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Abstract

We present an approach in the framework of abstract interpretation to analyze
list-manipulating programs by combining shape and numerical abstractions. The
analysis automatically divides a list into non-overlapping list segments accord-
ing to the reachability property of pointer variables to list nodes. The list nodes
in each segment are abstracted by a bit-vector wherein each bit corresponds to a
pointer variable and indicates whether the nodes can be reached by that pointer
variable. Moreover, for each bit-vector, we introduce an auxiliary integer vari-
able, namely a counter variable, to record the number of nodes in the segment
abstracted by that bit-vector. On this basis, we leverage the power of numerical
abstractions to discover numerical relations among counter variables, so as to in-
fer relational length properties among list segments. Furthermore, we show how
our approach works for circular lists. Our approach stands out in its ability to find
intricate properties that involve both shape and numerical information, which are
important for checking program properties such as memory safety. A prototype is
implemented and preliminary experimental results are encouraging.

Keywords: Static analysis, Abstract interpretation, Lists, Abstract domains,
Shape analysis

1. Introduction

Invariants involving both shape and numerical information are crucial for check-
ing nontrivial program properties in heap manipulating programs, such as mem-

∗Corresponding author
Email address: lqchen@nudt.edu.cn (Liqian Chen)

Preprint submitted to Science of Computer Programming June 19, 2014



ory safety, termination, bounded size of heap memory. However, automatically
inferring such invariants is challenging, especially for programs manipulating dy-
namic linked data structures. In this paper, we consider the problem of analyzing
programs manipulating lists. And inferring such invariants over lists requires con-
sidering both the shape of lists and the numerical information over the number of
the list nodes.

Shape analysis provides a powerful approach to generate shape invariants, and
much progress has been achieved in shape analysis in the past two decades [1][2].
However, shape analysis itself has limited ability in inferring non-trivial properties
involving numerical information such as “sum of traversed and remained list sizes
equals to the input list size”. On the other hand, numerical static analysis by ab-
stract interpretation [3] is widely adopted to automatically generate numerical in-
variants for programs. However, most of existing abstract domains focus on purely
numerical properties and thus are specific for analyzing numerical programs. A
recent interesting trend is to combine these two techniques, using shape analysis
to generate shape invariants and using numerical abstract domains to track nu-
merical relationships [4][5][6][7]. The key technical issue here is how to interact
effectively between the shape aspect and the numerical aspect. Although sev-
eral generic frameworks for the combination have been proposed [4][6], tighter
bidirectional coupling between the two aspects still needs further considerations
for the selected shape abstraction and numerical abstraction. For instance, shape
abstraction needs to be enhanced to support numerical aspects while numerical
abstraction also needs to be adapted with respect to the semantics of shape ab-
straction. And transfer functions for the combined domain should be designed by
taking into account both the shape and numerical information at the same time.

In this paper, we present an approach in the framework of abstract interpre-
tation to combine shape and numerical abstractions for analyzing programs ma-
nipulating lists. First, for the shape of a list, we propose a lightweight shape
abstraction based on bit-vectors, upon the insight that list nodes in a list can be
naturally grouped into non-overlapping list segments according to the reachability
property of pointer variables to list nodes. Each list segment which includes those
list nodes that can be reached by the same set of pointer variables, is abstracted by
one bit-vector wherein each bit corresponds to a pointer variable in the program.
From the numerical aspect, in order to track the number of list nodes in each
list segment, we introduce an auxiliary (nonnegative) integer counter variable for
each bit-vector. And we apply numerical abstract domains to infer numerical rela-
tions among counter variables. Then, transfer functions for the combined domain
are constructed in terms of transfer functions of the numerical domain upon the
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semantics of the shape abstraction. Specifically, in this paper we instantiate our
approach by using a combination of intervals [8] and affine equalities [9] to con-
duct numerical abstractions. For the sake of better understanding, we first focus
on non-circular lists and then consider extensions for circular lists. On this basis,
a prototype is implemented and preliminary experimental results are presented on
benchmark programs.

This paper is an extended version of our SAC 2013 paper in the Software
Verification and Testing track [10]. On top of [10], we have added formal descrip-
tions of maintaining points-to sets for pointer variables (Section 5.2). We have
extended our approach to fit for circular lists (Section 6). We have conducted
more experiments over programs manipulating circular lists and programs that
may cause memory errors (Section 7). We have also provided details of proofs (in
the Appendix).

The rest of the paper is organized as follows. Section 2 describes a simple
list-manipulating programming language. Section 3 presents a shape abstraction
approach for non-circular lists based on bit-vectors. Section 4 presents a com-
bined domain of intervals and affine equalities to conduct numerical abstractions
over counter variables. Section 5 shows how to perform analysis of programs ma-
nipulating non-circular lists based on the proposed abstractions. Section 6 extends
the approach to fit for circular lists. Section 7 presents our prototype implemen-
tation together with preliminary experimental results. Section 8 discusses related
work before Section 9 concludes.

2. List-Manipulating Programming Language

We first present a small language that manipulates lists. The syntax of our
language is depicted in Fig. 1. It is a simple procedure-less sequential language
with dynamic allocation and deallocation but no recursion. There is only one type
of variables, i.e., pointer variables of LIST type, denoted as PVar. For the sake of
simplicity, we first focus on non-circular singly-linked list.

The structure for list nodes contains a next field pointing to the successive
list node, while all other fields are considered as data fields. The data fields are
ignored in this paper, since we assume that operations over data fields have no
influence on the shape of lists. We assume that there is at most one next opera-
tor in a statement and a pointer variable appears at most once in an assignment
statement. All other cases could be transformed into this form by introducing
temporary variables.
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p, q ∈ PVar
AsgnStmnt := p := null | p := q | p := q→ next |

p→ next := null | p→ next := q |
p := malloc() | free(p)

Cond := p == q | p == null | ¬Cond |
Cond1 ∨ Cond2 | Cond1 ∧ Cond2 |

true | false | brandom
BranchStmnt := if Cond then {Stmnt; }∗ [else {Stmnt; }∗ ] fi

WhileStmnt := while Cond do {Stmnt; }∗ od
Stmnt := AsgnStmnt | BranchStmnt | WhileStmnt

Program := {Stmnt; }∗

Figure 1: Syntax of a list-manipulating program

3. Shape Abstraction for Non-Circular Lists

First, we recall the definition of classic shape graph that is a graph used to
represent the allocated memory in heap.

Definition 1. A shape graph for lists is a tuple SG = 〈N,V, E〉, where:

• N denotes the set of pointer variables and list nodes, and we utilize Nnil to
denote N ∪ {NULL},

• V ⊆ N denotes the set of pointer variables in the program,

• E ⊆ N × (Nnil − V) denotes the set of edges, which describes the points-
to relations of pointer variables as well as successive relations between list
nodes through the “next” field.

From the above definition, we can see that when using a standard shape graph
to describe lists, we have to name explicitly all list nodes and store all the succes-
sive relations between nodes. Hence, using shape graphs may cause heavy mem-
ory costs. To this end, we propose a lightweight approach to encode the shape
information contained in a shape graph. First, we introduce a binary predicate
Reach(n, n′) to describe the reachability property between two nodes n, n′ ∈ N:

Reach(n, n′) , ∃k ∈ N.∀0 ≤ i ≤ k.ni ∈ N ∧ n0 = n ∧ nk = n′∧
∀0 6 j < k.〈n j, n j+1〉 ∈ E

