
An Abstract Domain to Infer Linear Absolute Value Equalities

Liqian Chen1, Banghu Yin2, Dengping Wei1, and Ji Wang1,3

1 College of Computer Science, National University of Defense Technology, Changhsha, China
2 College of Systems Engineering, National University of Defense Technology, Changhsha, China

3 State Key Laboratory of High Performance Computing, Changhsha, China

Abstract—The classic linear (technically, affine) equality
abstract domain, which can infer linear equality relations
among variables of a program automatically, is one of the
earliest and fundamental abstract domains. As a lightweight
relational abstract domain, it has been widely used in program
analysis. However, it cannot express non-convex properties that
appear naturally due to the inherent disjunctive behaviors in a
program. In this paper, we introduce a new abstract domain,
namely the abstract domain of linear absolute value equalities,
which generalizes the linear equality abstract domain with
absolute value terms of variables. More clearly, we leverage the
absolute value function to design the new abstract domain for
discovering linear equality relations among values and absolute
values of program variables. The new abstract domain can be
used to infer piecewise linear behaviors (e.g., due to conditional
branches, absolute value function calls, max/min function calls,
etc.) in a program. Experimental results of our prototype are
encouraging: In practice, the new abstract domain can find
interesting piece-wise linear invariants that are non-convex and
out of the expressiveness of the linear equality domain.

Keywords-Abstract interpretation, Abstract domain, Abso-
lute value, Invariant

I. Introduction

In 1970s, Karr [1] proposed an efficient algorithm to infer
automatically affine relations (conventionally also called
linear equality relations) among program variables, in the
form of

∑
k ak xk = b (where xk’s are program variables and

ak’s are coefficients automatically inferred by the algorithm).
Karr’s algorithm is now understood as an abstract domain
of linear equalities (also called Karr’s domain) under the
framework of abstract interpretation [2].

Linear equality relations are useful in many application
contexts, including classical data flow analysis (e.g., con-
stant propagation, definite equalities among variables, etc.),
inter-procedural analysis of affine programs [3], analysis
of machine code [4], analysis of modern deep learning
programs [5], etc. The space complexity of the abstract
domain of linear equalities is O(n2), and the time complexity
of its domain operations is O(n3) (without considering the
size of the program) where n is the number of program
variables. As a lightweight relational abstract domain, the
abstract domain of linear equalities has been widely used
in program analysis. However, similarly to most existing
abstract domains, the abstract domain of linear equalities
(using conjunctions of linear equalities) can only express

convex sets, whereas programs often involve non-convex
behaviors (due to control-flow joins, disjunctions, etc.).

Absolute value (AV) is a fundamental concept in math-
ematics, which can express piecewise linear behaviors. In
practice, piecewise linear behaviors account for a large class
of non-convex behaviors in a program (or after abstracting
non-linear behaviors into piecewise linear behaviors, as in
the field of hybrid systems). Hence, we could exploit the
piecewise linear expressiveness of the AV function to design
non-convex abstract domains, to express certain piecewise
linear behaviors in a program. Based on this insight, in
our previous work [6] [7], we have presented an abstract
domain of linear AV Inequalities (named AVI, which is of
high complexity and thus may have scalability limitations
in practice) and an abstract domain of octagonal constraints
with absolute value (which can infer relations of the form
{±x ± y ≤ c,±x ± |y| ≤ d,±|x| ± |y| ≤ e} over each pair of
variables x, y, where ± ∈ {−1, 0, 1}).

In this paper, we leverage absolute value to design a
new abstract domain, namely, the abstract domain of linear
Absolute Value Equalities (AVE), to discover linear equality
relations among values and absolute values of program
variables, in the form of Σkak xk + Σkbk |xk | = c (where
xk’s are program variables, and ak, bk, c ∈ Q are constants
automatically inferred by the analysis). Using AVE, we
can express certain disjunctions of linear equalities. E.g.,
x = −1 ∨ x = 1 can be expressed as |x| = 1. Also, using
AVE, we can handle many (piece-wise linear) mathematical
functions over variables in modern programming languages,
such as abs (absolute value of an integer), fabs(absolute
value of a floating-point number), fmin (minimum value),
fmax (maximum value), fdim (positive difference) in the
C99 standard. E.g., equality max(x, y) = z can be expressed
as w = x−y∧ 1

2 (|w|+x+y) = z (by introducing a fresh auxiliary
variable w). And the ReLU function in neural network can
be expressed as ReLU(x, 0) = 1

2 (|x| + x). Moreover, even
linear inequality x ≥ 0 can be expressed as AVE |x| = x. In
other words, we could using AVE to encode certain linear
inequality constraints.

The new domain is more expressive than the classic
linear equality domain and allows expressing certain non-
convex (even unconnected) sets thanks to the expressiveness
of absolute value. The preliminary experimental results of
the prototype implementation are promising on example

programs; AVE can find piece-wise linear invariants of
interest that are non-convex and out of the expressiveness of
the conventional linear equality abstract domain in practice.

