
Static Analysis of Linear Absolute Value Equalities among
Variables of a Program

Liqian Chena,b,∗, Dengping Weia,∗, Banghu Yina, Ji Wanga,c

aNational University of Defense Technology, Changsha 410073, China
bHunan Key Laboratory of Software Engineering for Complex Systems, Changsha 410073, China

cState Key Laboratory of High Performance Computing, Changsha 410073, China

Abstract

The classic linear (technically, affine) equality abstract domain, which can infer linear

equality relations among variables of a program automatically, is one of the earliest and

fundamental abstract domains. However, it cannot express non-convex properties that

appear naturally due to the inherent disjunctive behaviors in programs. In this paper,

we introduce a new abstract domain, namely the abstract domain of linear absolute

value equalities (AVE), which generalizes the linear equality abstract domain with ab-

solute value terms of variables. More clearly, we leverage the absolute value function to

design the new abstract domain for discovering linear equality relations among values

and absolute values of program variables. Moreover, since linear absolute value equal-

ities can only express limited form of inequalities while programs often involve various

inequalities, to help the AVE domain, we propose a so-called signed interval abstract

domain as an extension of the classic interval abstract domain. The key idea is to use

two intervals to track respectively the positive part and the negative part of the interval

range for each variable. On this basis, we propose to combine the two new abstract

domains to improve precision of each other during analysis. Experimental results are

encouraging: In practice, the AVE abstract domain (together with the signed interval

abstract domain) can find interesting piece-wise linear invariants that are non-convex

and out of the expressiveness of the linear equality domain.

Keywords: Abstract interpretation, Abstract domain, Absolute value, Invariant,

∗Corresponding author
Email addresses: lqchen@nudt.edu.cn (Liqian Chen), dpwei@nudt.edu.cn (Dengping Wei)

Preprint submitted to Science of Computer Programming November 12, 2022

Interval

1. Introduction

In 1970s, Karr [1] proposed an efficient algorithm to infer automatically affine re-

lations (conventionally also called linear equality relations) among program variables,

in the form of
∑

k ak xk = b (where xk’s are program variables and ak’s are coefficients

automatically inferred by the algorithm). Karr’s algorithm is now understood as an

abstract domain of linear equalities (also called Karr’s domain) under the framework

of abstract interpretation [2].

Linear equality relations are useful in many application contexts, including classi-

cal data flow analysis (e.g., constant propagation, definite equalities among variables,

etc.), inter-procedural analysis of affine programs [3], analysis of machine code [4],

analysis of modern deep learning programs [5], analysis of mobile systems [6], etc.

The space complexity of the abstract domain of linear equalities is O(n2), and the time

complexity of its domain operations is O(n3) (without considering the size of the pro-

gram) where n is the number of program variables. As a lightweight relational abstract

domain, the abstract domain of linear equalities has been widely used in program anal-

ysis. However, similarly to most existing abstract domains, the abstract domain of

linear equalities (using conjunctions of linear equalities) can only express convex sets,

whereas programs often involve non-convex behaviors (due to control-flow joins, dis-

junctions, etc.).

Absolute value (AV) is a fundamental concept in mathematics, which can express

piecewise linear behaviors. In practice, piecewise linear behaviors account for a large

class of non-convex behaviors in a program (or after abstracting non-linear behaviors

into piecewise linear behaviors, as in the field of hybrid systems). Hence, we could

exploit the piecewise linear expressiveness of the AV function to design non-convex

abstract domains, to express certain piecewise linear behaviors in a program. Based on

this insight, in our previous work [7][8], we have presented an abstract domain of linear

AV Inequalities (named AVI, which is of high complexity and thus may have scalability

limitations in practice) and an abstract domain of octagonal constraints with absolute

2

value (which can infer relations of the form {±x ± y ≤ c,±x ± |y| ≤ d,±|x| ± |y| ≤ e}

over each pair of variables x, y, where ± ∈ {−1, 0, 1}).

In this paper, we leverage absolute value to design a new abstract domain, namely,

the abstract domain of linear Absolute Value Equalities (AVE), to discover linear equal-

ity relations among values and absolute values of program variables, in the form of

Σkak xk +Σkbk |xk | = c (where xk’s are program variables, and ak, bk, c ∈ Q are constants

automatically inferred by the analysis). Using AVE, we can express certain disjunctions

of linear equalities. E.g., x = −1∨ x = 1 can be expressed as |x| = 1. Also, using AVE,

we can handle many (piece-wise linear) mathematical functions over variables in mod-

ern programming languages, such as abs (absolute value of an integer), fabs(absolute

value of a floating-point number), fmin (minimum value), fmax (maximum value),

fdim (positive difference) in the C99 standard. E.g., equality max(x, y) = z can be

expressed as w = x− y∧ 1
2 (|w|+ x+ y) = z (by introducing a fresh auxiliary variable w).

And the ReLU function in neural network can be expressed as ReLU(x, 0) = 1
2 (|x|+ x).

Moreover, even linear inequality x ≥ 0 can be expressed as AVE |x| = x. In other

words, we could use AVE to encode certain linear inequality constraints.

The new domain is more expressive than the classic linear equality domain and

allows expressing certain non-convex (even unconnected) sets thanks to the expres-

siveness of absolute value. However, using AV equalities can only encode limited form

of linear inequalities (such as x ≥ 0 which can be encoded as |x| = x), but can not

exactly capture inequalities such as x ≥ 2 (which can be only over-approximated as

|x| = x in the AVE domain). Hence, we propose to combine the AVE abstract domain

with the interval domain. Since the AVE domain fits to capture disjunctive information

that encoding the signs of variables, we propose a so-called signed interval abstract

domain as an extension of the classic interval abstract domain. The main idea of the

signed interval abstract domain is to use two intervals to track respectively the positive

part and the negative part of the interval range for each variable. Both the AVE domain

and the signed interval domain fit for analyzing programs involving disjunctive behav-

iors, wherein at least some of the program variables contain both positive and negative

values. Moreover, the two domains can help each other to improve analysis precision.

The preliminary experimental results of the prototype implementation are promis-

3

ing on example programs; AVE (together with the signed interval abstract domain) can

find piece-wise linear invariants of interest that are non-convex and out of the expres-

siveness of the conventional linear equality abstract domain in practice.

This paper is an extended version of our TASE 2021 paper [9]. On top of [9], we

propose a new abstract domain, named the signed interval abstract domain (Sect. 4),

as an extension of the classic interval abstract domain. Furthermore, we propose ap-

proaches to combine with the AVE domain and the signed interval domain to improve

analysis precision (Sect. 5). We have also conducted more experiments (Sect. 6).

The rest of the paper is organized as follows. Sect. 2 describes some preliminaries.

Sect. 3 presents the new proposed abstract domain of linear absolute value equalities.

Sect. 4 presents the new proposed signed interval abstract domain. Sect. 5 presents ap-

proaches to combine the AVE domain and the signed interval domain. Sect. 6 presents

our prototype implementation together with experimental results. Sect. 7 discusses

some related work before Sect. 8 concludes.

2. Preliminaries

2.1. System of linear absolute value equalities

Let | · | denote absolute value (AV). Let x = (xi)n
i=1 be a vector and |x| = (|xi|)n

i=1. We

consider the following system of linear absolute value equalities (AVE)

Ax + B|x| = c (1)

where A, B ∈ Qm×n and c ∈ Qm.

2.2. Linear complementarity problem and its extensions

Given a matrix M ∈ Qn×n and a vector q ∈ Qn, the (standard) linear complementar-

ity problem (LCP) is defined as the problem of finding vectors x+ and x− such that

x+ = Mx− + q (2)

x+, x− ≥ 0 (3)

(x+)T x− = 0. (4)

4

Note that if x+ and x− are solutions of the above LCP, then they follow from (3-4) that

x+i x−i = 0 for i = 1, . . . , n

i.e., for each i the following holds: If x+i > 0 then x−i = 0 holds, and if x−i > 0 then

x+i = 0 holds. In other words, the zero patterns of x+i and x−i are complementary.

Thus, condition (4) is called the complementarity condition of the above LCP. In the

following we introduce two extensions of LCP that are of interest to us.

Given M,N ∈ Qm×n and q ∈ Qm, find x+, x− ∈ Qn so that

Mx+ + Nx− ≤ q (5)

x+, x− ≥ 0 (6)

(x+)T x− = 0. (7)

We call the above problem eXtended Linear Complementary Problem (XLCP), since

it can be proved equivalent to eXtended LCP of Mangasarian and Pang [10].

Given M,N ∈ Qm×n and q ∈ Qm, find x+, x− ∈ Qn so that

Mx+ + Nx− = q (8)

x+, x− ≥ 0 (9)

(x+)T x− = 0. (10)

We call the above problem Horizontal Linear Complementary Problem (HLCP). HLCP

can be considered as special case of XLCP. In the literature, HLCP has been shown

equivalent to LCP [11] and piece-wise linear system [12].

2.3. Equivalence of AVEs and HLCPs

Let vectors x+ and x− be defined by x+ = (max(xi, 0))n
i=1 and x− = (max(−xi, 0))n

i=1,

so that

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

and

x = x+ − x− |x| = x+ + x− (11)

x+ =
1
2

(x + |x|) x− =
1
2

(|x| − x). (12)

5

According to (11), AVE (1) can be reformulated as the following HLCP:

(A + B)x+ + (B − A)x− = c

x+, x− ≥ 0

(x+)T x− = 0.

Similarly, according to (12), HLCP (8-10) can be reformulated as the following AVE:

1
2

(M − N)x +
1
2

(M + N)|x| = q.

3. An abstract domain of linear absolute value equalities

In this section, we present a new abstract domain, namely the abstract domain of

linear absolute value equalities (AVE). The key idea is to use a system of linear absolute

value equalities (and equivalent representations) as the domain representation. AVE

can be used to infer relationships of the form Σkak xk + Σkbk |xk | = c over program

variables xk (k = 1, . . . , n), where constants ak, bk, c ∈ Q are automatically inferred by

the analysis.