Obviously, Reach(n, n′) = true holds if and only if there exists a path from n
to n′ in the shape graph. We maintain a variable ordering for all pointer variables
V in the program and use Vi to denote the i-th variable in V where 0 ≤ i ≤ |V | − 1.
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Definition 2. For each node n ∈ (N − V), we define a so-called Variable Reacha-
bility Vector (VRV) vecn ∈ {0, 1}|V | that is a bit-vector of length |V |, where

vecn[i] = 1 iff Reach(Vi, n) = true

We say Vi reaches list node n (or VRV vecn) if Reach(Vi, n) = true. We use
bit-vector 0 as the VRV for those list nodes that cannot be reached by any pointer
variables. Let Γ denote the set of VRVs for all list nodes n ∈ (N − V). For every
vec ∈ Γ, let Ivec denote the set of the 1-bits in vec: Ivec , {i ∈ N | vec[i] = 1}. In
other words, Ivec describes the set of the indices of those pointer variables that can
reach vec. If i ∈ I, it means that Vi can reach vec (and the corresponding nodes).
We use Γi , {vec | vec[i] = 1} to denote the set of VRVs that the variable Vi can
reach. In fact, Γ describes the reachability properties of all pointer variables to
list nodes. Each VRV vecn can be considered as an abstract node that represents
the set of nodes which can be reached by the same set of pointer variables as
node n. By default, we use the lexicographic order as the variable ordering in
VRVs throughout this paper, such as [v[u[q[p where [ ∈ {0, 1} (which means that
p corresponds to the rightest bit in the bit vector according to the lexicographic
order p ≺ q ≺ u ≺ v)
Example 1. For the shape graph shown in Fig. 2 (a), suppose the variable ordering
is p ≺ q ≺ u ≺ v (which means that the bit vectors are in the form of [v[u[q[p).
Then the VRVs for this shape graph are shown in Fig. 2 (b). And we have Γ =

{0011, 0100, 0111, 1111}; I0011 = {0, 1},I0100 = {2},I0111 = {0, 1, 2},I1111 =

{0, 1, 2, 3}; Γ0 = {0011, 0111, 1111}, Γ1 = {0011, 0111, 1111}, Γ2 = {0111, 1111},
Γ3 = {1111}.

Definition 3. Given two non-zero VRVs vec1, vec2,

• if Ivec1 ⊆ Ivec2 , we say vec1 can reach vec2, denoted as vec1 ⊆ vec2,

• if Ivec1 ⊂ Ivec2 , we say vec1 can strictly reach vec2, denoted as vec1 ⊂ vec2,

• if Ivec1 ∩ Ivec2 = ∅, we say vec1 and vec2 cannot reach each other, denoted
as vec1 ∩ vec2 = ∅.

For the example shown in Fig. 2, we have: vec0011 ⊂ vec0111; vec0100 ⊂ vec0111;
vec0100 ∩ vec0011 = ∅.

Theorem 1. Given two list nodes n1, n2 such that vecn1 , vecn2 and vecn1 , 0,
there exists one path from n1 to n2 if and only if vecn1 ⊂ vecn2 holds.
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uq vp NULL01000011 0011 0111 1111V0 = p;   V1 = q;V2 = u;   V3 = v
vuqp0011010001111111 num2111

uq vp NULLn1n2 n3 n4 n5(a) (b)uq vp NULL01000011 0111 1111(c) (d)
Figure 2: Example of variable reachability vectors for non-circular lists

Proof. Given in the appendix. �

The bitwise set relations among VRVs implicitly characterize the reachabil-
ity relations among nodes. All VRVs in Γi form a total order over ⊆. Let vec0

i
denote the minimum element in Γi, then vec0

i represents the VRV of the list
node that variable Vi directly points to. For the example in Fig. 2, we have
Γ0 = {0011, 0111, 1111}, from which we can see that p directly points to 0011,
since 0011 is the minimum element in Γ0. Furthermore, from Γ = {0011, 0100,
0111, 1111}, we can see that

• p, q are aliases, since in each VRV from Γ the bit corresponding to p is 1 if
and only if the bit corresponding to q is 1;

• p cannot reach the node that is directly pointed to by u, since the bit corre-
sponding to p in the minimum element of Γ2 (i.e., 0100) is 0.

Definition 4. A set of VRVs Γ is consistent, denoted as wf (VRV(x)), if for arbi-
trary two distinct VRVs vecn1 , vecn2 ∈ Γ, vecn1∩vecn2 = ∅∨vecn1 ⊂ vecn2∨vecn2 ⊂

vecn1 holds.

Theorem 2. The set of VRVs of a singly-linked list is consistent.

Proof. Given in the appendix. �

Theorem 3. A consistent set of VRVs Γ satisfies |Γ| ≤ 2|V |.
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Proof. Given in the appendix. �

Definition 5. A set of VRVs with Counters (VRVCs) Γ+ ⊆ Γ × N is defined as a
set of 2-tuples 〈vec, num〉 where vec ∈ Γ, num ∈ N standing for the number of the
list nodes whose VRV is vec.

Example 2. For the shape graph shown in Fig. 2 (b), the VRVCs for it is Γ+ =

{〈0011, 2〉, 〈0100, 1〉, 〈0111, 1〉, 〈1111, 1〉}, as shown in Fig. 2 (d).

The (consistent) set of VRVs with counters provides an exact abstraction for
the shape of lists when ignoring the data contents. The list nodes are abstracted via
VRVs (i.e., the vec component), the edges (i.e., the successive relations between
nodes) are abstracted via the implicit bitwise subset relations of VRVs, and the
number of the nodes that are reachable by the same set of pointer variables are
described by the counters (i.e., the num component).

Utilizing bit vectors (i.e., VRVs) to represent the shape of linked lists brings a
clear benefit in terms of memory. Also, shape operations over VRVs can benefit
a lot from the efficient bitwise operations in terms of efficiency. E.g., checking
whether the list segment abstracted by vec1 can reach the list segment abstracted
by vec2 (i.e., checking vec1 ⊆ vec2) can be cheaply implemented via the bitwise
AND operation by checking whether it holds that vec1 & vec2 = vec1. Checking
whether only one of two variables p and q will reach the list segment abstracted by
vec can be implemented by checking whether it holds that (((vec >> p)⊕ (vec >>
q)) & 0x1) = 0x1.

4. Numerical Abstraction over Counters

For each vec ∈ Γ, we introduce an auxiliary counter variable tvec ∈ N to denote
the value of the corresponding num component (i.e., the number of the list nodes
whose VRV is vec) of VRVCs. We maintain a bijection between vec and tvec. For
each tvec, we use VEC(tvec) to obtain its corresponding bit vector vec. Furthermore,
we introduce a special auxiliary variable t0...00 ∈ N to specify memory leak (i.e.,
t0...00 > 0). We use a lexicographic ordering on counter variables: t0...00 ≺ t0...01 ≺

t0...10 ≺ · · · ≺ t1...11. And {〈vec, tvec〉 | tvec > 0} represents the shape of a list, if it is
consistent.

Since counter variables tvec ∈ N are numerical variables, we could leverage
numerical abstraction techniques over tvec. In this paper, we present an abstract
domain, namely the CD domain, to perform numeric abstraction over counter
variables, which combines the interval abstract domain [8] and the affine equality
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abstract domain [9]. If the program has k pointer variables, we need introduce 2k

auxiliary counter variables. We choose intervals and affine equalities to construct
the CD domain, because they are cheap in both time and memory, and bounds as
well as equality relations are important for list-manipulating programs. However,
it is also worth noting that according to Theorem 3, most auxiliary counter vari-
ables equal to 0 and only linear number of counter variables with respect to |V |
need to be tracked. Hence, for the sake of memory, we omit constraints tvec = 0
in the constraint representation of the abstract domain. In other words, for those
counter variables tvec that are not involved in the constraint system, we have im-
plicit information that tvec = 0.

4.1. Representation
We use intervals to track the range information of each counter variable tvec ∈

N, and use affine equalities to track the relational information among those counter
variables. Hence, each domain element P in the CD domain is described as an
affine system Ax = b in reduced row echelon form together with bounds for
counter variables x ∈ [c, d], where A ∈ Rn×n, b ∈ Rn, c ∈ Nn, d ∈ {N,+∞}n, 0 ≤
c ≤ d. It represents the set γ(P) = {x ∈ Nn | Ax = b, c ≤ x ≤ d} where each
point x is a possible environment (or state), i.e., an assignment of nonnegative
integer values to counter variables. For the sake of convenience, we use EQS(P)
to denote the affine equality part, and ITV(P) to denote the interval part from the
domain representation.