Motivating Example: In Fig. 1, we show a simple typical
program that implements the f abs() function in C language
(noting that we use := to denote the assignment) and then
checks the properties over its result. This example involves
non-convex (disjunctive) constraints (due to control-flow
join), and precise reasoning over these constraints is required
to prove these assertions. At program point ¬, the AVE
domain can infer (as precise as the AVI domain [6]) that
y == |x|, which can prove the later assertions, while PolkaEq
(an implementation of the linear equality abstract domain)
cannot infer any information at ¬.

float x, y;
if (x ≥ 0 /* |x| == x */) { y := x; }
else /* |x| == −x */ { y := −x; }

¬ if (x ≥ 0 /* |x| == x */) { assert(y == x); }
else /* |x| == −x */ { assert(y == −x); }
}

Loc PolkaEq AVI AVE
¬ > y == |x|∧ y == |x|∧

(no information) y == |y| y == |y|

Figure 1. Program MotivEx (left) and the generated invariants (right)

The rest of the paper is organized as follows. Section II
describes some preliminaries. Section III presents the new
proposed abstract domain of linear absolute value equalities.
Section IV presents our prototype implementation together
with experimental results. Section V discusses some related
work before Section VI concludes.

II. Preliminaries
A. System of linear absolute value equalities

Let | · | denote absolute value (AV). Let x = (xi)n
i=1 be a

vector and |x| = (|xi|)n
i=1. We consider the following system

of linear absolute value equalities (AVE)

Ax + B|x| = c (1)

where A, B ∈ Qm×n and c ∈ Qm.

B. Linear complementarity problem and its extensions

Given a matrix M ∈ Qn×n and a vector q ∈ Qn, the
(standard) linear complementarity problem (LCP) is defined
as the problem of finding vectors x+ and x− such that

x+ = Mx− + q (2)
x+, x− ≥ 0 (3)

(x+)T x− = 0. (4)

Note that if x+ and x− are solutions of the above LCP, then
it follows from (3-4) that

x+
i x−i = 0 for i = 1, . . . , n

i.e., for each i the following holds: If x+
i > 0 then x−i = 0

holds, and if x−i > 0 then x+
i = 0 holds. In other words,

the zero patterns of x+
i and x−i are complementary. Thus,

condition (4) is called the complementarity condition of the
above LCP. In the following we introduce two extensions of
the LCP that are of interest to us.

Given M,N ∈ Qm×n and q ∈ Qm, find x+, x− ∈ Qn so that

Mx+ + Nx− ≤ q (5)
x+, x− ≥ 0 (6)

(x+)T x− = 0. (7)

We call the above problem eXtended Linear Complementary
Problem (XLCP), since it can be proved equivalent to
eXtended LCP of Mangasarian and Pang [8].

Given M,N ∈ Qm×n and q ∈ Qm, find x+, x− ∈ Qn so that

Mx+ + Nx− = q (8)
x+, x− ≥ 0 (9)

(x+)T x− = 0. (10)

We call the above problem Horizontal Linear Complemen-
tary Problem (HLCP). HLCP can be considered as special
case of XLCP. In the literature, HLCP has been shown
equivalent to LCP [9] and piece-wise linear system [10].

C. Equivalence of AVEs and HLCPs
Let vectors x+ and x− be defined by x+ = (max(xi, 0))n

i=1
and x− = (max(−xi, 0))n

i=1, so that

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

and

x = x+ − x− |x| = x+ + x− (11)

x+ =
1
2

(x + |x|) x− =
1
2

(|x| − x). (12)

According to (11), AVE (1) can be reformulated as the
following HLCP:

(A + B)x+ + (B − A)x− = c

x+, x− ≥ 0
(x+)T x− = 0.

Similarly, according to (12), HLCP (8-10) can be reformu-
lated as the following AVE:

1
2

(M − N)x +
1
2

(M + N)|x| = q.

III. An abstract domain of linear absolute value equalities
In this section, we present a new abstract domain, namely

the abstract domain of linear absolute value equalities
(AVE). The key idea is to use a system of linear absolute
value equalities (and equivalent representations) as the do-
main representation. AVE can be used to infer relationships
of the form Σkak xk + Σkbk |xk | = c over program variables xk

(k = 1, . . . , n), where constants ak, bk, c ∈ Q are automati-
cally inferred by the analysis.

A. Domain Representation
Under the framework of abstract interpretation, when

designing numerical abstract domains, we often use a certain
type of constraints to represent the abstract elements of the
abstract domain. Geometrically, a certain type of constraints
correspond to a special shape. E.g., the conjunction of a set
of arbitrary linear equalities corresponds to an affine space.

In the AVE domain, to describe an abstract element P, we
use an AVE system Ax + B|x| = c, where A, B ∈ Qm×n, c ∈
Qm, m is the number of linear equalities in the system, and
n is the number of variables in the system. It represents
the set γ(P) = {x ∈ Qn | Ax + B|x| = c}, in which each
point x ∈ γ(P) represents a possible program environment
(or state), i.e., an assignment of numerical/rational values to
program variables. Geometrically, the intersection of each
AVE element with each orthant in Qn results in an affine
space (within the orthant boundary).