3.1. Domain Representation

Under the framework of abstract interpretation, when designing numerical abstract

domains, we often use a certain type of constraints to represent the abstract elements

of the abstract domain. Geometrically, a certain type of constraints correspond to a

special shape. E.g., the conjunction of a set of arbitrary linear equalities corresponds

to an affine space.

In the AVE domain, to describe an abstract element P, we use an AVE system

Ax + B|x| = c, where A, B ∈ Qm×n, c ∈ Qm, m is the number of linear equalities

in the system, and n is the number of variables in the system. It represents the set

γ(P) def
= {x ∈ Qn | Ax + B|x| = c}, in which each point x ∈ γ(P) represents a possible

program environment (or state), i.e., an assignment of numerical/rational values to pro-

gram variables. Geometrically, the intersection of each AVE element with each orthant

in Qn results in an affine space (within the orthant boundary).

6

3.1.1. Expressiveness lifting

Note that in the AVE domain representation, absolute value | · | applies to only

a variable rather than an expression. E.g., equality max(x, y) = z cannot be directly

expressed by linear AVE over x, y, z and their absolute value terms. However, we

could introduce a fresh auxiliary variable w to denote x − y. Then we could encode

max(x, y) = z

as

w = x − y ∧
1
2

(|w| + x + y) = z

which can be expressed by an AVE element (over the dimensions of x, y, z,w).

In general, we can lift the expressiveness of the AVE domain elements by intro-

ducing new auxiliary variables to denote those expressions that appear inside the AV

function. In fact, a large subclass of piecewise linear functions of practical interest

can be represented via AV functions through a so-called canonical (piecewise linear)

representation [13]. More clearly, according to [13], a piecewise-linear function f has

a canonical piece-wise-linear representation if and only if it possesses the so-called

consistent variation property.

3.1.2. Internal domain representation

In Sect. 2, we have shown the equivalence between AVEs and HLCPs, which indi-

cates that we can reuse the method that can solve one of them to solve the other. Inside

the implementation, we convert AVEs into HLCPs and maintain the domain represen-

tation in the form of HLCPs, such that we can reuse known results in the field of LCP.

To this end, we maintain the map between abstract environments over x and abstract

environments over x+, x− as:

x = x+ − x−, |x| = x+ + x−

x+ =
1
2

(x + |x|), x− =
1
2

(|x| − x)

where x+, x− satisfy

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

7

Constraint Normalization. Throughout this paper, we fix a variable ordering x+1 ≺

. . . ≺ x+n ≺ x−1 ≺ . . . ≺ x−n . For a linear equality Σka+k x+k + Σka−k x−k = b, the variable x±i
(where ± ∈ {+,−}) with the least index i such that a±i , 0 is called its leading variable.

A linear equality φ is said to be normalized if the coefficient of its leading variable

x±i satisfies a±i =1. Then, given φ which is not normalized, its normalized form can be

obtained by dividing the whole constraint φ by the coefficient a±i of its leading variable

x±i . Note that this normalization operation is exact, i.e., it will cause no precision loss.

For convenience sake, we enforce a normalized form on constraints throughout this

paper.

Row echelon form. Let Ax± = b be a linear system with A ∈ Qm×n and b ∈ Qm. The

system Ax± = b is said to be in row echelon form if

1) Every row i0 of A has at least one non-zero entry.

2) Let x±j0 be the leading variable of row i0 of A. Then for all i > i0, j ≤ j0, Ai j = 0.

Furthermore, given a linear system Ax± = b in row echelon form, it is said to be in

reduced row echelon form if

• Let x±j0 be the leading variable of row i0 of A. Then for all i < i0, Ai j0 = 0.

We use the linear system Ax± = b in reduced row echelon form (together with the

standard complementary condition) as the canonical representation of AVE elements.

Constraint reduction via complementary condition. Remember that inside the HLCP

constraint representation of AVE elements, besides the linear system part Ax± = b, we

also have the complementary condition part x+ ≥ 0, x− ≥ 0, (x+)T x− = 0. Note that the

complementary condition indicates that at least one of the x+i and x−i must be 0. Hence,

we can make use of the complementary condition to reduce further the linear system

part Ax± = b.

• Consider a normalized linear equality Σka+k x+k + Σka−k x−k = b.

– If b = 0 and ∀k.a±k ≥ 0, we know that x+k = 0 holds for all k where a±k ! = 0.

Hence, the original equality Σka+k x+k + Σka−k x−k = b in the linear system

part is replaced with a series of one-variable linear equalities x+k = 0 (where

a±k ! = 0).

8

– If b < 0 and ∀k.a±k ≥ 0, we know that this AVE element is infeasible and

thus becomes bottom.

• Consider a normalized linear equality involving only a pair of complementary

variables, i.e., in the form of x+k + a−k x−k = b.

– If b > 0 and a−k < 0 hold, we know that x+k = b and x−k = 0. Then, the

original equality x+k + a−k x−k = b in the linear system part is replaced with

two one-variable linear equalities x+k = b and x−k = 0.

– If b < 0 and a−k < 0 hold, we know that x+k = 0 and x−k = b/a−k . Then, the

original equality x+k + a−k x−k = b in the linear system part is replaced with

two one-variable linear equalities x+k = 0 and x−k = b/a−k .

– If b < 0 and a−k ≥ 0 hold, we know that this AVE element is infeasible and

thus becomes bottom.

3.1.3. Generator representation for HLCP

By Minkowski-Weyl theorem [14], the set P ⊆ Qn is a polyhedron, iff it is finitely

generated, i.e., there exist finite sets V,R ∈ Qn such that P can be generated by (V,R):

P =

|V |∑
i=1

λiVi +

|R|∑
j=1

µ jR j

∣∣∣∣∣∣∣∀i, λi ≥ 0,∀ j, µ j ≥ 0,
|V |∑
i=1

λi = 1

where |V |, |R| denote the cardinality of sets V,R respectively. Elements in V are called

extreme points (also called vertices), while elements in R are called extreme rays. Using

the double description method, a convex polyhedron can be represented by either its

constraint representation {Ax ≤ b} or its generator representation (V,R).

In [7], Chen et al. have presented an approach to construct the generator represen-

tation for XLCP. Since HLCP is a special case of XLCP, we make use of the approach

proposed in [7] to generate the generator representation for an HLCP. For the sake of

space, here we only review the main idea of the approach mentioned above and re-

fer the details to [7]. Intuitively, (5-6) of an XLCP describes a convex polyhedron

P = {x+ ∈ Qn, x− ∈ Qn | Mx+ + Nx− ≤ q, x+ ≥ 0, x− ≥ 0}, while the complemen-

tary condition (7) specifies that x+i = 0 ∨ x−i = 0 holds for all i = 1, . . . , n, which

9

indicates 2n complementary patterns. Hence, first, those generators g of P not satis-

fying the complementary condition are removed. Second, since not all combinations

of the complementary generators (i.e., generators satisfying the complementary condi-

tion) will result in solutions of XLCP (5-7), generators are grouped according to the

complementary patterns such that each group corresponds to a convex polyhedron and

any combination of generators in one group will always result in a solution of XLCP

(5-7). Fortunately, similarly as the AVI abstract domain [7] , to design the AVE abstract

domain, we do not need to group the complementary generators, since no domain op-

eration requires the group information and all domain operations can be implemented

based on only a non-redundant set of complementary generators Gc = (Vc,Rc).

For the sake of simplicity, from now on, we assume the AVE element P corresponds

to the following HLCP system:

Mx+ + Nx− = b

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

and we denote its set of complementary generators as

Gc
P = (Vc

P,R
c
P).

3.2. Domain operations

Now, we describe the implementation of most common domain operations required

for static analysis over the AVE domain, most of which require only constraints while

few of which require both constraints and complementary generators. Note that we

mainly maintain the HLCP constraint representation for abstract elements, and convert

it to the complementary generator representation temporally as intermediate represen-

tation only when needed.

3.2.1. Lattice operations

• Emptiness test: P is empty, iff Vc
P = ∅. However, in practice, when we con-

duct constraint reduction over the linear system part Ax± = b by exploiting the

complementary condition, we often get contradictory equalities (implying empti-

ness), as explained in Sect. 3.1.

10

In the following, throughout Sect.3.2, we only consider non-empty AVE domain

elements and denote them by P,P′. The operations on empty elements are trivial and

therefore we omit for the sake of concision.

• Meet: P ⊓ P′ is an AVE domain element whose HLCP constraint representation

is

Mx+ + Nx− = b

M′x+ + N′x− = b′

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

where {Mx+ + Nx− = b,M′x+ + N′x− = b′} can be converted into reduced

row echelon form w.r.t. variable ordering x+1 ≺ . . . ≺ x+n ≺ x−1 ≺ . . . ≺ x−n

via Gaussian elimination, and thus some redundant constraints are removed or

contradictory equalities are found.

• Join: P ⊔ P′ is the least AVE domain element containing P and P′, whose set of

complementary generators is the union of those of P and P′: (Vc
P∪Vc

P′ ,R
c
P∪Rc

P′),

where (Vc
P,R

c
P), (Vc

P′ ,R
c
P′) respectively denote the set of complementary genera-

tors of P and that of P′. After we get the complementary generator representation

of P ⊔ P′, we convert it back to HLCP constraint representation. Overall, P ⊔ P′

is computed by the following steps:

1. Compute the complementary generator representation (Vc
P,R

c
P), (Vc

P′ ,R
c
P′)

respectively for P and P′ ;

2. Compute (Vc
P∪Vc

P′ ,R
c
P∪Rc

P′), and suppose that Vc
P∪Vc

P′ results in {v1, . . . , vp},

while Rc
P ∪ Rc

P′ results in {r1, . . . , rq};

3. Project out variables λ j(j = 1, . . . , p), µk(k = 1, . . . , q) (via Gaussian elimi-

nation) from the following system: (x+ x−)T =
∑p

j=1(λ jv j) +
∑q

k=1(µkrk)∑p
j=1 λ j = 1

Suppose we get the following system over x+, x−:

M̂x+ + N̂x− = b̂

11

4. Finally, the resulting constraint HLCP representation of P ⊔ P′ is:

M̂x+ + N̂x− = b̂

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

where {M̂x+ + N̂x− = b̂} can be converted into reduced row echelon form

via Gaussian elimination.