Given each x ∈ γ(P), we can derive a set of VRVs from x: VRV(x) =

{VEC(x j) | x j ≥ 1}, as well as a set of VRVs with counters VRVC(x) = {〈VEC(x j),
x j〉 | x j ≥ 1}. Obviously, if VRV(x) is consistent (i.e., wf (VRV(x))), then VRVC(x)
describes a shape of singly-linked lists. And we use γ̄(P) to denote the obtained
consistent set of VRVCs:

γ̄(P) = {VRVC(x) | x ∈ γ(P) ∧ wf (VRV(x))}

γ̄(P) can be constructed from γ(P) by considering the consistency among VRVs.
Example 3. Consider the program fragment

traverse(q) {
¬ p := q→ next;
­ while (p , null) do {
® p := p→ next; } od
}

Assume q points to a list with length 9 before calling traverse(q) and the variable
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ordering is p ≺ q (which means that the bit vectors are in the form of [q[p).
Then in the first iteration, at program point ®, we obtain the CD domain element
P = {t10 = 1, t11 = 8; t10 ∈ [1, 1], t11 ∈ [8, 8]}. Then we know that γ̄(P) contains
only one possible list shape: γ̄(P) = {{〈10, 1〉, 〈11, 8〉}}.

4.2. Domain Operations over Counters
In the CD domain, most domain operations (such as meet, join, inclusion, etc.)

over counter variables can be directly constructed by combining the corresponding
domain operations of the interval abstract domain and those of the affine equality
abstract domain. E.g., the join operation for a control-flow join in the CD domain
is defined as

P t P′ def
= (EQS (P) tEQS EQS (P′)) ∧ (ITV(P) ti ITV(P′))

where tEQS denotes the join operation in the affine equality domain which can
be implemented via computing the affine hull of EQS (P) and EQS (P′) and ti

denotes the interval union. The inclusion test operation in the CD domain is
defined as

P v P′ ⇐⇒ (EQS (P) u EQS (P′) = EQS (P)) ∧ (ITV(P) vi ITV(P′))

Bound tightening. In the CD domain, the bounds of each variable can be ob-
tained from the ITV part of the domain element. The bounds may be changed
during domain operations of the affine equalities. E.g., when an affine equality is
added, the bounds of variables need to be updated. In this paper, we use bound
propagation technique to tighten the bounds.

In fact, each affine equality from the EQS part of the CD element can be used
to tighten the bounds for those variables occurring in the equality. E.g., given an
equality Σiaixi = b, if ai > 0, a new candidate lower bound for xi comes from:
x′i = d(b − Σ j,ia j ẋ j)/aie where ẋ j = a j > 0 ? x j : x j, and a new candidate upper
bound for xi comes from: x′i = b(b − Σ j,ia j ẍ j)/aic where ẍ j = a j > 0 ? x j : x j. If
the new candidate bounds are tighter, then xi’s bounds are updated. This process
can be repeated for each variable in that equality and for each equality in the EQS
system. Since in the CD domain all counter variables are nonnegative integers,
the convergence of the iterations of bound tightening is always attained in a finite
number of steps. In practice, we employ interval Gauss-Seidel method [11] to
make use of affine equalities to tighten variable bounds.
Widening. The height of the lattice of affine equalities is finite, but intervals do
not satisfy the ascending chain condition. Thus, to cope with loops, a widening
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operator is needed to ensure the convergence of fixpoint computations over the
CD domain. Given two CD elements P, P′ satisfying P v P′,

P∇P′ def
= EQS (P′) u (ITV(P)∇iITV(P′)).

Since tvec ≥ 0 always holds, we refine the widening over intervals as:

[a, b]∇i[c, d] def
=


[a, b ≥ d?b : +∞] if a ≤ c,
[1, b ≥ d?b : +∞] else if a > c ≥ 1,
[0, b ≥ d?b : +∞] otherwise.

Here we take 1 as a special threshold for the interval widening, since pointer
variable p may use p→ next to access the successive node, which may cause null
pointer dereference.

Furthermore, we use EQS (P′) to tighten the bounds of variables obtained by
ITV(P)∇iITV(P′) after widening. To avoid the well-known convergence problem
of interaction between reduction and widening [12], we perform bound tightening
over the widening results only for finite times overall.

In Algorithm 1, we show our fixpoint iteration algorithm for loops used in the
CD domain, which is based on the classic fixpoint iteration algorithm in abstract
interpretation [3]. The algorithm takes three input parameters: 1) P0: the initial
abstract CD element before executing the loop; 2) while b do {stmts} od: a while
loop with a boolean loop condition b and loop body {stmts} which represents
a sequence of statements such as assignments and conditional branches; 3) K:
a positive integer threshold of the times of applying bound tightening over the
widening results. In each iteration of Algorithm 1, P denotes the CD element
at the loop head before the i-th execution of the loop body, and P′ denotes the
resulting CD element at the loop head after the i-th execution of the loop body.
In each iteration, line 6 corresponds to the test transfer function handling the loop
condition. Line 7 corresponds to the post-image transfer function handling the
loop body, which computes the resulting abstract element after the loop body
given the abstract element before. In line 8, we join together the CD element
P at the loop head before the i-th execution of the loop body with the resulting
element Q′ after the i-th execution, and then widen it against P. From line 9
to 13, we apply bound tightening (denoted by the BoundTightening() function in
Algorithm 1) over the widening result if not exceeding the threshold of the times
of applying bound tightening over the widening results.

The fixpoint iteration algorithm shown in Algorithm 1 is guaranteed to termi-
nate in finite time. The lattice of affine equalities is of finite height, and thus the
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Algorithm 1 The fixpoint iteration algorithm for loops in the CD domain

Input: P0: initial abstract element before executing the loop;
while b do {stmts} od: the loop program;
K: threshold of the times of applying bound tightening over widening results.

Output: P′: the stable abstract element at the loop head.

1: i← 0
2: j← 0
3: P′ ← P0

4: repeat
5: P← P′

6: Q← P u b
7: Q′ ← post[stmts]Q
8: P′ ← P∇(P t Q′)
9: if ( j < K) then

10: R← BoundTightening(P′)
11: if (R , P′) then
12: P′ ← R
13: j← j + 1
14: i← i + 1
15: until P′ v P
16: return P′

affine equality part of the CD domain will become stable with no need of widen-
ing. And in the worst case, after K times of applying bound tightening over the
widening results, there is no more reduction of using affine equalities to tighten
interval bounds. Then the interval part of the CD domain will become stable due
to usage of interval widening.
Example 4. Consider again the program fragment shown in Example 3. Assume
q points to a list with length 9 before calling traverse(q) and the variable ordering
is p ≺ q (which means that the bit vectors are in the form of [q[p). At program
point ­, we get before the first loop iteration the CD element P0 = {t10 = 1, t11 =

8; t10 ∈ [1, 1], t11 ∈ [8, 8]} and after the first loop iteration Q1 = {t10 = 2, t11 =

7; t10 ∈ [2, 2], t11 ∈ [7, 7]}. Since the loop head is also a control flow join, we
compute the join of P0 and Q1

P0tQ1 = {t10 + t11 = 9; t10 ∈ [1, 2], t11 ∈ [7, 8]}
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After that, we apply the widening operation at loop head ­, and get

P1 = P0∇(P0 t Q1) = {t10 + t11 = 9; t10 ∈ [1,+∞], t11 ∈ [1, 8]}
= {t10 + t11 = 9; t10 ∈ [1, 8], t11 ∈ [1, 8]}

After executing the loop body for a second time, we will get Q2 = {t10 + t11 =

9; t10 ∈ [2, 9], t11 ∈ [0, 7]}. Then we compute the join of P1 and Q2

P1tQ2 = {t10 + t11 = 9; t10 ∈ [1, 9], t11 ∈ [0, 8]}

After that, we apply again the widening operation at loop head ­, and get

P2 = P1∇(P1 t Q2) = {t10 + t11 = 9; t10 ∈ [1,+∞], t11 ∈ [0, 8]}
= {t10 + t11 = 9; t10 ∈ [1, 9], t11 ∈ [0, 8]}

After executing the loop body for a third time, we will found that P3 = P2, which
means that the fixpoint iteration becomes stable and the found invariant is {t10 +

t11 = 9; t10 ∈ [1, 9], t11 ∈ [0, 8]}.

5. Analysis of Programs Manipulating Non-Circular Lists

In this section, we show how to combine the shape abstraction (in Sect. 3)
and the numerical abstraction (in Sect. 4) to analyze programs manipulating non-
circular lists written in the syntax described in Sect. 2. For the domain represen-
tation, we keep in memory the constraints over tvecs. However, the condition test
and assignment statements in the syntax of list-manipulating programs (as shown
in Fig. 1) manipulate pointer variables rather than tvecs. Hence, we need to trans-
form the abstract semantics of test and assignment transfer functions on pointer
variables into abstract semantics of transfer functions on tvecs. In other words,
we transform the abstract semantics of list-manipulating programs over pointer
variables into that of numerical programs over counter variables.