1) Expressiveness lifting: Note that in the AVE domain
representation, absolute value | · | applies to only a variable
rather than an expression. E.g., equality max(x, y) = z cannot
be directly expressed by linear AVE over x, y, z and their
absolute value terms. However, we could introduce a fresh
auxiliary variable w to denote x − y. Then we could encode

max(x, y) = z

as
w = x − y ∧

1
2

(|w| + x + y) = z

which can be expressed by an AVE element (over the
dimensions of x, y, z,w).

In general, we can lift the expressiveness of the AVE
domain elements by introducing new auxiliary variables to
denote those expressions that appear inside the AV function.
In fact, a large subclass of piecewise linear functions of prac-
tical interest can be represented via AV functions through a
so-called canonical (piecewise linear) representation [11].

2) Internal domain representation: In Sect. II, we have
shown the equivalence between AVEs and HLCPs, which
indicates that we can reuse the method that can solve
one of them to solve the other. Inside the implementation,
we convert AVEs into HLCPs and maintain the domain
representation in the form of HLCPs, such that we can reuse
known results in the field of LCP. To this end, we maintain
the map between abstract environments over x and abstract
environments over x+, x− as:

x = x+ − x−, |x| = x+ + x−

x+ =
1
2

(x + |x|), x− =
1
2

(|x| − x)

where x+, x− satisfy

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

Constraint Normalization. Throughout this paper, we fix
a variable ordering x+

1 ≺ . . . ≺ x+
n ≺ x−1 ≺ . . . ≺ x−n . For

a linear equality Σka+
k x+

k + Σka−k x−k = b, the variable x±i
(where ± ∈ {+,−}) with the least index i such that a±i , 0
is called its leading variable. A linear equality ϕ is said
to be normalized if the coefficient of its leading variable
x±i satisfies a±i =1. Then, given ϕ which is not normalized,
its normalized form can be obtained by dividing the whole
constraint ϕ by the coefficient a±i of its leading variable x±i .
Note that this normalization operation is exact, i.e., it will
cause no precision loss. For convenience sake, we enforce
a normalized form on constraints throughout this paper.
Row echelon form. Let Ax± = b be a linear system with
A ∈ Qm×n and b ∈ Qm. The system Ax± = b is said to be in
row echelon form if

1) Every row i0 of A has at least one non-zero entry.
2) Let x±j0 be the leading variable of row i0 of A. Then for

all i > i0, j ≤ j0, Ai j = 0.
Furthermore, given a linear system Ax± = b in row echelon
form, it is said to be in reduced row echelon form if
• Let x±j0 be the leading variable of row i0 of A. Then for

all i < i0, Ai j0 = 0.
We use the linear system Ax± = b in reduced row echelon
form (together with the standard complementary condition)
as the canonical representation of AVE elements.
Constraint reduction via complementary condition. Re-
member that inside the HLCP constraint representation of
AVE elements, besides the linear system part Ax± = b, we
also have the complementary condition part x+ ≥ 0, x− ≥
0, (x+)T x− = 0. Note that the complementary condition
indicates that at least one of the x+

i and x−i must be 0. Hence,
we can make use of the complementary condition to reduce
further the linear system part Ax± = b.
• Consider a normalized linear equality Σka+

k x+
k +

Σka−k x−k = b.
– If b = 0 and ∀k.a+

k >= 0, we know that x+
k = 0

holds for all k where a±k ! = 0. Hence, the original
equality Σka+

k x+
k + Σka−k x−k = b in the linear system

part is replaced with a series of one-variable linear
equalities x+

k = 0 (where a±k ! = 0).
– If b < 0 and ∀k.a+

k >= 0, we know that this AVE
element is infeasible and thus becomes bottom.

• Consider a normalized linear equality involving only a
pair of complementary variables, i.e., in the form of
x+

k + a−k x−k = b.
– If b > 0 and a−k < 0 hold, we know that x+

k = b and
x−k = 0. Then, the original equality x+

k + a−k x−k = b
in the linear system part is replaced with two one-
variable linear equalities x+

k = b and x−k = 0.
– If b < 0 and a−k < 0 hold, we know that x+

k = 0 and
x−k = b/a−k . Then, the original equality x+

k + a−k x−k = b
in the linear system part is replaced with two one-
variable linear equalities x+

k = 0 and x−k = b/a−k .
– If b < 0 and a−k ≥ 0 hold, we know that this AVE

element is infeasible and thus becomes bottom.

3) Generator representation for HLCP: By Minkowski-
Weyl theorem [12], the set P ⊆ Qn is a polyhedron, iff it is
finitely generated, i.e., there exist finite sets V,R ∈ Qn such
that P can be generated by (V,R):

P =

|V |∑
i=1

λiVi +

|R|∑
j=1

µ jR j

∣∣∣∣∣∣∣∀i, λi ≥ 0,∀ j, µ j ≥ 0,
|V |∑
i=1

λi = 1

where |V |, |R| denote the cardinality of sets V,R respectively.
Elements in V are called extreme points (also called ver-
tices), while elements in R are called extreme rays. Using
the double description method, a convex polyhedron can be
represented by either its constraint representation {Ax ≤ b}
or its generator representation (V,R).