• Inclusion test: P ⊑ P′ that is γ(P) ⊆ γ(P′), iff γ(P⊓P′) = γ(P). After computing

P⊓P′, we maintain the resulting AVE element in reduced row echelon form (after

conducting constraint reduction via complementary generators), and compare it

syntactically with the HLCP constraint representation of P. If P ⊓ P′ and P are

syntactically equal, we know γ(P ⊓ P′) = γ(P).

3.2.2. Transfer functions

In this paper, for the sake of simplicity, we consider a very simple language with

limited program statements including tests, projection, assignments, and loops, simi-

larly as the program statements considered in [15]. However, note that many complex

statements can be transformed (or abstracted) into these simple statements we consid-

ered in this paper, e.g., through compile frontend.

Let τ[[·]]#(P) denote the abstract effect of a program statement on an AVE element

P.

• Test transfer function: τ[[cx + d|x| = e]]#(P), whose HLCP system is defined as

Mx+ + Nx− = b

(c + d)x+ + (d − c)x− = e

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

where {Mx+ + Nx− = b, (c + d)x+ + (d − c)x− = e} can be converted into re-

duced row echelon form with respect to the variable ordering x+1 ≺ . . . ≺ x+n ≺

x−1 ≺ . . . ≺ x−n via Gaussian elimination, and thus some redundant constraints are

removed or contradictory equalities (which implies emptiness) are found.

12

• Projection: τ[[x j := random()]]#(P) can be implemented by projecting out x+j , x
−
j

from

Mx+ + Nx− = b

via Gaussian elimination. Suppose we get M′x++N′x− = b′. Then, the resulting

HLCP system will be

M′x+ + N′x− = b′

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

where {M′x+ + N′x− = b′} can be converted into reduced row echelon form via

Gaussian elimination.

• Assignment transfer function: τ[[x j := Σiaixi + Σibi|xi| + c]]#(P), can be modeled

using test transfer function, projection and variable renaming (by temporally in-

troducing a fresh variable x′j) as follows:

(
τ[[x j := random()]]#◦

τ[[Σiaixi + Σibi|xi| + c − x′j = 0]]#(P)
)

[x′j/x j]

3.2.3. Extrapolations

As we know, since the lattice of linear equalities (in a program) has finite height, we

do not need a widening operation for the domain of linear equalities. The intersection

of an AVE element with each orthant, results in an affine space (without considering

the orthant boundary), that is, an element in the domain of linear equalities. Since the

number of the orthants are finite (for a given program), we also do not need a widening

operation for the AVE domain. At each widening point, we use the join operator ⊔

instead of the widening operator.

13

3.3. Example analysis

Example 1. In Fig. 1, we show a simple typical program that implements the f abs()

function in C language (noting that we use := to denote the assignment) and then

checks the properties over its result. This example involves non-convex (disjunctive)

constraints (due to control-flow join), and precise reasoning over these constraints is

required to prove these assertions.

float x, y;

if (x ≥ 0 /* |x| == x */) { y := x; }

else /* |x| == −x */ { y := −x; }

① if (x ≥ 0 /* |x| == x */) { assert(y == x); }

else /* |x| == −x */ { assert(y == −x); }

}

Loc PolkaEq AVI AVE

① ⊤ y == |x|∧ y == |x|∧

(no information) y == |y| y == |y|

Figure 1: Program MotivEx (left) and the generated invariants (right)

In particular, at program point ①, the analysis needs to perform a join operation

over the resulting AVE elements coming from the previous conditional branch: P =

{(x y)T | x − y = 0, |x| = x} = {(x+ x− y+ y−)T | x+ − y+ + y− = 0, x− = 0, x+ ≥ 0, x− ≥

0, y+ ≥ 0, y− ≥ 0, x+x− = 0, y+y− = 0} (corresponding to the result of the first then

branch) and P′ = {(x y)T | −x − y = 0, |x| = −x} = {(x+ x− y+ y−)T | x− − y+ + y− =

0, x+ = 0, x+ ≥ 0, x− ≥ 0, y+ ≥ 0, y− ≥ 0, x+x− = 0, y+y− = 0} (corresponding to the

result of the first else branch).

The sets of complementary generators for P,P′ over (x+, x−, y+, y−)T are respec-

tively

(Vc
P,R

c
P) =

x+

x−

y+

y−

:

0

0

0

0

,

1

0

1

0

14

(Vc
P′ ,R

c
P′) =

x+

x−

y+

y−

:

0

0

0

0

,

0

1

1

0

Hence,

(Vc
P ∪ Vc

P′ ,R
c
P ∪ Rc

P′) =

x+

x−

y+

y−

:

0

0

0

0

,

1

0

1

0

,

0

1

1

0

Projecting out λ1, µ1, µ2 (wherein λ1 = 1) from

x+

x−

y+

y−

= λ1

0

0

0

0

+ µ1

1

0

1

0

+ µ2

0

1

1

0

will result in

x+ + x− − y+ = 0, y− = 0.

Hence, the resulting HLCP constraint representation of P ⊔ P′ will be

x+ + x− − y+ = 0, y− = 0

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

y+ ≥ 0, y− ≥ 0, (y+)T y− = 0

In other words, we get P ⊔ P′ = {(x y)T | y = |x|, |y| = y}, which is the invariant at

program point ① provided by AVE, as shown in Fig. 1.

Note that for the example in Fig. 1, the invariants provided by AVE are as precise

as the AVI domain [7], which can prove the later assertions, while PolkaEq (an im-

plementation of the linear equality abstract domain) cannot infer any information at

①.

15

4. The signed interval abstract domain

The interval abstract domain [16] is one of the basic abstract domains in abstract

interpretation, which can infer value range for each program variable. During analysis,

each variable x is tracked by an interval, representing its lower bound and the upper

bound. Domain operations are implemented via interval arithmetic. Since the height

of the lattice of the intervals is infinite, the interval domain employs widening operator

to guarantee the convergence of the analysis. Note that the interval abstract domain

maintains only one interval for each variable, and thus can not express disjunctive

properties. However, in our context, using the AVE domain, we can express certain

disjunctive properties depending on different signs of variables. For example, |x| = 1

means x ∈ [−1,−1] ∨ x ∈ [1, 1], while using the classic interval domain, it can only be

over-approximated as [−1, 1]. To address this problem, one may use finite powersets

of intervals to capture the disjunction information, but a proper widening operator for

such powerset domain is notoriously hard to design.

In this paper, we propose a so-called signed interval abstract domain, as a simple

extension of the classic interval domain. The main idea is to maintain two intervals for

each variable, to track respectively the non-positive part and non-negative part of the

value range of the variable.

4.1. Domain representation

Let ⊥i denote the bottom value of the classic interval domain. Let I≤0 denote ⊥i

or a normal interval [a, b] where b ≤ 0, and I≥0 denote ⊥i or a normal interval [a, b]

where a ≥ 0.

As the domain representation for our signed interval domain, we use ⟨I≤0, I≥0⟩ to

represent the signed interval value of a variable x, which means that x ∈ I≤0 ∨ x ∈ I≥0.

In particular, we use ⊥si to represent the empty signed interval value, sometimes also

denoted as ⟨⊥i,⊥i⟩. And we use ⊤si to represent ⟨[−∞, 0], [0,+∞]⟩, which contains all

possible values.

The galois connection between the concrete domain of powerset of real numbers

16

and the signed interval abstract domain can be defined as (αsi, γsi):

(℘(R),⊆) −−−−→←−−−−αsi

γsi
(SgnItvs,⊑si)

where SgnItvs is the set of all signed intervals over R: { ⟨[a, b], [c, d]⟩ | a ∈ R ∪

{−∞}, b, c ∈ R, d ∈ R ∪ {+∞}, a ≤ b ≤ 0, 0 ≤ c ≤ d} ∪ {⟨⊥i, [c, d]⟩ | c ∈ R, d ∈

R ∪ {+∞}, 0 < c ≤ d} ∪ {⟨[a, b],⊥i⟩ | a ∈ R ∪ {−∞}, b ∈ R, a ≤ b < 0} ∪ {⊥si}. SgnItvs

forms a complete lattice (SgnItvs,⊑si,⊓si,⊔si,⊥si,⊤si), where ⊤si = ⟨[−∞, 0], [0,+∞]⟩

denotes R, and ⊥si denotes empty set. The concretization function γsi ∈ SgnItvs →

℘(R) is defined as:

γsi(I) def
=

∅ if I = ⊥si

{x ∈ R | c ≤ x ≤ d} else if I = ⟨⊥i, [c, d]⟩ or I = ⟨[c, d],⊥i⟩

{x ∈ R | a ≤ x ≤ b ∨ c ≤ x ≤ d} else if I = ⟨[a, b], [c, d]⟩

where I ∈ SgnItvs represents an abstract element in the signed interval domain.

The abstraction function αsi ∈ ℘(R)→ SgnItvs is defined as:

αsi(S) def
=

⊥si if S = ∅

⟨⊥i, [inf S , sup S]⟩ else if inf S > 0

⟨[inf S , sup S],⊥i⟩ else if sup S < 0

⟨[inf S , sup S ≤0], [inf S ≥0, sup S]⟩ otherwise

where S ⊆ R is a subset of real numbers, and S ≤0 def
= {x ∈ S | x ≤ 0} while S ≥0 def

= {x ∈

S | x ≥ 0}.