5.1. Transfer Function over Non-Circular Lists

Test transfer function over non-circular lists. In this paper, we consider only
four basic kinds of test conditions over pointer variables: p == null, p == q, p ,
null, p , q. Other complex conditions can be obtained by introducing auxiliary
pointer variables and composing basic conditions via logical operators. Let P be
the input CD element before and P′ be the resulting CD element after applying
the transfer function.
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1. [[p == null]]]: When p == null holds, it means that pointer variable p does
not point to any lists and thus cannot reach any list nodes, i.e.,

∀tvec.VEC(tvec)[Ip] = 1→ tvec = 0

where Ip denotes the index of the bit corresponding to pointer variable p.
In the CD domain, we add constraints tvec = 0 to P for those tvec satisfying
VEC(tvec)[Ip] = 1. Then we check the emptiness of P′, and tighten variable
bounds.

2. [[p == q]]]: When p == q holds, it means that pointer variables p, q are
aliases. Hence,

∀tvec.VEC(tvec)[Ip] ⊕ VEC(tvec)[Iq] = 1→ tvec = 0

where ⊕ denotes the bitwise XOR operation. In the CD domain, we add
constraints tvec = 0 to P for those tvec satisfying VEC(tvec)[Ip]⊕VEC(tvec)[Iq] =

1. Then we check the emptiness of P′ and tighten variable bounds.
3. [[p , null]]]: When p , null holds, it means that pointer variable p does

point to some list node. Hence, ∑
vec[Ip]=1

tvec ≥ 1

In the CD domain, if tvec = 0 holds for all vec satisfying vec[Ip] = 1 , we
put P′ = ⊥. Otherwise, we use the constraint

∑
vec[Ip]=1 tvec ≥ 1 to tighten

variable bounds.
4. [[p , q]]]: When p , q holds, it means that there exists at least one list node

that p and q do not point to at the same time. Hence,∑
vec[Ip]⊕vec[Iq]=1

tvec ≥ 1

In the CD domain, if tvec = 0 holds for all vec satisfying vec[Ip]⊕vec[Iq] =

1 ,we put P′ = ⊥. Otherwise, we use
∑

vec[Ip]⊕vec[Iq]=1 tvec ≥ 1 to tighten the
variable bounds.

Assignment transfer function over non-circular lists. We consider the assign-
ment transfer functions in the form of P′ = [[astmt]]](P), where astmt denotes an
assignment statement of shapes. Let vec/I←0 denote the bitwise substitution of
those bits in I with value 0, vec/I←q denote the bitwise substitution of those bits
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[[p := null]]] Let vec′def
=vec/{p}←0. For each vec ∈ Γ such that vec′ , vec,

we build numerical statements:
if (tvec ≥ 1) then { tvec′ := tvec′ + tvec; tvec := 0; }fi

[[p := malloc()]]] ¬ First, we apply [[p := null]]].
­ Let vec′def

=0/{p}←1. We build numerical statements: { tvec′ := 1; }.

[[free(p)]]] Let vec′def
=vec/Ivec0

p
←0. For each vec ∈ Γ such that (vec & vec0

p) = vec0
p,

• if vec = vec0
p, we build numerical statements:

if (tvec0
p ≥ 1) then { t0...0 := t0...0 + tvec0

p − 1; tvec0
p := 0; } fi

• otherwise, we build numerical statements:
if (tvec ≥ 1) then { tvec′ := tvec′ + tvec; tvec := 0; }fi

[[p := q]]] Let vec′def
=vec/{p}←q. For each vec ∈ Γ such that vec′ , vec,

we build numerical statements:
if (tvec ≥ 1) then { tvec′ := tvec′ + tvec; tvec := 0; }fi

[[p := q→ next]]] ¬ First, we apply [[p := null]]].
­ Let vec′def

=vec/{p}←q. For each vec ∈ Γ such that vec{pq} = 01,
• if vec = vec0

q, we build numerical statements
if (tvec ≥ 1) then {tvec′ := tvec − 1; tvec := 1; } else {P′ := >; } fi

• otherwise, we build numerical statements { tvec′ := tvec; tvec := 0; }.

[[p→ next := null]]] Let vec′def
=vec/Ivec0

p
←0. For each vec such that (vec & vec0

p) = vec0
p,

• if vec = vec0
p, we build numerical statements:

if(tvec0
p ≥ 1)then{t0...0 := t0...0 + tvec0

p − 1; tvec0
p := 1; }else{P′ := >; }fi

• otherwise, we build numerical statements:
if (tvec ≥ 1) then{ tvec′ := tvec′ + tvec; tvec := 0; } fi

[[p→ next := q]]] ¬ First, we apply [[p→ next := null]]].
­ Let vec′def

=vec/Ivec0
p
←q. For each vec ∈ Γ such that vec[q] = 1 and

vec′ , vec, we build numerical statements:
if (tvec ≥ 1) then {tvec′ := tvec′ + tvec; tvec := 0; } fi

Figure 3: Abstract assignment transfer functions over non-circular lists
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in I with the value of the corresponding bit of variable q, and vecpq denote the
projection of vec on positions of p and q. The abstract semantics of the assign-
ment transfer function over shapes is shown in Fig. 3. The main idea here is to
transform an assignment over shapes into a series of numerical statements over
counter variables, according to the changing of the shape.
Example 5. Consider the assignment transfer function [[p := u]]] over the list
shown in Example 1. Recall that the bit vectors are in the form of [v[u[q[p. As
depicted in Fig. 4, before applying [[p := u]]] , we have P = {t0011 = 2, t0100 =

1, t0111 = 1, t1111 = 1; t0011 ∈ [2, 2], t0100 ∈ [1, 1], t0111 ∈ [1, 1], t1111 ∈ [1, 1]}. Ac-
cording to the semantics of [[p := u]]], we know that the bit vector 0011 changes
to 0010, and thus we construct the following numeric assignments: if(t0011 ≥

1)then{ t0010 := t0010 + t0011; t0011 := 0; }fi. Similarly, for the change from
0100 to 0101, we build numerical assignments: if(t0100 ≥ 1)then{ t0101 := t0101 +

t0100; t0100 := 0; }fi. Finally, after having applied all the above assignment transfer
functions over counters, we will get P′ = {t0010 = 2, t0101 = 1, t0111 = 1, t1111 =

1; t0010 ∈ [2, 2], t0101 ∈ [1, 1], t0111 ∈ [1, 1], t1111 ∈ [1, 1]}.uq vp NULL01000011 0011 0111 1111V0 = p;   V1 = q;V2 = u;   V3 = vn1n2 n3 n4 n5 vuqp0011010001111111
num2111

uq v
p

NULL
01010010 0010 0111 1111n1n2 n3 n4 n5 vuqp0010010101111111

num2111
p : u t0010 :   t0010 + t0011; t0011 :    0;t0101 :   t0101 + t0100; t0100 :   0;= == ==

Figure 4: Example of an assignment transfer function over non-circular lists

5.2. Maintaining Points-to Sets over Non-Circular Lists
From the above, we see that the information of vec0

p is important for transform-
ing free() and list assignments that involve “next” field to numerical assignments.
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[[p == null]]]0 ¬ For all variables u, Γ0
u ← Γ0

u/{p}←0;
­ Γ0

p ← ∅

[[p == q]]]0 Γ0
p,Γ

0
q ← Γ0

p ∩ Γ0
q

[[p , null]]]0 do nothing
[[p , q]]]0 If (|Γ0

p| = 1) then Γ0
q ← Γ0

q \ Γ0
p

else if (|Γ0
q| = 1) then Γ0

p ← Γ0
p \ Γ0

q

[[p := null]]]0 ¬ For all variables u, Γ0
u ← Γ0

u/{p}←0;
­ Γ0

p ← ∅

[[p := malloc()]]]0 ¬ First, we apply [[p := null]]]0;
­ Γ0

p ← {0/{p}←1}

[[free(p)]]]0 ¬ For each vec0
p ∈ Γ0

p, vec0
u ∈ Γ0

u where u , p do
• if (vec0

p == vec0
u) Γ0

u ← Γ0
u \ {vec0

u}

• else if (vec0
u[p] == 1) Γ0

u ← Γ0
u \ {vec0

u} ∪ {vec0
u/Ivec0

p
←0}

­ Γ0
p ← ∅

[[p := q]]]0 ¬ First, we apply [[p := null]]]0;
­ For all variables u , p, Γ0

u ← Γ0
u/{p}←{q};