In [6], Chen et al. have presented an approach to construct
the generator representation for XLCP. Since HLCP is a
special case of XLCP, we make use of the approach proposed
in [6] to generate the generator representation for an HLCP.
For the sake of space, here we only review the main idea of
the approach mentioned above and refer the details to [6].
Intuitively, (5-6) of an XLCP describes a convex polyhedron
P = {x+ ∈ Qn, x− ∈ Qn | Mx+ + Nx− ≤ q, x+ ≥ 0, x− ≥ 0},
while the complementary condition (7) specifies that x+

i =

0 ∨ x−i = 0 holds for all i = 1, . . . , n, which indicates 2n

complementary patterns. Hence, first, those generators g of
P not satisfying the complementary condition are removed.
Second, since not all combinations of the complementary
generators (i.e., generators satisfying the complementary
condition) will result in solutions of XLCP (5-7), generators
are grouped according to the complementary patterns such
that each group corresponds to a convex polyhedron and any
combination of generators in one group will always result in
a solution of XLCP (5-7). Fortunately, similarly as the AVI
abstract domain [6] , to design the AVE abstract domain, we
do not need to group the complementary generators, since
no domain operation requires the group information and all
domain operations can be implemented based on only a non-
redundant set of complementary generators Gc = (Vc,Rc).

For the sake of simplicity, from now on, we assume the
AVE element P corresponds to the following HLCP system:

Mx+ + Nx− = b
x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

and we denote its set of complementary generators as

Gc = (Vc,Rc).

B. Domain operations
Now, we describe the implementation of most common

domain operations required for static analysis over the
AVE domain, most of which require only constraints while
few of which require both constraints and complementary
generators. Note that we mainly maintain the HLCP con-
straint representation for abstract elements, and convert it to
the complementary generator representation temporally as
intermediate representation only when needed.

1) Lattice operations:
• Emptiness test: P is empty, iff Vc = ∅. However, in

practice, when we conduct constraint reduction over the
linear system part Ax± = b by exploiting the comple-
mentary condition, we often get contradictory equalities
(implying emptiness), as explained in Sect. III-A.

Now, let P,P′ be two non-empty AVE domain elements.
• Meet: P u P′ is an AVE domain element whose HLCP

constraint representation is
Mx+ + Nx− = b

M′x+ + N′x− = b′

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0
where {Mx+ + Nx− = b,M′x+ + N′x− = b′} can be
converted into reduced row echelon form w.r.t. variable
ordering x+

1 ≺ . . . ≺ x+
n ≺ x−1 ≺ . . . ≺ x−n via Gaussian

elimination, and thus some redundant constraints are
removed or contradictory equalities are found.

• Join: PtP′ is the least AVE domain element containing
P and P′, whose set of complementary generators is the
union of those of P and P′: (Vc ∪ V ′c,Rc ∪ R′c), where
(Vc,Rc), (V ′c,R′c) respectively denote the set of com-
plementary generators of P and that of P′. After we get
the complementary generator representation of P t P′,
we convert it back to HLCP constraint representation.
Overall, P t P′ is computed by the following steps:
1) Compute the complementary generator representa-

tion (Vc,Rc), (V ′c,R′c) respectively for P and P′ ;
2) Compute (Vc∪V ′c,Rc∪R′c), and suppose Vc∪V ′c =

{v1, . . . , vp},Rc ∪ R′c = {r1, . . . , rq};
3) Project out variables λ j(j = 1, . . . , p), µk(k =

1, . . . , q) (via Gaussian elimination) from the follow-
ing system:{

(x+ x−)T =
∑p

j=1(λ jv j) +
∑q

k=1(µkrk)∑p
j=1 λ j = 1

Suppose we get the following system over x+, x−:
M̂x+ + N̂x− = b̂

4) Finally, the resulting constraint HLCP representation
of P t P′ is:

M̂x+ + N̂x− = b̂
x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

where {M̂x+ + N̂x− = b̂} can be converted into
reduced row echelon form via Gaussian elimination.

• Inclusion test: P v P′ that is γ(P) ⊆ γ(P′), iff PuP′ = P.
After computing PuP′, we maintain the resulting AVE
element in reduced row echelon form (after conducting
constraint reduction via complementary generators),
and compare it syntactically with the HLCP constraint
representation of P. If P u P′ and P are syntactically
equal, we know P u P′ = P.

2) Transfer functions : Let τ[[·]]#(P) denote the abstract
effect of a program statement on an AVE element P.

• Test transfer function: τ[[cx + d|x| = e]]#(P), whose
HLCP system is defined as

Mx+ + Nx− = b
(c + d)x+ + (d − c)x− = e

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0
where {Mx+ + Nx− = b, (c+d)x+ + (d−c)x− = e} can be
converted into reduced row echelon form with respect
to the variable ordering x+

1 ≺ . . . ≺ x+
n ≺ x−1 ≺ . . . ≺ x−n

via Gaussian elimination, and thus some redundant con-
straints are removed or contradictory equalities (which
implies emptiness) are found.