In general, for the sake of representation, we use ⟨I≤0, I≥0⟩ to represent an arbitrary

element in SgnItvs. Furthermore, we introduce a normalization operator ρ to convert a

pair of intervals (I≤0, I≥0) into a (legal) element in SgnItvs:

ρ(I≤0, I≥0) def
= ⟨İ≤0, İ≥0⟩

where

İ≤0 def
=

 [0, 0] if I≤0 = ⊥i and 0 ∈ I≥0

I≤0 otherwise
, İ≥0 def

=

 [0, 0] if I≥0 = ⊥i and 0 ∈ I≤0

I≥0 otherwise
.

For example, ρ([−1, 0],⊥i) = ⟨[−1, 0], [0, 0]⟩.

17

4.2. Domain operation

We design the domain operations for signed interval abstract domain, on top of that

in the classic interval domain. The time and space complexity of domain operations

for the signed interval abstract domain is also O(n). In the following, throughout this

subsection, we assume that ⟨I≤0, I≥0⟩ and ⟨İ≤0, İ≥0⟩ are (legal) elements from SgnItvs,

and we also guarantee that the resulting elements of the defined domain operations are

also (legal) elements in SgnItvs.

1) Lattice operations: Let ⊑i,⊓i,⊔i respectively denote the abstract inclusion, meet,

join operation in the classic interval domain.

• Inclusion test ⊑si: ⟨I≤0, I≥0⟩ ⊑si ⟨İ≤0, İ≥0⟩ if and only if I≤0 ⊑i İ≤0 ∧ I≥0 ⊑i

İ≥0.

• Meet ⊓si: ⟨I≤0, I≥0⟩ ⊓si ⟨İ≤0, İ≥0⟩
def
= ⟨Ï≤0, Ï≥0⟩ where Ï≤0 def

= (I≤0 ⊓i İ≤0) ⊔i (I≤0 ⊓i İ≥0) ⊔i (I≥0 ⊓i İ≤0)

Ï≥0 def
= (I≥0 ⊓i İ≥0) ⊔i (I≤0 ⊓i İ≥0) ⊔i (I≥0 ⊓i İ≤0)

Note that here 0 may lie in different components (i.e., the non-positive com-

ponent or non-negative component) of ⟨I≤0, I≥0⟩ and ⟨İ≤0, İ≥0⟩, and thus we

need consider different combinations. For example, ⟨[−5,−3], [0, 5]⟩ ⊓si

⟨[−2, 0], [1, 2]⟩ results in ⟨[0, 0], [0, 2]⟩.

• Join ⊔si: ⟨I≤0, I≥0⟩ ⊔si ⟨İ≤0, İ≥0⟩
def
= ⟨I≤0 ⊔i İ≤0, I≥0 ⊔i İ≥0⟩.

2) Signed interval arithmetics: Let +i,−i,×i, /i respectively denote the abstract ad-

dition, subtraction (negation), multiplication and division operation in the classic

interval domain.

• −si⟨I≤0, I≥0⟩
def
= ⟨−iI≥0,−iI≤0⟩.

• ⟨I≤0, I≥0⟩ +si ⟨İ≤0, İ≥0⟩
def
= ⟨Ï≤0, Ï≥0⟩ where Ï≤0 def

= (I≤0 +i İ≤0) ⊔i ((I≤0 +i İ≥0) ⊓i [−∞, 0]) ⊔i ((I≥0 +i İ≤0) ⊓i [−∞, 0])

Ï≥0 def
= (I≥0 +i İ≥0) ⊔i ((I≤0 +i İ≥0) ⊓i [0,+∞]) ⊔i ((I≥0 +i İ≤0) ⊓i [0,+∞])

• ⟨I≤0, I≥0⟩ −si ⟨İ≤0, İ≥0⟩
def
= ⟨I≤0, I≥0⟩ +si (−si(⟨İ≤0, İ≥0⟩))

18

• ⟨I≤0, I≥0⟩ ×si ⟨İ≤0, İ≥0⟩
def
= ⟨Ï≤0, Ï≥0⟩ where Ï≤0 def
= (I≤0 ×i İ≥0) ⊔i (I≥0 ×i İ≤0)

Ï≥0 def
= (I≤0 ×i İ≤0) ⊔i (I≥0 ×i İ≥0)

• ⟨I≤0, I≥0⟩/si⟨İ≤0, İ≥0⟩
def
=

 ⊤
si i f 0 ∈ İ≤0 or 0 ∈ İ≥0

⟨Ï≤0, Ï≥0⟩ otherwise
where

 Ï≤0 def
= (I≤0/i İ≥0) ⊔i (I≥0/i İ≤0)

Ï≥0 def
= (I≤0/i İ≤0) ⊔i (I≥0/i İ≥0)

• abssi(⟨I≤0, I≥0⟩
def
= ⟨⊥i, Ï≥0⟩) where

Ï≥0 def
=

I≥0 if I≤0 = ⊥i

−i I≤0 if I≥0 = ⊥i

(−iI≤0) ⊔i I≥0 otherwise

3) Transfer functions: Let τ[[·]]#(B) denote the abstract effect of a program state-

ment on B where B ∈ SgnItvsn (wherein n denotes the number of program vari-

ables), and each Bi is a signed interval. Let ⊥sb denote the bottom element in

SgnItvsn.

• Assignment transfer function:

τ[[x j := e]]#(B) def
=

 ⊥sb if B = ⊥sb

B[x j ← ⟨I≤0, I≥0⟩] otherwise

where ⟨I≤0, I≥0⟩ is the resulting signed interval of evaluating expression

e, denoted as E♯[[e]]#(B). E♯[[e]]#(B) can be defined based on the signed

19

interval arithmetic as follows by structural induction:

E♯[[⟨I≤0, I≥0⟩]]#(B) def
= ⟨I≤0, I≥0⟩

E♯[[xk]]#(B) def
= B[xk]

E♯[[−e]]#(B) def
= −

♯
siE
♯[[e]]#(B)

E♯[[e1 + e2]]#(B) def
= E♯[[e1]]#(B) +♯si E♯[[e2]]#(B)

E♯[[e1 − e2]]#(B) def
= E♯[[e1]]#(B) −♯si E♯[[e2]]#(B)

E♯[[e1 × e2]]#(B) def
= E♯[[e1]]#(B) ×♯si E♯[[e2]]#(B)

E♯[[e1/e2]]#(B) def
= E♯[[e1]]#(B)/♯siE

♯[[e2]]#(B)

E♯[[|e|]]#(B) def
= abs♯si(E

♯[[e]]#(B))

• Test transfer function: Let ⟨x≤0
j , x

≥0
j ⟩ denote the signed interval for x j in

the current abstract element of the signed interval abstract domain. We
consider only the following forms tests while other forms of tests can be
abstracted as the following ones based on (signed) interval arithmetic, sim-
ilarly to the handling of tests in the classic interval abstract domain.

τ[[x j−c ≤ 0]]#(B) def
=

⊥sb if B = ⊥sb

⊥sb else if x≤0
j = ⊥i and x≥0

j = ⊥i

⊥sb else if x≤0
j , ⊥i and c < x≤0

j

B[x j ← ⟨[x≤0
j , c],⊥i⟩] else if x≤0

j , ⊥i and x≤0
j ≤ c < x≤0

j

B[x j ← ⟨x≤0
j ,⊥i⟩] else if x≥0

j , ⊥i and c < x≥0
j

B[x j ← ⟨x≤0
j , [x

≥0
j ,min(c, x≥0

j)]⟩] else if x≥0
j , ⊥i and c ≥ x≥0

j

B otherwise

τ[[−x j+c ≤ 0]]#(B) def
=

⊥sb if B = ⊥sb

⊥sb else if x≤0
j = ⊥i and x≥0

j = ⊥i

⊥sb else if x≥0
j , ⊥i and c > x≥0

j

B[x j ← ⟨⊥i, [c, x≥0
j]⟩] else if x≥0

j , ⊥i and x≥0
j ≥ c > x≥0

j

B[x j ← ⟨⊥i, x≥0
j ⟩] else if x≤0

j , ⊥i and c > x≤0
j

B[x j ← ⟨[max(c, x≤0
j), x≤0

j], x≥0
j ⟩ else if x≤0

j , ⊥i and c ≤ x≤0
j

B otherwise

4) Extrapolations: Similarly to the classic interval abstract domain, the lattice of

signed intervals is of infinite height, and thus we need a widening and a narrow-

ing operation for the domain of signed intervals.

20

• Widening ▽si: ⊥si ▽si ⟨I≤0, I≥0⟩
def
= ⟨I≤0, I≥0⟩, ⟨I≤0, I≥0⟩ ▽si ⊥si

def
= ⟨I≤0, I≥0⟩.

Now, we assume that ⟨I≤0, I≥0⟩ , ⊥si, ⟨İ≤0, İ≥0⟩ , ⊥si, and ⟨I≤0, I≥0⟩ ⊑si

⟨İ≤0, İ≥0⟩. Then,

⟨I≤0, I≥0⟩ ▽si ⟨İ≤0, İ≥0⟩
def
= ρ(Ï≤0, Ï≥0)

where

Ï≤0 def
=

 I≤0 ⊔i İ≤0 if I≤0 = ⊥i or İ≤0 = ⊥i

[(I≤0 ≤ İ≤0) ? I≤0 : −∞, (I≤0 ≥ İ≤0) ? I≤0 : 0] otherwise

Ï≥0 def
=

 I≥0 ⊔i İ≥0 if I≥0 = ⊥i or İ≥0 = ⊥i

[(I≥0 ≤ İ≥0) ? I≥0 : 0, (I≥0 ≥ İ≥0) ? I≥0 : +∞] otherwise

Note that here we require the normalization operation ρ to obtain a le-

gal resulting signed interval. For example, ⟨⊥i, [2, 3]⟩ ▽si ⟨⊥i, [1, 3]⟩ =

ρ(⊥i, [0, 3]) = ⟨[0, 0], [0, 3]⟩.