® Γ0
p ← Γ0

q

[[p := q→ next]]]0 ¬ First, we apply [[p := null]]]0;
­ For each vec0

q ∈ Γ0
q

• if tvec0
q = 1 and there exists vec′ which is the least vector

satisfying vec0
q ⊆ vec′ ∧ tvec′ ≥ 1, then Γ0

p ← Γ0
p ∪ {vec′/{p}←1}

• else if tvec0
q ≥ 2 then Γ0

p ← Γ0
p ∪ {vec0

q/{p}←1};
® For each vec0

q ∈ Γ0
q, vec0

u ∈ Γ0
u satisfying vec0

q ⊂ vec0
u ∧ u , p do

Γ0
u ← Γ0

u \ {vec0
u} ∪ {vec0

u/{p}←1}

[[p→ next := null]]]0 For each vec0
p ∈ Γ0

p, vec0
u ∈ Γ0

u satisfying vec0
p ⊂ vec0

u ∧ u , p do
Γ0

u ← Γ0
u \ {vec0

u} ∪ {vec0
u/Ivec0

p
←0}

[[p→ next := q]]]0 ¬ First, we apply [[p→ next := null]]]0;
­ For each vec0

q ∈ Γ0
q, vec0

u ∈ Γ0
u satisfying vec0

q ⊆ vec0
u do

Γ0
u ← Γ0

u \ {vec0
u} ∪ {vec0

u/Ivec0
p
←1}

Figure 5: Transfer functions for maintaining points-to sets over non-circular lists
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Recall that vec0
p specifies the bit vector that the pointer variable p directly points

to. In the concrete semantics, vec0
p can be computed from the environment of aux-

iliary counter variables, i.e., the least bit vector vec such that vec[p] = 1∧ tvec > 0.
However, in the abstract semantics, due to precision loss, we may not have enough
information to determine such a vector and may only know some vec satisfying
vec[p] = 1 ∧ tvec ≥ 0. In this case, we have to consider the following 2 subcases:

• if tvec > 0, then vec0
p = vec,

• else if tvec = 0, then vec0
p is the least vector vec′ satisfying vec′[p] = 1 ∧

tvec′ > 0 ∧ vec ⊂ vec′.

In other words, we may only know a possible set of vec0
ps from the abstract repre-

sentation. Hence, during the analysis, we may get a set of possible vec0
ps, denoted

as Γ0
p, for each pointer variable p. We redefine the transfer functions based on

Γ0
p. The main idea here is to first apply the transfer function separately on each

vec0
p ∈ Γ0

p and then perform join over the results computed from each vec0
p.

Furthermore, to improve the precision, we design another abstract domain to
maintain Γ0

p. For the control-flow join, we update Γ0
p to the union of two resulting

sets of Γ0
p of the two branches. For condition tests and assignments, we update Γ0

p
according to the rules shown in Fig. 5.

6. Extension to Circular Lists

A circular singly-linked list contains a cycle in which the last node points to
the first node via the next field. Note that the cycle of a circular singly-linked list
is a directed cycle with respect to the “next” edge. However, if we simply use
VRVs to describe the shape of a circular list (like we do in Sect. 3), the VRVs for
all the list nodes on the same cycle are the same. Hence, we can not distinguish
which node a pointer variable directly points to and which node is the first node
on a cycle that a pointer variable reaches. In this section, we show how to solve
this problem and extend our abstraction to fit for circular lists.

6.1. Shape Abstraction for Circular Lists
The main idea to extend shape abstraction based on bit-vectors to fit for cir-

cular lists is to cut the cycle in a circular list at some next edge. Then we use the
VRVs to abstractly represent the resulting non-circular list after cut. Moreover,
we add an auxiliary flag bit c for each VRV vec and denote the resulting VRV

17



Algorithm 2 OnSameCycle( ˘vec, ˘vec′)
Input: ˘vec : a circular VRV ;

˘vec′ : another circular VRV ;
Output: b: whether ˘vec and ˘vec′ are on the same cycle.

1: if ( ˘vec[c] = 1 ∧ ˘vec′[c] = 1 ∧ ( ˘vec′ >> 1)&( ˘vec >> 1) , 0x0)
2: then b← TRUE
3: else b← FALSE
4: return b

Algorithm 3 JoinCycl(Γ̆, ˘vec)

Input: Γ̆ : a set of circular VRVs;
˘vec : a circular VRV in Γ̆ s.t. ˘vec[c] = 0;

Output: ˘join: the circular VRV of the first node on a cycle that ˘vec reaches.

1: ˘join← 0x1
2: for each ˘vec′ ∈ Γ̆ satisfying ˘vec′[c] = 1 and ˘vec ⊂ ˘vec′ do
3: if ( ˘join = 0x1 ∨ ˘vec′ ⊂ ˘join ) then ˘join← ˘vec′

4: return ˘join

as a so-called circular VRV ˘vec where ˘vec[c] = 1 if and only if the correspond-
ing list segment is on a cycle. In this paper, we add the c bit as the lowest bit
(i.e., Ic = 0). The source node of the next edge that is cut is called the tail node
of the cycle, while the target node of the next edge that is cut is called the head
node of the cycle. It is easy to see that in the set of circular VRVs for those list
nodes on the same cycle, the circular VRV of the tail node is the largest one while
that of the head node is the smallest one. For the sake of conciseness, we intro-
duce several algorithms to get commonly used shape information from the set of
circular VRVs. We use OnSameCycle( ˘vec, ˘vec′) to determine whether two circu-
lar VRVs ˘vec and ˘vec′ are on the same cycle, shown in Algorithm 2. JoinCycl
(Γ̆, ˘vec) computes the circular VRV of the node on a cycle that ˘vec reaches first,
shown in Algorithm 3. Head (Γ̆, ˘vec) and Tail (Γ̆, ˘vec) respectively give the circu-
lar VRVs of the current head and tail node of the cycle that ˘vec lies on, shown in
Algorithm 4 and Algorithm 5.
Example 6. Consider the circular singly-linked lists shown in Fig. 6(a) wherein
the bit vectors are in the form of [r[v[u[q[p [c. For the circular list pointed to
by p, if we cut the cycle at the next edge from list node n5 to n2, we get a non-
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Algorithm 4 Head(Γ̆, ˘vec)

Input: Γ̆ : a set of circular VRVs;
˘vec : a circular VRV in Γ̆ s.t. ˘vec[c] = 1;

Output: ˘head: the circular VRV of the head node of the cycle containing ˘vec .

1: ˘head← ˘vec
2: for each ˘vec′ ∈ Γ̆ satisfying ˘vec′[c] = 1 do
3: if ( ˘vec′ ⊂ ˘head∧OnSameCycle( ˘vec′, ˘vec)) then
4: ˘head ← ˘vec′
5: return ˘head

Algorithm 5 Tail(Γ̆, ˘vec)

Input: Γ̆ : a set of circular VRVs;
˘vec : a circular VRV in Γ̆ s.t. ˘vec[c] = 1;

Output: ˘tail: the circular VRV of the tail node of the cycle containing ˘vec .

1: ˘tail← ˘vec
2: for each ˘vec′ ∈ Γ̆ satisfying ˘vec′[c] = 1 do
3: if ( ˘tail ⊂ ˘vec′∧OnSameCycle( ˘vec′, ˘vec)) then
4: ˘tail← ˘vec′
5: return ˘tail

circular singly-linked list. Moreover, we use the flag bit to identify whether the
node is on a cycle or not. n1 is not on a cycle and thus its flag bit is 0, while
n2, n3, n4, n5, n6, n7, n8 are on cycles and thus their flag bits are 1. n2, n3, n4, n5 are
on the same cycle of one list, while n6, n7, n8 are on the same cycle of another list.
Overall, for the two lists, we have a set of circular VRVs Γ̆ = {000100, 000111,
001111, 011111, 100001}. In Fig. 6(a), n5, n8 are the tail nodes while n2, n6 are
the head nodes. n4 is the first node on the cycle that pointer variable u can reach,
and thus JoinCycl(Γ̆, 000100) over shape in Fig. 6(a) returns 001111.