• Projection: τ[[x j := random()]]#(P) can be implemented
by projecting out x+

j , x
−
j from

Mx+ + Nx− = b
via Gaussian elimination. Suppose we get M′x+ +

N′x− = b′. Then, the resulting HLCP system will be
M′x+ + N′x− = b′

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0
where {M′x++N′x− = b′} can be converted into reduced
row echelon form via Gaussian elimination.

• Assignment transfer function: τ[[x j := Σiaixi + Σibi|xi|+

c]]#(P), can be modeled using test transfer function,
projection and variable renaming (by temporally intro-
ducing a fresh variable x′j) as follows:(

τ[[x j := random()]]#◦

τ[[Σiaixi + Σibi|xi| + c − x′j = 0]]#(P)
)

[x′j/x j]
3) Extrapolations: As we know, since the lattice of linear

equalities (in a program) has finite height, we do not need a
widening operation for the domain of linear equalities. The
intersection of an AVE element with each orthant, results in
an affine space (without considering the orthant boundary),
that is, an element in the domain of linear equalities. Since
the number of the orthants are finite (for a given program),
we also do not need a widening operation for the AVE
domain. At each widening point, we use the join operator t
instead of the widening operator.

Example 1. Consider the motivating example shown in
Fig. 1. At program point ¬, the analysis needs to perform a
join operation over the resulting AVE elements coming from
the previous conditional branch: P = {(x y)T | x−y = 0, |x| =
x} = {(x+ x− y+ y−)T | x+ − y+ + y− = 0, x− = 0, x+ ≥ 0, x− ≥
0, y+ ≥ 0, y− ≥ 0, x+x− = 0, y+y− = 0} (corresponding to the
result of the first then branch) and P′ = {(x y)T | −x − y =

0, |x| = −x} = {(x+ x− y+ y−)T | x− − y+ + y− = 0, x+ =

0, x+ ≥ 0, x− ≥ 0, y+ ≥ 0, y− ≥ 0, x+x− = 0, y+y− = 0}
(corresponding to the result of the first else branch).

The sets of complementary generators for P,P′ over
(x+, x−, y+, y−)T are respectively

(Vc
P,R

c
P) =

x+

x−

y+

y−

 :

0
0
0
0

 ,

1
0
1
0

(Vc
P′ ,R

c
P′) =

x+

x−

y+

y−

 :

0
0
0
0

 ,

0
1
1
0

Hence,

(Vc
P ∪ Vc

P′ ,R
c
P ∪ Rc

P′) =

x+

x−

y+

y−

 :

0
0
0
0

 ,

1
0
1
0

 ,

0
1
1
0

Projecting out λ1, µ1, µ2 (wherein λ1 = 1) from
x+

x−

y+

y−

 = λ1

0
0
0
0

 + µ1

1
0
1
0

 + µ2

0
1
1
0

will result in

x+ + x− − y+ = 0, y− = 0.

Hence, the resulting HLCP constraint representation of Pt
P′ will be

x+ + x− − y+ = 0, y− = 0
x+ ≥ 0, x− ≥ 0, (x+)T x− = 0
y+ ≥ 0, y− ≥ 0, (y+)T y− = 0

In other words, we get P t P′ = {(x y)T | y = |x|, |y| = y},
which is the invariant at program point ¬ provided by AVE,
as shown in Fig. 1.

IV. Implementation and experimental results

Our prototype domain, rAVE, is developed based on
Sect. III using multi-precision rational numbers. It utilizes
GMP library [13] to conduct exact arithmetics. rAVE is in-
terfaced to the Apron numerical abstract domain library [14].
Our experiments were conducted using the Interproc [15]
static analyzer. To assess the precision and efficiency of
rAVE, we compare the obtained invariants and performance
of rAVE with PolkaEq (which infers linear equalities as the
linear equality domain, provided in Apron [14]) as well as
our previous work rAVI which is a rational implementation
of the domain of linear absolute value inequalities [6].

To demonstrate the expressiveness of rAVE, two simple
programs are shown in Figs. 2-3, together with the generated
invariants. The program AVtest1 shown in Fig. 2 comes from
[6]. In AVtest1, the initial state consists of four points that
are respectively from 4 different orthants over the x-y plane:
(1, 1), (−1, 1), (−1,−1), (1,−1). The loop increases outward
the values of x and y in each orthant simultaneously, along
the direction y = x and y = −x respectively. Note that,
as shown in Fig. 2, we encode linear inequalities (such as
x ≥ 0) in the branch conditions by linear AV equalities (such
as |x| == x), such that rAVE can recognize. At program

real x, y;
assume x = 1 or x = −1;
assume y = 1 or y = −1;
while (true) {
¬ if (x ≥ 0 /* |x| == x */) { x := x + 1; }

else /* |x| == −x */ { x := x − 1; }
if (y ≥ 0 /* |y| == y */) { y := y + 1; }
else /* |y| == −y */ { y := y − 1; }

}

Loc PolkaEq rAVE rAVI
¬ > |x| = |y| |x| = |y| ∧ |x| ≥ 1

(no information)

Figure 2. Program AVtest1 (left) and the generated invariants (right)

point ¬, rAVE can prove that |y| = |x|, rAVI can prove that
|y| = |x| ∧ |x| ≥ 1, while PolkaEq obtains no information.