• Narrowing △si: ⊥si△si ⟨I≤0, I≥0⟩
def
= ⟨I≤0, I≥0⟩, ⟨I≤0, I≥0⟩△si⊥si

def
= ⟨I≤0, I≥0⟩.

Now, we assume that ⟨I≤0, I≥0⟩ , ⊥si, ⟨İ≤0, İ≥0⟩ , ⊥si, ⟨İ≤0, İ≥0⟩ ⊑si ⟨I≤0, I≥0⟩.

Then,

⟨I≤0, I≥0⟩ △si ⟨İ≤0, İ≥0⟩
def
= ⟨Ï≤0, Ï≥0⟩

where

Ï≤0 def
=

 ⊥i if I≤0 = ⊥i or İ≤0 = ⊥i

[I≤0 = −∞ ? İ≤0 : I≤0, I≤0 = 0 ? İ≤0 : I≤0] otherwise

Ï≥0 def
=

 ⊥i if I≥0 = ⊥i or İ≥0 = ⊥i

[I≥0 = 0 ? İ≥0 : I≥0, I≥0 = +∞ ? İ≥0 : I≥0] otherwise

For example, ⟨[−∞, 0], [0, 5]⟩ △si ⟨[−4,−1], [1, 4]⟩ = ⟨[−4,−1], [1, 5]⟩.

5. Combining the AVE domain with the Signed Interval domain

The AVE abstract domain has limited expressiveness in expressing inequalities. It

can only encode inequalities such as x ≥ 0 (or x ≤ 0) as |x| − x = 0 (or |x| + x =

21

0). However, when we analyze programs, programs often involve inequalities, most

of which are out of the expressiveness of the AVE domain. E.g., the AVE domain

can not handle inequalities x ≤ −2 (without introducing auxiliary variables), while

the information provided in x ≤ −2 is very useful for the AVE domain, since we

know variable x becomes negative and thus the absolute value term for x could be

removed. To alleviate this problem, one natural idea is to combine the AVE domain

with the classic interval domain, but the disjunction information (encoding the sign

information of varaibles) captured by the AVE domain may be lost when converting

to a classic interval. Hence, we propose to combine the AVE domain with the signed

interval domain that we propose in Sect. 4, which will provide more precise results.

For example, for |x| = 1, the classic interval is [−1, 1], while the signed interval is

⟨[−1,−1], [1, 1]⟩. In this section, we describe the details on how to combine the AVE

domain with the signed interval domain to perform analysis.

5.1. Using the signed interval domain to improve the precision of AVE domain

We use the signed interval domain to infer the value range for each variable at each

program point. Let ⟨x≤0
j , x

≥0
j ⟩ denote the signed interval range for variable x j. When

x≤0
j ⊑i [0, 0] or x≥0

j ⊑i [0, 0], we could use the signed interval range information given

by the signed interval domain, to improve the precision of the AVE domain.

• When x≤0
j ⊑i [0, 0], we know that variable x is non-negative, which indicate

that |x| = x. Thus, we can use the non-negative information to improve the

AVE element (at the same program point). In the internal HLCP representation,

we add x− = 0 into the HLCP system, and then use Gaussian elimination to

convert the resulting system into reduced row echelon form. Furthermore, if

x≥0
j = x≥0

j = c wherein c is non-negative constant, we will add both x− = 0 and

x+ = c into the HLCP system.

• Similarly, when x≥0
j ⊑i [0, 0], we know that variable x is non-positive, which

indicate that |x| = −x. Then, in the internal HLCP representation, we add x+ = 0

into the HLCP system, and then use Gaussian elimination to convert the resulting

system into reduced row echelon form. Furthermore, if x≤0
j = x≤0

j = c wherein

22

c is non-positive constant, we will add both x+ = 0 and x− = −c into the HLCP

system.

5.2. Using the AVE domain to improve the precision of the signed interval domain

The signed interval domain is non-relation domain, which can only express indi-

vidual signed interval range for each separate variable. Since the AVE domain can infer

AVE relations among variables, we could make the AVE relations to tighten the signed

interval ranges in the signed interval domain.

Absolute value programming. In recent years, much research attention has been paid

to solving AVE (1) in the field of optimization. It has been shown that solving AVE (1)

is an NP-hard problem [17]. Intensive iterative methods have been proposed to solve

AVE (1). Meanwhile, various methods have been proposed for absolute value pro-

gramming problems where absolute values appear in the constraints and the objective

function [17]. Particularly, Hu et al. [18] presented several approaches for solving

Linear Programming problems with Complementarity Constraints (LPCC), which is a

mathematical programming problem wherein the objective function and all constraints

are linear, except for the complementarity conditions. Recently, Hladı́k [19] proposed

several outer approximations of the solution set of AVE (1). Since either LPCC or AV

programming is an NP-hard non-convex non-linear programming problem, finding a

global optimum is non-trivial and of high complexity.

Relaxation and linear programming. In our context, we would like to make use

of AVE to help tightening variable bounds, and thus we require outer approximations

of solutions while not necessarily optimum solution. We use the following approach

which needs to know the upper bound of |x|. Assume that the signed interval for each

variable x j is not ⊥si. Note that the upper bound u of |x| can be obtained from the

signed interval domain:

u j
def
=

x≥0

j if x≤0
j = ⊥i

− x≤0
j else if x≥0

j = ⊥i

max(−x≤0
j , x≥0

j) otherwise

First, we review the following theorem from [7].

23

Theorem 1. Any AV inequality∑
i aixi +

∑
i,p bi|xi| + bp|xp| ≤ c

where bp > 0, can be equivalently reformulated as a conjunction of the following two

AV inequalities
∑

i aixi +
∑

i,p bi|xi| + bpxp ≤ c∑
i aixi +

∑
i,p bi|xi| − bpxp ≤ c

Consider AVE (1) , i.e., Ax + B|x| = c. Let us split B componentwisely into 2

nonnegative matrices B+, B− ≥ 0 such that B = B+ − B− wherein B+i j = 0 ∨ B+i j = Bi j

and similarly B−i j = 0 ∨ B−i j = −Bi j, for i, j ∈ [0, n] wherein n is the size of x. Now, the

AVE Ax + B|x| = c can be reformulated into

Ax + B+|x| − B−|x| = c

that is, Ax + B+|x| − B−|x| ≤ c

−Ax − B+|x| + B−|x| ≤ −c

According to Theorem 1, the above AV inequality system can be reformulated as the

following form

A′x − B′|x| ≤ c′

where B′ ≥ 0. In other words, in the above AV inequality system, the coefficients of |x|

are all non-positive. E.g., {|x| + |y| = 1}, i.e., {|x| + |y| ≤ 1,−|x| − |y| ≤ −1}, is equivalent

to {x + y ≤ 1, x − y ≤ 1,−x + y ≤ 1,−x − y ≤ 1,−|x| − |y| ≤ −1}.

Since |x| ≤ u, the above AV inequality system can be relaxed as

A′x ≤ c + B′u

which is a linear system. Then, we can obtain tightener non-negative interval bound for

xi (assuming non empty), i.e., [x≥0
i , x

≥0
i], by solving the following linear programming

problem

min /max xi

s.t.

A′x ≤ c + B′u

x ∈ x≤0 ⊔i x≥0

0 ≤ xi

24

where x≤0⊔i x≥0 obtains the normal interval ranges for variables x (based on the signed

intervals provided by the signed interval domain), and u = max(−x≤0, x≥0
i). And for n

variables, we need solve 2n linear programming problems.

Note that since we relax B′|x| into B′u, the bounds found by LP may be not the

optimum bounds for variables. Moreover, when the bounds of some variables are very

large or even lost after widening, the resulting bounds may be too conservative. In

addition, it is costly to run 2n linear programs after every operation on a program

involving n variables. Thus we need some alternative lightweight methods for bound

tightening.

Bound Propagation. Bound propagation is a kind of constraint propagation widely

used in constraint programming. Each AV equality in the AVE domain element can

be used to tighten the bounds for those variables occurring in it. Consider an AV

equality Σiaixi + Σibi|xi| = c and assume that ak , 0 or bk , 0. Assume that from the

signed interval abstract domain, we know xk ∈ ⟨x≤0
k , x

≥0
k ⟩. Now we partition xk into the

following two sub-cases:

• The subcase assuming that xk ≥ 0: Σiaixi + Σibi|xi| = c becomes (ak + bk)xk +

Σi,kaixi + Σi,kbi|xi| = c, i.e.,

(ak + bk)xk = c − (Σi,kaixi + Σi,kbi|xi|). (13)

Compute the right-hand expression via the signed interval arithmetic, by substi-

tuting xi by ⟨x≤0
i , x

≥0
i ⟩ and |xi| by abssi(⟨x≤0

i , x
≥0
i ⟩). Suppose that this results in a

signed interval ⟨I≤0, I≥0⟩ for the right-hand expression. Then,

– if ak + bk = 0, we derive a new candidate signed interval bound ⟨⊥i,⊥i⟩ if 0 < ⟨I≤0, I≥0⟩

⟨⊥i, [0,+∞]⟩ otherwise

– if ak + bk , 0, we know that

xk =
⟨I≤0, I≥0⟩

ak + bk

25

from which suppose that we derive a new candidate signed interval bound

⟨İ≤0, İ≥0⟩ for variable xk. Since we are in the case of xk ≥ 0, it can be

further reduced to ⟨İ≤0, İ≥0⟩ ⊓si ⟨[0, 0], [0,+∞]⟩.