Intuitively, adding the flag bit c can be considered as introducing an auxiliary
variable Vc which points to the destination node of the next edge that is cut. E.g.,
for the list pointed to by p, Vc points to n2 in Fig. 6(a), n4 in Fig. 6(c), n5 in
Fig. 6(e).

Theorem 4. In singly-linked lists, a list node can be on at most one cycle.

Proof. Given in the appendix. �
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q

n1n2 n3 n4 n5000111 000111 001111 011111000100

up v
q

n1n2 n3 n4 n5011111 011111 001001 011001000100
00011 1  01111 101100 1  00011 101111 1

rvuqp c 00011 1 & 01111 1(n2,n3) (n4) (n5)

(c)

(b)
(a)  00111 100100 1    00011 1 

up v
q

n1n2 n3 n4 n5011011 011011 011111 010001000100
    00111 1   01111 1 01000 1   00011 101011 1 00111 1 & 01111 1(n2,n3) (n4) (n5)

(e)

(d)
 00111 101111 100111 1 & 01111 1rvuqp c rvuqp c rvuqp c rvuqp c rvuqp c ¯ ¯ ¯|  00000 1 |  00000 1 |  00000 1

r n6 n7 n8100001 100001 100001

r n6 n7 n8100001 100001 100001 r n6 n7 n8100001 100001 100001

© ©©

Figure 6: Example of circular lists

It is easy to see that there exists at most one cycle in a singly-linked list. In-
tuitively, a cycle as a whole could be considered as an abstract sink node of a
singly-linked list. A pointer variable can reach at most one cycle. The circu-
lar VRVs ˘vecn1 , ˘vecn2 of two list nodes from different cycles satisfy ( ˘vecn1 >>
1)&( ˘vecn2 >> 1)=0x0. Hence, although there may exist several circular lists at
the same time in memory during program running (e.g., the two lists in Fig 6(a)),
we need only one flag bit for all circular lists in memory.

Definition 6. A set of circular VRVs Γ̆ is circularly consistent, if for arbitrary
two distinct circular VRVs ˘vecn1 and ˘vecn2 in Γ̆, (( ˘vecn1 >> 1)&( ˘vecn2 >> 1) =

0) ∨ ˘vecn1 ⊂ ˘vecn2 ∨ ˘vecn2 ⊂ ˘vecn1 holds.

Theorem 5. A set of circular VRVs of singly-linked lists is circularly consistent.

Proof. Given in the appendix. �

Theorem 6. A circularly consistent set of circular VRVs Γ̆ satisfies |Γ̆| ≤ 2|V |+ 2.

Proof. Given in the appendix. �
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Algorithm 6 Rotate(Γ̆, ˘vec)

Input: Γ̆ : a set of circular VRVs before rotation;
˘vec : a circular VRV of the new candidate tail node in Γ̆ s.t. ˘vec[c] = 1;

Output: M: a set of pairs that map a circular VRV to the new one after rotation.

1: M ← ∅
2: ˘tail← Tail (Γ̆, ˘vec)
3: for each ˘vec′ ∈ Γ̆ satisfying ˘vec′[c] = 1 do
4: if ( ˘vec ⊂ ˘vec′) then
5: ˘vec′′ ← ( ˘vec′ ⊕ ˘vec) | 0x1
6: M ← M ∪ {〈 ˘vec′, ˘vec′′〉}
7: else if ( ˘vec′ ⊆ ˘vec) then
8: ˘vec′′ ← ( ˘vec′ � ˘vec) & ˘tail
9: M ← M ∪ {〈 ˘vec′, ˘vec′′〉}

10: return M

Rotate operation. Given a circular list, we could choose different “next” edges
to cut the cycle. And different cut points give different resulting sets of circular
VRVs for the same circular list. To this end, we introduce a rotate operation to
change the cut point for a circular list. We change the choice of the tail node of
a cycle for implementing the rotate operation. More precisely, we change the cut
point to the “next” edge of the last node of the list segment that the new candidate
tail node lies on. The algorithm for the rotate operation, denoted as Rotate(Γ̆, ˘vec),
is shown in Algorithm 6 where Γ̆ is the current set of circular VRVs before rotation
and ˘vec is the circular VRV of the new candidate tail node. E.g., in Fig. 6(a), if we
call Rotate(Γ̆, 000111), it means that we choose n3 to become the new tail node.

Example 7. Rotate operation changes the choice of tail node of a cycle. In
Fig. 6(a), n5 is the tail node. If we would like to change the tail node to n3, we call
Rotate(Γ̆, 000111). Fig. 6(b) shows the details of running Rotate(Γ̆, 000111) while
the resulting shape is shown in Fig. 6(c). Similarly, if we would like to change the
tail node to n4 in Fig 6(a), we call Rotate(Γ̆, 001111). Fig. 6(d) shows the details of
the algorithm of Rotate(Γ̆, 001111) while the resulting shape is shown in Fig. 6(e).
Since n1 is not on the cycle, both Rotate(Γ̆, 000111) and Rotate(Γ̆, 001111) do not
change its representation (i.e., 000100).
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6.2. Numerical Abstraction for Circular Lists
Similarly as in Sect. 4, for each ˘vec ∈ Γ̆, we introduce an auxiliary counter

variable t ˘vec ∈ N to denote the value of the number of the list nodes whose circular
VRV is ˘vec. We maintain a bijection between ˘vec and t ˘vec. And {〈 ˘vec, t ˘vec〉 | t ˘vec >
0} represents the shape of circular singly-linked lists, if it is circularly consistent.
The shape in Fig. 6(a) can be represented by the set {〈000100, 1〉, 〈000111, 2〉,
〈001111, 1〉, 〈011111, 1〉, 〈100001, 3〉}, while the shape in Fig. 6(c) can be repre-
sented by the set {〈000100, 1〉, 〈001001, 1〉, 〈011001, 1〉, 〈011111, 2〉, 〈100001, 3〉}.
For counter variables, we use the same numerical abstract domain (i.e., the CD
domain) as in Sect. 4, and reuse those domain operations over counter variables.

6.3. Analysis of Programs Manipulating Circular Lists

In the following, we mainly focus on how to adapt abstract transfer functions
over non-circular lists used in Sect. 5.1 to the case of circular lists. For test transfer
function, we simply reuse the abstract semantics over non-circular lists in Sect. 5.1
for circular lists. However, considering assignment transfer functions, moreover,
we need to consider the value of the flag bit c of circular VRVs, on top of the
abstract semantics for non-circular lists in Sect. 5.1.
Abstract semantics for rotate operation. Before we define the abstract assign-
ment transfer functions, we first give the abstract semantics for the rotate oper-
ation. Because the rotate operation is quite important for defining the abstract
semantics for assignments such as p := null, free(p), p := q ← next, etc. Exam-
ple 8 illustrates why we need the rotate operation for assignments. The Rotate()
algorithm gives a mapping from original circular VRVs before rotation to the cor-
responding new circular VRVs after rotation. Since our analysis is performed on
top of the domain over counter variables, we define the abstract semantics for ro-
tate operation [[Rotate (Γ̆, ˘vec)]]]̆ in terms of semantics over counter variables, as
follows:

¬ Let M=Rotate(Γ̆, ˘vec) and Γ̆M =
⋃
〈 ˘vec, ˘vec′〉∈M{ ˘vec, ˘vec′}. For each ˘vec ∈ Γ̆M,

we introduce temporary variables ṫ ˘vec initialized by zero: {ṫ ˘vec := 0;}

­ For each 〈 ˘vec, ˘vec′〉 ∈ M, we build numerical statements:
if(t ˘vec > 0) then {ṫ ˘vec′ := t ˘vec; }fi

® For each ˘vec ∈ Γ̆M, we build numerical statements: {t ˘vec := ṫ ˘vec; }

¯ We project out and remove the dimensions of temporary variables ṫ ˘vec.
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Clear the p-bit
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Figure 7: Example to show the need of rotate operation (for [[p := null]]]̆)

Example 8. Consider the assignment transfer function [[p := null]]]̆ over the
circular list shown in Fig. 7. Note the bit vectors are in the form of [v[u[q[p [c. If
we do not perform the rotate operation and directly clear the p-bit in Γ̆ over the
shape in Fig. 7(a), then n2 would be represented by 00001 which means that n2 is
on a cycle but no variable could reach it after cut, which is not sound according to
the concrete semantics. And if we apply [[Rotate(Γ̆, ˘vec0

p)]]]̆ where ˘vec0
p = 00011

over the shape in Fig. 7(a), we get the shape show in Fig. 7(b). Then, if we clear
the p-bit in Γ̆ over the shape in Fig. 7(b), we get the final result of [[p := null]]]̆

shown in Fig. 7(c). For another example, let us consider [[u → next := null]]]

over the list shown in Fig. 6(c). If we do not perform rotate operation before
clearing the u-bit, then n4 will be leaked since it would be represented by 000001.
However, if we first apply [[Rotate(Γ̆, JoinCycl(Γ̆, ˘vec0

u))]]]̆ , we will get correct
results.