The program Synergy1 shown in Figure 3 comes from
[16], but we modified it a bit, by using lock = −1 (
rather than the normal lock = 0) to denote Unlocked state.
Moreover, we introduce four new variables t, s, tm1, sm1 to
denote x − y, lock − 1, |t| − 1(i.e., |x − y| − 1) and |s| − 1
(i.e., |lock − 1| − 1) respectively. Note that, as shown in
Fig. 3, we also replace disequalities (such as t , 0) in the
branch (or loop) conditions by linear AV equalities (such as
|tm1| == tm1), such that rAVE can recognize. Both rAVE
and rAVI can prove lock = 1 after the loop, and finally prove
that the error at program point ¬ is unreachable (which
implies that the program is correct). However, PolkaEq
cannot prove that ¬ is unreachable.

int x, y, lock, t, s, tm1, sm1;
lock := −1; /* -1 means Unlocked */

do {
lock := 1; /* 1 means Locked */

x := y;
if (brandom) { lock := −1; y := y + 1; }
t = x − y;
tm1 = |t| − 1;

} while (t , 0 /* |tm1| == tm1 */);
s = lock − 1;
sm1 = |s| − 1;
if (s , 0 /* |sm1| == sm1 */)
{ ¬: error; }

Figure 3. Program Synergy1

Overall, Table I shows the comparison of performance
and resulting invariants for a selection of small examples.
Programs MotivEx, AVtest1, Synergy1 respectively corre-
spond to those programs shown in Figs. 1-3. Programs
Complexity cav08 and Speed popl09 respectively come
from [17] and [18], which are used for analyzing time
complexity of programs. Programs Reverse and Recwhile

come from [19]. Reverse is a loop that reverses the sign
of variable x at each iteration, and Recwhile consists of two
stages, increasing y in the inner loop first and then increasing
x in the outer loop. And for each program, the value of the
widening delay parameter for Interproc is set to 1. “#iter.”
gives the number of increasing iterations during the analysis.
Invariants. The column “Invariant” compares the invariants
obtained. The left sub-column compares rAVE with PolkaEq
while the right sub-column compares rAVI with rAVE. A
“A” indicates the domain on the right side outputs stronger
(i.e., more precise) invariants than the domain on the left
side, while a “=” indicates that the generated invariants are
equivalent. The results in Table I show that rAVE outputs
stronger invariants than PolkaEq for all these examples.
rAVE outputs 1∼6 linear AV equality invariants for each
of these examples at the loop head. Note that traditional
convex abstract domains (including PolkaEq) are not fit
for the benchmark examples shown in Table I, since these
programs involve non-convex behaviors (such as absolute
value functions, max functions, disjunctions, etc.) that are
out of the expressiveness of convex domains.

Compared with rAVI, rAVE infers equivalent invariants as
rAVI for three programs. For four programs, rAVI outputs
stronger invariants than rAVE. However, we observe that the
set of found linear absolute value equalities by rAVI and that
found by rAVE are the same. In addition to linear absolute
value equalities, rAVI also infers certain linear inequalities
and linear absolute value inequalities, which are of the
expressiveness of rAVE (when without introducing auxiliary
variables). E.g., for AVtest1, rAVI can infer a linear absolute
value inequality (|x| ≥ 1) which is out of the expressiveness
of rAVE (when using only the variables x, y in the program).
Performance. All experiments are carried out on a virtual
machine (using VirtualBox), with a guest OS of Ubuntu
14.04 (2GB Memory), host OS of Windows 10, 16GB
RAM and a Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz
1.61GHz. The column “t(ms)” presents the analysis times
in milliseconds. Experimental time for each program is
obtained by taking the average time of ten runnings. From
Table I, we can see that rAVE is less efficient than PolkaEq,
because the time complexity of domain operations in the
linear equality domain is lower than that of rAVE. Moreover,
for these examples, PolkaEq does not find any interesting
linear equalities, and thus its domain operations perform
even faster. Similarly, without surprise, we can see that rAVE
is more efficient than rAVI.

V. Related work
The original work on inferring linear equality relations

among program variables was due to Karr [1] in 1970s,
which is now understood as the abstract domain of lin-
ear equalities in abstract interpretation. In the recent two
decades, Müller-Olm and Seidl [20] give a simplified algo-
rithm of Karr’s algorithm for computing all affine relations in

Table I
Experimental results for benchmark examples

Program
PolkaEq rAVE rAVI Invariant

#iter. t(ms) #iter. t(ms) #iter. t(ms) PolkaEq vs. rAVE rAVE vs. rAVI

MotivEx 1 3.3 1 4.0 1 5.1 A =

AVtest1 3 7.1 4 11.2 3 12.3 A A
Complexity cav08 3 4.4 4 14.4 4 20.7 A A

Synergy1 3 5.3 3 17.3 4 30.9 A =

Reverse 3 4.0 3 5.6 4 8.7 A =

Recwhile 3 3.6 7 24.5 7 31.2 A A
Speed popl09 3 5.5 4 25.0 4 30.3 A A

affine programs, and the time complexity (for analyzing the
whole program) goes down to O(nk3) where n is the program
size and k is the number of program variables. Gulwani and
Necula [21] introduced the technique of random interpreta-
tion and presented a polynomial-time randomized algorithm
to discover linear equalities using probabilistic techniques.