Overall, without abuse of notations, we use the following to denote the resulting

candidate signed interval bound for the case of xk ≥ 0:

ρ(⊥k, [x′≥0
k , x

′≥0
k])

Note that formula (13) can be also reformulated as

(ak + bk)xk = c − (Σi,k(ai + bi)x+i + Σi,k(−ai + bi)x−i) (14)

Since x+i = max(xi, 0) and x−i = max(−xi, 0) (as described in Sect. 2.3), the right-

hand expression of 14 can be computed via the signed interval arithmetic, by

substituting x+i by
⟨⊥i, [x≥0

i , x
≥0
i]⟩ if x≤0

i = ⊥i

⟨[0, 0], [x≥0
i , x

≥0
i]⟩ otherwise

and x−i by
⟨⊥i, [−x≤0

i ,−x≤0
i]⟩ if x≥0

i = ⊥i

⟨[0, 0], [−x≤0
i ,−x≤0

i]⟩ otherwise

Similarly, as for (13), by separately considering the case of ak + bk = 0 and the

case of ak + bk , 0, we can derive another resulting candidate signed interval

bound for the case of xk ≥ 0:

ρ(⊥k, [x′′≥0
k , x′′≥0

k])

Note that computing the new bounds for xk, the results derived from formula

(13) and (14) may be incomparable. For example, to derive a new candidate

bound for y according to y = 2x − |x| where x ∈ ⟨[−5,−2], [1, 8]⟩, using (13) can

derive ⟨[−18, 0], [0, 15]⟩. while using (14) can derive ⟨[−15, 0], [0, 8]⟩ (and using

orthant enumeration over x can derive ⟨[−15,−6], [1, 8]⟩, but which may need

enumerate 2n−1 orthants when the right-hand expression involve n−1 variables).

26

Hence, overall, we take the following as the final resulting signed interval for xk

in the case of xk ≥ 0:

ρ(⊥i, [x′≥0
k , x

′≥0
k]) ⊓si ρ(⊥i, [x′′≥0

k , x′′≥0
k])

• The subcase assuming that xk ≤ 0: Σiaixi + Σibi|xi| = c becomes (ak − bk)xk +

Σi,kaixi + Σi,kbi|xi| = c, which implies that

(ak − bk)xk = c − (Σi,kaixi + Σi,kbi|xi|) (15)

and

(ak − bk)xk = c − (Σi,k(ai + bi)x+i + Σi,k(−ai + bi)x−i) (16)

Similarly as the subcase of xk ≥ 0, by separately considering the case of ak+bk =

0 and the case of ak + bk , 0 for both (15) and (16), we can derive a candidate

signed interval bound for the case of xk ≤ 0

ρ([x′≤0
k , x

′≤0
k],⊥i) ⊓si ρ([x′′≤0

k , x′′≤0
k],⊥i)

Overall, after using AV equality Σiaixi + Σibi|xi| = c to tighten the signed interval
range for xk (originally xk ∈ ⟨[x≤0

k , x
≤0
k], [x≥0

k , x
≥0
k]⟩), we will derive a new bound for

xk

ρ(⊥i, [x≥0
k , x

≥0
k] ⊓i [x′≥0

k , x
′≥0
k] ⊓i [x′′≥0

k , x′′≥0
k]) if xk ≥ 0

ρ([x≤0
k , x

≤0
k] ⊓i [x′≤0

k , x
′≤0
k] ⊓i [x′′≤0

k , x′′≤0
k],⊥i) if xk ≤ 0

ρ([x≤0
k , x

≤0
k] ⊓i [x′≤0

k , x
′≤0
k] ⊓i [x′′≤0

k , x′′≤0
k], [x≥0

k , x
≥0
k] ⊓i [x′≥0

k , x
′≥0
k] ⊓i [x′′≥0

k , x′′≥0
k]) otherwise

The above process can be repeated with each variable in that AV equality and with

each AV equality in the system. This process has a cubic time cost in the worst case.

However, it does not necessarily provide optimum bounds. More precision can be

achieved, at greater cost, by iterating the process.

Note that, in this paper, we use reduced row echelon form as the constraint rep-

resentation of the AVE domain. However, via Gaussian elimination, we can combine

affine equalities to obtain new affine equalities on which performing bound propaga-

tion may bring further tightening. However, generating all possible such combinations

possibly requires exponential time. In [6], Feret proposes a polynomial algorithm to

27

tighten interval bounds via affine equalities. They use a positive representation of sys-

tems of affine equalities, as well as a triangular systems of constraints of the form

a1x1 + . . . + anxn ∈ I where I is an interval. Here, we may also leverage this idea

from [6] to obtain such constraint forms and then perform further bound propagation

(by replacing interval arithmetic used in [6] with signed interval arithmetic), but with

extract costs.

5.3. Discussion on combination

To combine abstract domains, reduced product [20] is a commonly-used opera-

tor under the framework of abstract interpretation. Reduced product first applies the

domain operations separately in each abstract domain, and then employs a so-called

reduction step to exchange information and tighten the resulting abstract elements by

using the results from the other domain. However, to find the tightest element, the

overall cost of a reduction operator could be rather expensive and may even require

iterations to compute a fixpoint. Hence, in practice, we often use a reduction operator

that refines only partially the information tracked by the two domains [21].

In this paper, when using AVE to tighten SgnItvs, if we use absolute value pro-

gramming (or linear programming with complementarity constraints), we can get the

optimum tight bounds for SgnItvs elements, but the process is NP-hard and thus too

costly. On the other hand, the approach based on relaxation with linear programming,

and the approach based on bound propagation provide sound bounds but not necessar-

ily optimum bounds. In fact, the latter two methods for bound tightening are gener-

ally incomparable to each other. Each of them may find tighter bounds than the other

one in some cases. Compared with the other two approaches, the approach based on

bound propagation (which can stop at any time during the iteration process) is more

light-weight, and does not rely on other extra solvers (such as LP solvers). Hence,

for implementing the combination of AVE and SgnItvs, we choose to use the approach

based on bound propagation in an iterative manner, and strike a balance between cost

and precision (by limiting the times of iterations).

Example 2. Consider an AVE element {|x| + z = 5, y − |z| = 0} with the initial interval

bounds x, y, z ∈ [−∞,+∞]. In an if-branch i f (−2 ≤ x ≤ 5), we know x ∈ [−2, 5].

28

And we could use the technique of bound propagation to derive the tighter bounds

y ∈ [0, 5], z ∈ [0, 5] (while using the approach based on relaxation with linear pro-

gramming can only give y ∈ [0,+∞], z ∈ [0, 5]). Moreover, since we know z ∈ [0, 5],

the absolute value term |z| reduces to z. Hence, the AVE element in the if-branch be-

comes {|x| + z = 5, y − z = 0}.

6. Implementation and experimental results

We have developed a prototype domain for the AVE domain, named rAVE, based

on Sect. 3, and a prototype domain for the signed interval domain, named rSgnItvs,

based on Sect. 4. Both prototype domains utilize GMP library [22] to conduct exact

arithmetic, using multi-precision rational numbers. rAVE and rSgnItvs are interfaced

to the Apron numerical abstract domain library [23]. Our experiments were conducted

using the Interproc [24] static analyzer. To assess the precision and efficiency of rAVE

(together with rSgnItvs, denoted as rAVE+rSgnItvs), we compare the obtained invari-

ants and performance of rAVE (as well as rAVE+rSgnItvs) with PolkaEq (which infers

linear equalities as the linear equality domain, provided in Apron [23]) as well as our

previous work rAVI which is a rational implementation of the domain of linear absolute

value inequalities [7].

To demonstrate the expressiveness of rAVE (as well as rAVE+rSgnItvs), two sim-

ple programs are shown in Figs. 2-3, together with the generated invariants. The

program AVtest1 shown in Fig. 2 comes from[7]. In AVtest1, the initial state con-

sists of four points that are respectively from 4 different orthants over the x-y plane:

(2, 2), (−2, 2), (−2,−2), (2,−2). The loop increases outward the values of x and y in

each orthant simultaneously, along the direction y = x and y = −x respectively. Note

that, as shown in Fig. 2, we encode linear inequalities (such as x >= 0) in the branch

conditions by linear AV equalities (such as |x| == x), such that rAVE can recognize.

At program point ①, rAVE can prove that |y| = |x|, while combining rAVE and rSgnItvs

can infer further |y| = |x| ∧ x, y ∈ ⟨[−∞,−2], [2,+∞]⟩, which is equivalent to the result

by rAVI (i.e., |y| = |x| ∧ |x| ≥ 2). However, at program point ①, PolkaEq obtains no

information.

29

real x, y;

assume x = 2 or x = −2;

assume y = 2 or y = −2;

while (true) {

① if (x >= 0 /* |x| == x */) { x := x + 1; }

else /* |x| == −x */ { x := x − 1; }

if (y >= 0 /* |y| == y */) { y := y + 1; }

else /* |y| == −y */ { y := y − 1; }

}

Loc PolkaEq rAVE rAVE+rSgnItv rAVI

① ⊤ |x| = |y| |x| = |y|∧ |x| = |y|∧

(no information) x, y ∈ ⟨[−∞,−2], [2,+∞]⟩ |x| ≥ 2

Figure 2: Program AVtest1 (left) and the generated invariants (right)

The program AVtest2 shown in Fig. 3 is adapted from program AVtest1. In AVtest2,

the linear inequalities (such as x < 2) in the else-branch conditions can not be syn-

tactically rewritten as linear AV equalities without the help of the semantics of the

program. Hence, using only the AVE domain, the inferred linear AV equalities infor-

mation will be lost after handling the else-branches. Finally, at program point ①, using

only rAVE obtains no information. However, rAVE+rSgnItvs can infer x ≤ −2 and

y ≤ −2 respectively after the else-branch conditions. Note that x ≤ −2 and y ≤ −2

implies that |x| == −x and |y| == −y, which will be tracked by the AVE domain

in the following process. Finally, at program point ①,rAVE+rSgnItvs can infer that

|y| = |x| ∧ x, y ∈ ⟨[−∞,−2], [2,+∞]⟩, while rAVI can also prove that |y| = |x| ∧ |x| ≥ 2,

but PolkaEq obtains no information.