Assignment transfer function over circular lists. Similarly as in Sect. 5.1, the
main idea here is to transform an assignment over circular lists into a series of
numerical statements over counter variables, taking into account to the changing
of the shape. The abstract semantics of the assignment transfer function over
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circular lists is shown in Fig. 8.
The key point here is that we first perform a rotate operation to change the

cut point of a cycle such that the operated pointer variable points to or reaches
first a list node that has the same circular VRV as the new tail node. E.g., when
considering [[p := null]]]̆ over the circular list shown in Fig. 7(a), we first perform
a rotate operation such that n2 becomes a tail node, which results in the circular
list shown in Fig. 7(b).

After having performed rotate operations to choose a new proper tail node
when necessary, we could then follow the same idea as the corresponding seman-
tics for non-circular lists given in Fig. 3. E.g., for the case of [[p := null]]]̆ over cir-
cular lists, we could simply perform [[p := null]]] (i.e., the ­ step of [[p := null]]]̆),
considering the cut circular lists as non-circular lists. However, for [[free(p)]]]̆ and
[[p → next := null]]]̆, we need to be more careful, since both operations will con-
vert a circular list to a non-circular one when p points to a list node on a cycle,
as considered in the ¬ step of [[free(p)]]]̆ and the ­ step of [[p → next := null]]]̆.
On the other hand, [[p → next := q]]]̆ forms a new cycle when q can reach the
list node that p points to, as considered in the ® step of [[p → next := q]]]̆. E.g.,
when perform [[p → next := u]]]̆ over the non-circular list shown in Fig. 9(b), we
will get a circular list shown in Fig. 9(c). For the case of [[p := q → next]]]̆, after
rotating q to point to the tail node of a cycle when q lies on a cycle, if the length
of the list segment that the tail node belongs to is 1, q → next will point to the
head of the cycle, which is considered in the ­ step of [[p := q→ next]]]̆.
Example 9. Fig. 9 shows examples of assignment transfer functions over circular
lists, such as [[p → next := null]]]̆ and [[p → next := u]]]̆. Note the bit vectors
are in the form of [v[u[q[p [c. In Fig. 9(a), before applying [[p → next := null]]]
, we have P = {t01000 = 1, t01001 = 1, t11001 = 1, t11101 = 1, t11111 = 1; t01000 ∈
[1, 1], t01001 ∈ [1, 1], t11001 ∈ [1, 1], t11101 ∈ [1, 1]}, t11111 ∈ [1, 1]}. According to the
semantics of [[p→ next := null]]]̆, we build numerical statements:
• if(t11111 ≥ 1)then{t00000 := t00000 + t11111 − 1; t11110 := 1; t11111 := 0}fi /*t11110 ← t11111*/

• if(t01001 ≥ 1)then{t01000 := t01000 + t01001; t01001 := 0}fi /*t01000 ← t01001*/

• if(t11101 ≥ 1)then{t11100 := t11100 + t11101; t11101 := 0}fi /*t11100 ← t11101*/

• if(t11101 ≥ 1)then{t11000 := t11000 + t11001; t11001 := 0}fi /*t11000 ← t11001*/

Finally, after having applied all the above assignment transfer functions over
counters, we will get P′ = {t01000 = 2, t11000 = 1, t11100 = 1, t11110 = 1; t01000 ∈

[2, 2], t11000 ∈ [1, 1], t11100 ∈ [1, 1], t11110 ∈ [1, 1]}. Furthermore we apply [[p →
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[[p := null]]]̆ ¬ If ( ˘vec0
p[c] = 1), we apply [[Rotate(Γ̆, ˘vec0

p)]]].
­ If ( ˘vec0

p[c] = 0∧JoinCycl(Γ̆, ˘vec0
p) , 0x1), we apply [[Rotate(Γ̆, JoinCycl(Γ̆, ˘vec0

p))]]].
® We apply [[p := null]]].

[[p := malloc()]]]̆ ¬ We apply [[p := malloc()]]] wherein [[p := null]]]̆ is used instead of [[p := null]]].
[[free(p)]]]̆ ¬ If ( ˘vec0

p[c] = 1)
• we apply [[Rotate(Γ̆, ˘vec0

p)]]], and
• for each ˘vec ∈ Γ̆ s.t. OnSameCycle( ˘vec, ˘vec0

p) = TRUE, we build statements:
if(t ˘vec ≥ 1)then{ t ˘vec′ := t ˘vec′ + t ˘vec; t ˘vec := 0; }fi. wherein ˘vec′ = ˘vec/I{c}←0

­ If ( ˘vec0
p[c] = 0∧JoinCycl(Γ̆, ˘vec0

p) , 0x1) we apply [[Rotate(Γ̆, JoinCycl(Γ̆, ˘vec0
p))]]].

® We apply [[free(p)]]].
[[p := q]]]̆ ¬ First, we apply [[p = null]]]̆.

­ We apply [[p := q]]].
[[p := q→ next]]]̆ ¬ If ( ˘vec0

q[c] = 0)
• we apply [[p := q→ next]]] wherein [[p := null]]]̆ is used instead of [[p := null]]].
­ If ( ˘vec0

q[c] = 1)
• we apply [[p := null]]]̆ and then [[Rotate(Γ̆, ˘vec0

q)]]],
• if (t ˘vec0

q ≥ 2) we apply the ­ step of [[p := q→ next]]]

• if (t ˘vec0
q = 1), for each ˘vec ∈ Γ̆ s.t. OnSameCycle( ˘vec, ˘vec0

q)=true, we build statements:

if(t ˘vec ≥ 1) then { t ˘vec′ := t ˘vec′ + t ˘vec; t ˘vec := 0; }fi where ˘vec′def
= ˘vec/{p}←1

[[p→ next := null]]]̆ ¬ If ( ˘vec0
p[c] = 0)

• if (JoinCycl(Γ̆, ˘vec0
p) , 0x1), we apply [[Rotate(Γ̆, JoinCycl(Γ̆, ˘vec0

p))]]]̆, and
we apply [[p→ next := null]]].

­ If ( ˘vec0
p[c] = 1)

• we apply [[Rotate(Γ̆, ˘vec0
p)]]], and

• for each ˘vec ∈ Γ̆ s.t. OnSameCycle( ˘vec, ˘vec0
p)=true,

– if ( ˘vec = ˘vec0
p), we build statements:

if(t ˘vec ≥ 1)then {t0...0 := t0...0 + t ˘vec − 1; t ˘vec′ := 1; t ˘vec := 0; } else {P′ := >; } fi
where ˘vec′def

= ˘vec/I{c}←0
– else we build numerical statements:

if(t ˘vec ≥ 1)then{ t ˘vec′ := t ˘vec′ + t ˘vec; t ˘vec := 0; }fi where ˘vec′def
= ˘vec/I{c}←0

[[p→ next := q]]]̆ ¬ First, we apply [[p→ next := null]]]̆.
­ if ( ˘vec0

p[q] = 0), we apply [[p→ next := q]]]

® if( ˘vec0
p[q] = 1)

• for each ˘vec ∈ Γ̆ such that ˘vec[q] = 1, we build statements:

if(t ˘vec ≥ 1)then{ t ˘vec′ := t ˘vec′ + t ˘vec; t ˘vec := 0; }fi where ˘vec′def
= ˘vec/I{c}←1

Figure 8: Abstract assignment transfer functions for circular lists
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uq p 0100011101 11111 01001 11001 vuqpc01000111010100111001
num111111111 1

[[p! next := null]]̧]
(a)