In the literature, the linear equality domain has been
generalized in various ways, such as the domain of convex
polyhedra (

∑
k ak xk ≤ b) [22] and the domain of linear

congruence equalities (
∑

k ak xk = b mod c) [23]. Müller-
Olm and Seidl have generalized the analysis of affine re-
lations to polynomial relations of bounded degree [3]. In
another direction, Müller-Olm and Seidl [24] generalized
affine relation analysis to work for modular arithmetic. King
and Sφndergaard [25] proposed an approach for deriving
invariants of congruence equations where the modulo is a
power of 2. Elder et al. [4] studied the relations among
several known abstract domains for affine relation analysis
over variables that hold machine integers, found that the
domains of Müller-Olm/Seidl [24] and King/Sφndergaard
[25] are, in general, incomparable, and provided sound
interconversion methods between these domains.

This paper aims at generalizing the linear equality domain
to handle certain disjunction behaviors in a program. Like
most existing numerical abstract domains, the linear equal-
ity domain uses conjunctions of convex constraints as the
domain representation, and thus can only represent convex
sets. Until now, few existing abstract domains natively allow
representing non-convex sets, e.g., congruences [26], max-
plus polyhedra [27], domain lifting by max expressions
[17], interval polyhedra [19]. In our previous work [28],
we have proposed an abstract domain of interval linear
equalities, which generalizes the linear equality domain with
interval coefficients (over variables). In the domain of inter-
val linear equalities, the intersection of a domain element
with each orthant gives a not-necessarily closed convex
polyhedron, while in the domain of AVE, the intersection
of a domain element with each orthant gives an affine
space (without considering the orthant constraints, such as

x ≥ 0). However, in general, in the environment of the
same set of program variables, the expressiveness of the
abstract domain of AVE and that of the abstract domain of
interval linear equalities (which also uses row echelon form)
is incomparable. Moreover, the AVE domain enjoy optimal
abstractions over domain operations, while the domain of
interval linear equalities does not have optimal abstractions
for most domain operations (such as the join operation).

The idea of using absolute value to design non-convex
abstract domains is not new. In our previous work, we have
proposed to leverage the linear constraints with absolute
value to design abstract domains, such as the domain of
linear absolute value inequalities [6] and the domain of
octagonal constraint with absolute value [7]. The abstract do-
main of linear AV inequalities (AVI) is more expressive than
the domain of AVE. However, an AVI abstract element has
the potential to include exponential number of constraints,
while the number of linear AV equalities inside an AVE
abstract element is bounded by 2n where n is the number of
program variables. Moreover, the domain operations of the
AVI domain are much more costly and requires widening to
ensure the termination of fixpoint iterations. The domain of
octagonal constraint with absolute value can infer only the
relations of the form {±x ± y ≤ c,±x ± |y| ≤ d,±|x| ± |y| ≤ e}
over each pair of variables x, y, where ± ∈ {−1, 0, 1}), but
cannot express linear AV equalities involving coefficients
that are not in {−1, 0, 1} or involving more than two variables
in an equality. In general, the expressiveness of the AVE
domain and that of the domain of octagonal constraint with
absolute value is incomparable.

VI. Conclusion

In this paper, we propose a new abstract domain, namely
the abstract domain of linear Absolute Value Equalities
(AVE), to infer linear equality relations among values and
absolute values of program variables in a program (in the
form of Σkak xk + Σkbk |xk | = c), which generalizes the
classic linear (technically, affine) equality abstract domain
(Σkak xk = c) [1]. The key idea behind is to employ absolute

value (AV) to capture certain piecewise linear relations in the
program, as a mean to deal with non-convex behaviors in
the program. First, we show the equivalence between linear
AV equality systems and horizontal linear complementarity
problem (HLCP) systems. Then, we present the domain rep-
resentation (including HLCP constraint representation and
complementary generator representation) as well as domain
operations (that are required for static analysis, such as meet,
join, etc.) designed for AVE . On this basis, we develop a
prototype for the AVE domain using rational numbers and
interface it to the Apron numerical abstract domain library.
Experimental results are encouraging: The AVE domain can
discover interesting piecewise linear invariants (that are non-
convex and out of the expressiveness of the conventional
linear equality abstract domain).

It remains for future work to test AVE on large realistic
programs, and consider automatic methods to introduce
auxiliary variables on the fly that can be used inside the AV
function to improve the precision of AVE-based analysis.
Another direction of work is to consider the combination of
the AVE abstract domain with the interval abstract domain,
similarly to the common combination use of the linear
equality abstract domain with the interval abstract domain
in practice.

Acknowledgment
We thank Antoine Miné and Patrick Cousot for their

discussions on this work. This work is supported by the Na-
tional Key R&D Program of China (No. 2017YFB1001802),
and the National Natural Science Foundation of China (No.
61872445).