Overall, Table 1 shows the comparison of performance and resulting invariants

for a selection of small examples. Programs MotivEx, AVtest1, AVtest2 respectively

correspond to those programs shown in Figs. 1-3. Other programs in Table 1 are mostly

collected (or adapted) from existing work [25] [26][27][28][29], which are used for

analyzing programs involving disjunctive program behaviors. More clearly, programs

30

real x, y;

assume x = 2 or x = −2;

assume y = 2 or y = −2;

while (true) {

① if (x >= 2) { x := x + 1; }

else { x := x − 1; }

if (y >= 2) { y := y + 1; }

else { y := y − 1; }

}

Loc PolkaEq rAVE rAVE+rSgnItv rAVI

① ⊤ ⊤ |x| = |y|∧ |x| = |y|∧

(no information) (no information) x, y ∈ ⟨[−∞,−2], [2,+∞]⟩ |x| ≥ 2

Figure 3: Program AVtest2 (left) and the generated invariants (right)

MotivEx, MotivExV2, AVtest1, AVtest2, Synergy, Goc, Hola1 involve AV functions,

Speed2, Speed3, Speed4 involve max functions, while SimRelu, Reverse, Recwhile,

Speed1 involve other kinds of disjunctive behaviors (e.g., due to branch conditions) 1.

The column “#var” gives the number of variables in the program. As experimental

setup, for each program, the value of the widening delay parameter for Interproc is set

to 1.

Invariants. The column “#eq” for PolkaEq gives the number of affine equalities dis-

covered. The column “#AVeq” for rAVE, rAVE+rSgnItvs, rAVI respectively gives the

number of linear AV equalities discovered by the corresponding domain. The column

“#FBnd” for rAVE+rSgnItvs gives the number of meaningful finite bounds inferred for

program variables. The column “#Ineq” for rAVI gives the number of linear inequali-

ties discovered.

The column “Cmp (vs. rAVE+rSgnItvs)” compares the invariants obtained by

1Note that for the sake of simplicity, in this paper, we use branch statements to encode both the AV and

max functions in the benchmark programs.

31

Table 1: Experimental results for benchmark examples

Program PolkaEq rAVE rAVE+rSgnItvs rAVI Cmp (vs. rAVE+rSgnItvs)

name #var t(ms) #eq t(ms) #AVeq t(ms) #AVeq #FBnd t(ms) #AVeq #Ineq PolkaEq rAVE rAVI

MotivEx 2 0 0 12 2 16 2 3 8 2 0 ⊐ = =

MotivExV2 4 0 0 16 4 16 4 4 12 4 3 ⊐ = =

AVtest1 2 0 0 32 1 28 1 4 68 1 2 ⊐ ⊐ =

AVtest2 2 0 0 32 0 40 1 4 52 1 2 ⊐ ⊐ =

SimRelu 3 4 1 16 2 12 3 3 8 3 3 ⊐ ⊐ =

Synergy 10 8 1 60 3 80 3 6 44 4 1 ⊐ = ⊏

Reverse 2 20 0 8 1 52 1 4 20 2 1 ⊐ = =

Recwhile 2 40 0 20 1 64 1 4 144 2 3 ⊐ ⊐ =

Split 3 8 1 40 1 40 3 4 56 4 0 ⊐ ⊐ =

Goc 2 0 0 12 2 8 2 3 12 4 2 ⊐ ⊐ =

Hola1 3 4 0 36 3 64 3 8 164 3 4 ⊐ ⊐ =

Speed1 6 0 1 28 3 24 5 4 56 6 3 ⊐ ⊐ ⊏

Speed2 6 8 3 92 6 112 6 2 10 4 3 ⊐ = =

Speed3 7 28 3 52 9 68 10 6 128 9 2 ⊐ ⊐ =

Speed4 6 8 1 48 3 44 5 6 112 6 7 ⊐ ⊐ ⊏

PolkaEq, rAVE, rAVI respectively with rAVE+rSgnItvs. “⊏” (or “⊐”) indicates that the

compared domain outputs stronger (or less precise) invariants than rAVE+ rSgnItvs,

while “=” indicates that the generated invariants are equivalent. The results in Table 1

show that rAVE outputs stronger invariants than PolkaEq for all these examples. rAVE

outputs 1∼9 linear AV equality invariants for each of these examples at the loop head.

Note that traditional convex abstract domains (including PolkaEq) are not fit for the

benchmark examples shown in Table 1, since these programs involve non-convex be-

haviors (such as absolute value functions, max functions, disjunctions, etc.) that are

out of the expressiveness of convex domains. Futhermore, rAVE+rSgnItvs infers the

same set of linear AV equalities as rAVE for most of the benchmark programs, but

also infers more AV equalities than rAVE for 6 programs including AVtest2 shown in

Fig. 3. Moreover, rAVE+rSgnItvs also infer meaningful finite bounds of signed inter-

val range over program variables (most of which are out of the expressiveness of using

only rAVE), as shown in the column “#FBnd”.

Compared with rAVE+rSgnItvs, rAVI infers the same set of linear AV equality in-

variants as rAVE+rSgnItvs for most of the programs, but also infers more AV equalities

32

as well as linear inequalities than rAVE+rSgnItvs for some programs. Overall, rAVI

offers more precise invariants than rAVE+rSgnItvs for 3 programs. For Synergy, rAVI

infers more AV equalities. For Speed1 and Speed4, rAVI infers AV inequality relations

involving multiple variables, which are out of the expressiveness of rAVE+rSgnItvs.

Performance. All experiments are carried out on a virtual machine (using VirtualBox),

with a guest OS of Ubuntu 14.04 (2GB Memory), host OS of MacOS 10.12, 16GB

RAM and a Intel(R) Core(TM) i7 CPU 2.7 GHz. The column “t(ms)” presents the

analysis times in milliseconds. Experimental time for each program is obtained by

taking the average time of ten runnings. From Table 1, we can see that rAVE is less

efficient than PolkaEq, because the time complexity of domain operations in the linear

equality domain is lower than that of rAVE. Moreover, for these examples, PolkaEq

does not find any interesting linear equalities, and thus its domain operations perform

even faster. Similarly, without surprise, we can see that in most cases rAVE is more

efficient than rAVE+rSgnItvs, and rAVE+rSgnItvs is more efficient than rAVI.

7. Related work

The original work on inferring linear equality relations among program variables

was due to Karr [1] in 1970s, which is now understood as the abstract domain of linear

equalities in abstract interpretation. In the recent two decades, Müller-Olm and Seidl

[30] give a simplified algorithm of Karr’s algorithm for computing all affine relations

in affine programs, and the time complexity (for analyzing the whole program) goes

down to O(nk3) where n is the program size and k is the number of program vari-

ables. Gulwani and Necula [31] introduced the technique of random interpretation and

presented a polynomial-time randomized algorithm to discover linear equalities using

probabilistic techniques.

In the literature, the linear equality domain has been generalized in various ways,

such as the domain of convex polyhedra (
∑

k ak xk ≤ b) [32] and the domain of linear

congruence equalities (
∑

k ak xk = b mod c) [33]. Müller-Olm and Seidl have gener-

alized the analysis of affine relations to polynomial relations of bounded degree [3].

In another direction, Müller-Olm and Seidl [34] generalized affine relation analysis to

33

work for modular arithmetic. King and Sϕndergaard [35] proposed an approach for

deriving invariants of congruence equations where the modulo is a power of 2. Elder et

al. [4] studied the relations among several known abstract domains for affine relation

analysis over variables that hold machine integers, found that the domains of Müller-

Olm/Seidl [34] and King/Sϕndergaard [35] are, in general, incomparable, and provided

sound interconversion methods between these domains.

This paper aims at generalizing the linear equality domain to handle certain dis-

junction behaviors in a program. Like most existing numerical abstract domains, the

linear equality domain uses conjunctions of convex constraints as the domain repre-

sentation, and thus can only represent convex sets. Until now, few existing abstract

domains natively allow representing non-convex sets, e.g., congruences [36], max-plus

polyhedra [37], domain lifting by max expressions [25], interval polyhedra [27], cir-

cular linear progressions[38], bit-vector-sound finite-disjunctive domains[39]. In our

previous work [40], we have proposed an abstract domain of interval linear equalities,

which generalizes the linear equality domain with interval coefficients (over variables).

In the domain of interval linear equalities, the intersection of a domain element with

each orthant gives a not-necessarily closed convex polyhedron, while in the domain

of AVE, the intersection of a domain element with each orthant gives an affine space

(without considering the orthant constraints, such as x ≥ 0). However, in general, in

the environment of the same set of program variables, the expressiveness of the abstract

domain of AVE and that of the abstract domain of interval linear equalities (which also

uses row echelon form) is incomparable. Moreover, the AVE domain enjoy optimal ab-

stractions over domain operations, while the domain of interval linear equalities does

not have optimal abstractions for most domain operations (such as the join operation).

The idea of using absolute value to design non-convex abstract domains is not new.

In our previous work, we have proposed to leverage the linear constraints with absolute

value to design abstract domains, such as the domain of linear absolute value inequal-

ities [7] and the domain of octagonal constraint with absolute value [8]. The abstract

domain of linear AV inequalities (AVI) is more expressive than the domain of AVE.

However, an AVI abstract element has the potential to include exponential number of

constraints, while the number of linear AV equalities inside an AVE abstract element

34

is bounded by 2n where n is the number of program variables. Moreover, the domain

operations of the AVI domain are much more costly and requires widening to ensure

the termination of fixpoint iterations. The domain of octagonal constraint with absolute

value can infer only the relations of the form {±x ± y ≤ c,±x ± |y| ≤ d,±|x| ± |y| ≤ e}

over each pair of variables x, y, where ± ∈ {−1, 0, 1}), but cannot express linear AV

equalities involving coefficients that are not in {−1, 0, 1} or involving more than two

variables in an equality. In general, the expressiveness of the AVE domain and that of

the domain of octagonal constraint with absolute value is incomparable.

