method for the
general term to compute the bounds of variables in terms of the
number of loop iterations. However, the arithmetic-geometric
domain [43] maintains the affine form in the abstract domain
(although it abstracts floating-point computation into interval
linear form) and performs analysis statement-by-statement
using abstract interpretation.

Recently, there have been some new advances in utilizing
abstract acceleration [21] [44] rather than widening to compute
loop invariants. This method models all the assignments with
no branches by a square matrix, and converts a loop of n
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iterations into a n-th power of the matrix. Then thanks to the
Jordan decomposition of the linear transformers, the matrix
can be abstracted by the polyhedra domain. Their method can
also be used to approximate the boundaries of non-linear loop
invariants. However, their method also has several limitations.
E.g., it targets only linear loops, i.e., loops containing linear
assignments and guards. If there is a branch in the loop,
two matrices are constructed and analyzed separately, which
may cause combinatorial explosion. By contrast, our work
can handle non-linear assignment statements and loops with
multiple branches inside.

Hakjoo et al. [45] utilized the control and data dependency
between statements to exploit the sparsity of the program,
in order to improve the scalability of their analysis. In
this paper, we focus on utilizing the dependency relations
between variables (rather than statements) to improve the
precision of loop analysis. More recently, Singh et al. [46]
proposed approaches by decomposing the transformers to
improve the efficiency of sub-polyhedra abstract domains
without compromising their precision. They decompose the
transformers along with conditions for checking whether the
decomposed transformers lose precision with respect to the
original transformers. In this paper, we focus on improving the
overall precision of the whole analysis and relax transformers
which may cause precision loss locally.

VIII. CONCLUSION AND FUTURE WORK

We present a hierarchical analysis to infer loop invariants
based on relaxed abstract transformers. First, we introduce a
so-called hierarchical variable dependency graph, to organize
all the variables in the loop. The approach then analyzes a
refined series of sliced versions of the original loop, which
are generated with respect to different layers of variables from
lower to higher. The so-called partial invariants over lower-
layer variables are then used to relax transfer functions when
analyzing the higher-layer variables. To this end, we propose
three strategies for relaxing abstract transformers based on
the already computed partial invariants. The key idea behind
relaxing abstract transformers is to relax unstable ingredients
into stable ones such that the overall analysis will finally get
more precise results. We also explain the soundness guarantee
and discuss the precision of using relaxed abstract transformers.
Finally, we present encouraging experimental results on the
benchmark programs involving non-linear behaviors, which
shows that our approach can get more precise invariants than
the standard approach.

For the future work, we will extend our approach to support
nested loops and consider more relaxing strategies. Also, we
plan to apply the idea of hierarchical analysis and relaxing in
more applications such as complexity/resource bound analysis,
WCET analysis, etc.
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