References

[1] M. Karr, “Affine relationships among variables of a program,”
Acta Inf., vol. 6, pp. 133–151, 1976.

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in ACM POPL’77. ACM
Press, 1977, pp. 238–252.

[3] M. Müller-Olm and H. Seidl, “Precise interprocedural analy-
sis through linear algebra,” in ACM POPL’04. ACM Press,
2004, pp. 330–341.

[4] M. Elder, J. Lim, T. Sharma, T. Andersen, and T. W. Reps,
“Abstract domains of affine relations,” ACM Trans. Program.
Lang. Syst., vol. 36, no. 4, pp. 11:1–11:73, 2014.

[5] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, and T. Xie,
“Detecting numerical bugs in neural network architectures,”
in ESEC/FSE’20. ACM, 2020, pp. 826–837.

[6] L. Chen, A. Miné, J. Wang, and P. Cousot, “Linear absolute
value relation analysis,” in ESOP’11, ser. LNCS, vol. 6602.
Springer, 2011, pp. 156–175.

[7] L. Chen, J. Liu, A. Miné, D. Kapur, and J. Wang, “An abstract
domain to infer octagonal constraints with absolute value,” in
SAS’14, ser. LNCS, vol. 8723. Springer, 2014, pp. 101–117.

[8] O. L. Mangasarian and J. S. Pang, “The extended linear com-
plementarity problem,” SIAM J. Matrix Anal. Appl., vol. 16,
no. 2, pp. 359–368, 1995.

[9] M. Anitescu, G. Lesaja, and F. Potra, “Equivaence be-
tween different formulations of the linear complementarity
promblem,” Optimization Methods and Software, vol. 7, no. 3,
pp. 265–290, 1997.

[10] B. Eaves and C. Lemke, “Equivalence of lcp and pls,” MATH-
EMATICS OF OPERATIONS RESEARCH, vol. 6, no. 4, pp.
475–484, 1981.

[11] L. Chua and A.-C. Deng, “Canonical piecewise-linear rep-
resentation,” IEEE Trans. on Circuits and Systems, vol. 35,
no. 1, pp. 101–111, 1988.

[12] A. Schrijver, Theory of linear and integer programming.
John Wiley & Sons, Inc., 1986.

[13] “Gnu multiple precision arithmetic library,” http://gmplib.org/.
[14] B. Jeannet and A. Miné, “Apron: A library of numerical

abstract domains for static analysis,” in CAV’09, ser. LNCS,
vol. 5643. Springer, 2009, pp. 661–667.

[15] G. Lalire, M. Argoud, and B. Jeannet, “Interproc,” http://
pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/.

[16] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,
and S. K. Rajamani, “Synergy: a new algorithm for property
checking,” in SIGSOFT FSE’06. ACM Press, 2006, pp. 117–
127.

[17] B. S. Gulavani and S. Gulwani, “A numerical abstract domain
based on expression abstraction and max operator with appli-
cation in timing analysis,” in CAV’08, ser. LNCS, vol. 5123.
Springer-Verlag, 2008, pp. 370–384.

[18] S. Gulwani, K. K. Mehra, and T. M. Chilimbi, “SPEED: pre-
cise and efficient static estimation of program computational
complexity,” in POPL’09. ACM, 2009, pp. 127–139.

[19] L. Chen, A. Miné, J. Wang, and P. Cousot, “Interval polyhe-
dra: An abstract domain to infer interval linear relationships,”
in SAS’09, ser. LNCS, vol. 5673. Springer Verlag, 2009, pp.
309–325.

[20] M. Müller-Olm and H. Seidl, “A note on Karr’s algorithm,”
in ICALP’04, ser. LNCS, vol. 3142. Springer, 2004, pp.
1016–1028.

[21] S. Gulwani and G. Necula, “Discovering affine equalities
using random interpretation,” in ACM POPL’03. ACM Press,
2003, pp. 74–84.

[22] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in ACM POPL’78.
ACM Press, 1978, pp. 84–96.

[23] P. Granger, “Static analysis of linear congruence equalities
among variables of a program,” in TAPSOFT’91, ser. LNCS,
vol. 493. Springer-Verlag, 1991, pp. 169–192.

[24] M. Müller-Olm and H. Seidl, “Analysis of modular arith-
metic,” ACM Trans. Program. Lang. Syst., vol. 29, no. 5,
p. 29, 2007.

[25] A. King and H. Søndergaard, “Inferring congruence equations
using SAT,” in CAV’08, ser. LNCS, vol. 5123. Springer,
2008, pp. 281–293.

[26] P. Granger, “Static analysis of arithmetical congruences,”
International Journal of Computer Mathematics, pp. 165–
199, 1989.

[27] X. Allamigeon, S. Gaubert, and E. Goubault, “Inferring min
and max invariants using max-plus polyhedra,” in SAS’08, ser.
LNCS, vol. 5079. Springer Verlag, 2008, pp. 189–204.

[28] L. Chen, A. Miné, J. Wang, and P. Cousot, “An abstract
domain to discover interval linear equalities,” in VMCAI’10,
ser. LNCS, vol. 5944. Springer, 2010, pp. 112–128.