8. Conclusion

In this paper, we propose a new abstract domain, namely the abstract domain of lin-

ear Absolute Value Equalities (AVE), to infer linear equality relations among values and

absolute values of program variables in a program (in the form of Σkak xk + Σkbk |xk | =

c), which generalizes the classic linear (technically, affine) equality abstract domain

(Σkak xk = c) [1]. The key idea behind is to employ absolute value (AV) to capture

certain piecewise linear relations in the program, as a mean to deal with non-convex

behaviors in the program. First, we show the equivalence between linear AV equal-

ity systems and horizontal linear complementarity problem (HLCP) systems. Then,

we present the domain representation (including HLCP constraint representation and

complementary generator representation) as well as domain operations (that are re-

quired for static analysis, such as meet, join, etc.) designed for AVE . Moreover, we

propose a so-called signed interval abstract domain as an extension of the classic in-

terval abstract domain. The main idea of the signed interval abstract domain is to use

two intervals to track respectively the positive part and the negative part of the inter-

val range for each variable. Then we propose to combine the AVE domain with the

signed interval domain, to help each other to improve analysis precision. On this basis,

we develop a prototype for the AVE domain using rational numbers and interface it to

the Apron numerical abstract domain library. Experimental results are encouraging:

The AVE domain (together with the signed interval domain) can discover interesting

piecewise linear invariants (that are non-convex and out of the expressiveness of the

35

conventional linear equality abstract domain).

It remains for future work to test AVE on large realistic programs, and consider

automatic methods to introduce auxiliary variables on the fly that can be used inside

the AV function to improve the precision of AVE-based analysis.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Nos.

61872445, 62032024, 62102432).

References

[1] M. Karr, Affine relationships among variables of a program, Acta Inf. 6 (1976)

133–151.

[2] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints, in: ACM

POPL’77, ACM Press, 1977, pp. 238–252.

[3] M. Müller-Olm, H. Seidl, Precise interprocedural analysis through linear algebra,

in: ACM POPL’04, ACM Press, 2004, pp. 330–341.

[4] M. Elder, J. Lim, T. Sharma, T. Andersen, T. W. Reps, Abstract domains of affine

relations, ACM Trans. Program. Lang. Syst. 36 (4) (2014) 11:1–11:73.

[5] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S. Cheung, T. Xie, Detecting numerical

bugs in neural network architectures, in: ESEC/FSE’20, ACM, 2020, pp. 826–

837.

[6] J. Feret, Occurrence counting analysis for the pi-calculus, in: GETCO’00, Vol.

39(2) of Electr. Notes Theor. Comput. Sci., Elsevier, 2001, pp. 1–18.

[7] L. Chen, A. Miné, J. Wang, P. Cousot, Linear absolute value relation analysis, in:

ESOP’11, Vol. 6602 of LNCS, Springer, 2011, pp. 156–175.

36

[8] L. Chen, J. Liu, A. Miné, D. Kapur, J. Wang, An abstract domain to infer octag-

onal constraints with absolute value, in: SAS’14, Vol. 8723 of LNCS, Springer,

2014, pp. 101–117.

[9] L. Chen, B. Yin, D. Wei, J. Wang, An abstract domain to infer linear absolute

value equalities, in: International Symposium on Theoretical Aspects of Software

Engineering, TASE 2021, Shanghai, China, August 25-27, 2021, IEEE, 2021, pp.

47–54.

[10] O. L. Mangasarian, J. S. Pang, The extended linear complementarity problem,

SIAM J. Matrix Anal. Appl. 16 (2) (1995) 359–368.

[11] M. Anitescu, G. Lesaja, F. Potra, Equivaence between different formulations of

the linear complementarity promblem, Optimization Methods and Software 7 (3)

(1997) 265–290.

[12] B. Eaves, C. Lemke, Equivalence of lcp and pls, MATHEMATICS OF OPERA-

TIONS RESEARCH 6 (4) (1981) 475–484.

[13] L. Chua, A.-C. Deng, Canonical piecewise-linear representation, IEEE Trans. on

Circuits and Systems 35 (1) (1988) 101–111.

[14] A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, Inc.,

1986.

[15] A. Miné, Tutorial on static inference of numeric invariants by abstract interpreta-

tion, Found. Trends Program. Lang. 4 (3–4) (2017) 120–372.

[16] P. Cousot, R. Cousot, Static determination of dynamic properties of programs, in:

Proc. of the 2nd International Symposium on Programming, Dunod, Paris, 1976,

pp. 106–130.

[17] O. L. Mangasarian, Absolute value programming, Computational Optimization

and Applications 36 (1) (2007) 43–53.

[18] J. Hu, J. Mitchell, J.-S. Pang, B. Yu, On linear programs with linear complemen-

tarity constraints, Journal of Global Optimization 53 (2012) 29—-51.

37

[19] M. Hladı́k, Bounds for the solutions of absolute value equations, Computational

Optimization and Applications 69 (1) (2018) 243—-266.

[20] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in:

ACM POPL’79, ACM Press, New York, 1979, pp. 269–282.

[21] A. Cortesi, G. Costantini, P. Ferrara, A survey on product operators in abstract in-

terpretation, in: A. Banerjee, O. Danvy, K. Doh, J. Hatcliff (Eds.), Semantics, Ab-

stract Interpretation, and Reasoning about Programs: Essays Dedicated to David

A. Schmidt on the Occasion of his Sixtieth Birthday, Manhattan, Kansas, USA,

19-20th September 2013, Vol. 129 of EPTCS, 2013, pp. 325–336.

[22] Gnu multiple precision arithmetic library, http://gmplib.org/.

[23] B. Jeannet, A. Miné, Apron: A library of numerical abstract domains for static

analysis, in: CAV’09, Vol. 5643 of LNCS, Springer, 2009, pp. 661–667.

[24] G. Lalire, M. Argoud, B. Jeannet, Interproc, http://pop-art.inrialpes.fr/

people/bjeannet/bjeannet-forge/interproc/.

[25] B. S. Gulavani, S. Gulwani, A numerical abstract domain based on expression

abstraction and max operator with application in timing analysis, in: CAV’08,

Vol. 5123 of LNCS, Springer-Verlag, 2008, pp. 370–384.

[26] S. Gulwani, K. K. Mehra, T. M. Chilimbi, SPEED: precise and efficient static

estimation of program computational complexity, in: POPL’09, ACM, 2009, pp.

127–139.

[27] L. Chen, A. Miné, J. Wang, P. Cousot, Interval polyhedra: An abstract domain

to infer interval linear relationships, in: SAS’09, Vol. 5673 of LNCS, Springer

Verlag, 2009, pp. 309–325.

[28] I. Dillig, T. Dillig, B. Li, K. L. McMillan, Inductive invariant generation via ab-

ductive inference, in: OOPSLA, ACM, 2013, pp. 443–456.

38

http://gmplib.org/
http://pop-art.inrialpes.fr/people/bjeannet/ bjeannet-forge/interproc/
http://pop-art.inrialpes.fr/people/bjeannet/ bjeannet-forge/interproc/

[29] R. Sharma, I. Dillig, T. Dillig, A. Aiken, Simplifying loop invariant generation

using splitter predicates, in: G. Gopalakrishnan, S. Qadeer (Eds.), CAV 2011,

Vol. 6806 of Lecture Notes in Computer Science, Springer, 2011, pp. 703–719.

[30] M. Müller-Olm, H. Seidl, A note on Karr’s algorithm, in: ICALP’04, Vol. 3142

of LNCS, Springer, 2004, pp. 1016–1028.

[31] S. Gulwani, G. Necula, Discovering affine equalities using random interpretation,

in: ACM POPL’03, ACM Press, 2003, pp. 74–84.

[32] P. Cousot, N. Halbwachs, Automatic discovery of linear restraints among vari-

ables of a program, in: ACM POPL’78, ACM Press, New York, 1978, pp. 84–96.

[33] P. Granger, Static analysis of linear congruence equalities among variables of a

program, in: TAPSOFT’91, Vol. 493 of LNCS, Springer-Verlag, 1991, pp. 169–

192.

[34] M. Müller-Olm, H. Seidl, Analysis of modular arithmetic, ACM Trans. Program.

Lang. Syst. 29 (5) (2007) 29.

[35] A. King, H. Søndergaard, Inferring congruence equations using SAT, in: CAV’08,

Vol. 5123 of LNCS, Springer, 2008, pp. 281–293.

[36] P. Granger, Static analysis of arithmetical congruences, International Journal of

Computer Mathematics (1989) 165–199.

[37] X. Allamigeon, S. Gaubert, E. Goubault, Inferring min and max invariants using

max-plus polyhedra, in: SAS’08, Vol. 5079 of LNCS, Springer Verlag, 2008, pp.

189–204.

[38] R. Sen, Y. N. Srikant, Executable analysis using abstract interpretation with cir-

cular linear progressions, in: MEMOCODE 2007, IEEE Computer Society, 2007,

pp. 39–48.

[39] T. Sharma, T. W. Reps, Sound bit-precise numerical domains, in: VMCAI 2017,

Vol. 10145 of Lecture Notes in Computer Science, Springer, 2017, pp. 500–520.

39

[40] L. Chen, A. Miné, J. Wang, P. Cousot, An abstract domain to discover interval

linear equalities, in: VMCAI’10, Vol. 5944 of LNCS, Springer, 2010, pp. 112–

128.

40

	Introduction
	Preliminaries
	System of linear absolute value equalities
	Linear complementarity problem and its extensions
	Equivalence of AVEs and HLCPs

	An abstract domain of linear absolute value equalities
	Domain Representation
	Expressiveness lifting
	 Internal domain representation
	Generator representation for HLCP

	Domain operations
	Lattice operations
	Transfer functions
	Extrapolations

	Example analysis

	The signed interval abstract domain
	Domain representation
	Domain operation

	Combining the AVE domain with the Signed Interval domain
	Using the signed interval domain to improve the precision of AVE domain
	Using the AVE domain to improve the precision of the signed interval domain
	Discussion on combination

	Implementation and experimental results
	Related work
	Conclusion