[[p! next := u]]̧] vuqpc010011110111111 num21111001 1
uq p 0100111101 11111 01001 11001

vuqpc010001110011110 num21111000 1(b)

(c)

v

v

uq p 0100011100 11110 01000 11000v
t00000 := t00000 + t11111 ¡ 1; t11110 := 1; t11111 := 0t01000 := t01000 + t01001; t01001 := 0t11100 := t11100 + t11101; t11101 := 0t11000 := t11000 + t11001; t11001 := 0

t01001 := t01001 + t01000; t01000 := 0t11101 := t11101 + t11100; t11100 := 0t11111 := t11111 + t11110; t11110 := 0t11001 := t11001 + t11000; t11000 := 0
Figure 9: Examples of assignment transfer functions over circular lists

next := u]]]̆. According to the semantics of [[p→ next := u]]]̆, we build numerical
statements:
• if(t01000 ≥ 1)then{t01001 := t01001 + t01000; t01000 := 0}fi /*t01001 ← t01000*/

• if(t11100 ≥ 1)then{t11101 := t11101 + t11100; t11100 := 0}fi /*t11101 ← t11100*/

• if(t11110 ≥ 1)then{t11111 := t11111 + t11110; t11110 := 0}fi /*t11111 ← t11110*/

• if(t11000 ≥ 1)then{t11001 := t11001 + t11000; t11000 := 0}fi /*t11001 ← t11000*/

After having applied all the above assignment transfer functions over counters, we
will get P′′ = {t01001 = 2, t11001 = 1, t11101 = 1, t11111 = 1; t01001 ∈ [2, 2], t11001 ∈

[1, 1], t11101 ∈ [1, 1], t11111 ∈ [1, 1]}.

Maintaining points-to sets over circular lists. Similarly as in Sect. 5.2, for the
case of circular lists, we also use another abstract domain to maintain a possible
points-to set Γ̆0

p for each pointer variable p, for the sake of precision. For most
operations, we just follow similar ideas as those for non-circular lists shown in
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Fig. 5. However, for several kinds of assignments that may change circular lists
to non-circular ones or the other direction, we need to consider the change of the
circle flag bit for elements in Γ̆0

p. [[free(p)]]]̆ and [[p→ next := null]]]̆ may convert
a circular list to a non-circular one. Hence, we may need to clear the cycle flag
bit for those circular VRVs in the points-to sets of pointer variables that lie on the
same cycle as p does. On the contrary, [[p → next := q]]]̆ may form a new cycle
when q can reach the list node that p points to. Hence, we may need to set to 1
the cycle flag bit for those circular VRVs in the points-to sets of pointer variables
u satisfying ˘vec0

u[q]=1. Different with [[p → next := q]]]0 for non-circular lists,
we do not set the I ˘vec0

p
bits to 1 for those ˘vec0

u satisfying ˘vec0
u[q] = 1, since in this

case p points to the tail node of the newly formed cycle. E.g. when we perform
[[p → next := u]]]̆ over the list in Fig 9(b), we have ˘vec0

p = 11110, but we will
not set I ˘vec0

p
bits to 1 for the circular VRVs of list nodes pointed to by u, v, q. It is

also worth noting that the rotate operation that is frequently used for circular lists
will change the points-to set of those pointer variables that lie on the cycle which
is rotated. Hence, we need to update the points-to sets for those variables after the
rotate operation, according to the mapping given by the Rotate() algorithm.

7. Experiments

We have developed a prototype tool for analyzing list manipulating programs
based on the Apron [13] numerical abstract domain library and the Interproc [14]
static analyzer. We implemented our CD domain inside Apron. Since Interproc
uses the Spl input language which supports only numeric (integer or real) vari-
ables, inspired by CINV [4], we encode our programs on lists via Spl. Pointer
variables of list type are coded by real variables while data variables (such as
length-related parameters, loop counters) are encoded by integer variables. The
constant NULL is encoded by value 0.0. And the operations on pointers are en-
coded using operations on real variables. E.g., p := q → next is encoded by
p = cast f ,n(q), and p → next := q is encoded by p = castd,n(q). In the imple-
mentation of the CD domain, over the abstract environment for affine equalities,
we maintain affine equality constraints among integer program variables (such as
loop counter variables and length-related parameters) and auxiliary counter vari-
ables tvec. Hence, we could infer invariants like tvec − n + i = 0, where n is a
length-related parameter and i is a loop counter variable.

To exemplify the ability of invariant synthesis of our CD domain, let us con-
sider an example manipulating non-circular lists copy and delete1 (which for sake
of space allows statements like p := p→ next and is a simplified non-parametric
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void copy and delete1(List* xList) {
/* assume \length(xList)==9; */

1: List* yList, pList, qList;
/ ∗ t0100 = 9; t0100 ∈ [9, 9];♥ ∗ /
2: yList := xList; qList := pList := null;
/ ∗ t0100 + t1100 = 9, t0011 + t1100 = 9; t0100 ∈ [0, 9], t1100 ∈ [0, 9], t0011 ∈ [0, 9];♥ ∗ /
3: while (yList != null) do {
/ ∗ t0100 + t1100 = 9, t0011 + t1100 = 9; t0100 ∈ [0, 8], t1100 ∈ [1, 9], t0011 ∈ [0, 8];♥ ∗ /
4: yList := yList → next; qList := malloc();
5: qList → next := pList; pList := qList;} od
/ ∗ t0011 = 9, t0100 = 9; t0011 ∈ [9, 9], t0100 ∈ [9, 9];♥ ∗ /
6 : yList := xList;
/ ∗ t0011 − t1100 = 0; t0011 ∈ [0, 9], t1100 ∈ [0, 9];♥ ∗ /
7 : while (yList != null) do {
/ ∗ t0011 − t1100 = 0; t0011 ∈ [1, 9], t1100 ∈ [1, 9];♥ ∗ /
8: yList := yList → next; qList := qList → next;
9: free(xList); free(pList);
10: xList := yList; pList := qList;
11: } od
/ ∗ ∀vec.tvec = 0 ∗ /
}

Figure 10: Example program copy and delete1 and the generated invariants. The
notation ♥ means tvec = 0 for any tvec that does not appear in the annotated invari-
ant.

version of copy and delete2 in Fig. 11) together with the generated invariants by
the CD domain, as shown in Fig. 10. The program first reversely copies one list
to another and then deletes both lists simultaneously. Suppose the initial length of
the input list xList is 9 1 and the variable ordering is pList ≺ qList ≺ xList ≺ yList
(i.e., the bit vectors are in the form of [yList[xList[qList[pList). From the invariants af-
ter line 7, we can see: (1) Pointer variables pList , qList are aliases while xList ,
yList are aliases (since for all tvec , 0, vec[x] = 1 holds if and only if vec[y] = 1
holds); (2) The two lists respectively pointed to by pList and xList are of the same
length (according to the invariant t0011 − t1100 = 0); (3) The bounds of counter
variables are strictly positive, which indicates that the operations on lines 8-10 are
free of null pointer dereference. Finally, the special auxiliary variable t0···0 equals
to 0 at all the program points, which proves the absence of memory leak in the

1Note that our implementation allows that the initial length of a list can be a non-negative
integer parameter such as n ∈ N. However, for the sake of illustration, we use a constant number
9 as the initial length of the input list in this example.
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program.
Our experiments were conducted on a selection of benchmark examples listed

in Fig. 11, some of which are taken from [4]. These benchmark examples con-
tain commonly used operations over lists, such as create, traverse, reverse, merge,
copy, delete and dispatch. Programs with postfix name “circular” are the circu-
lar version of corresponding programs with non-circular lists. These benchmark
programs involve relational properties among lengths of list segments. Our CD
domain that is based on intervals and affine equalities, is able to find interesting
affine equality relations and bounds of lengths of list segments. In Fig. 11, the
column “Key Property Discovered” shows some key properties in the program
discovered by our approach, and also gives some important affine equality rela-
tions among list segments found by our CD domain inside loops or after loops. In
the last two programs, we detect memory related errors. For del without head, we
detect a memory leak at the end of program, since in this program all list nodes are
freed except the head node. For one branch f ree, we detect a null pointer deref-
erence, since p := q → next appears after a branch statement wherein free(q) is
called in one of the branches.

We have conducted experimental comparisons of our analysis based on the
CD domain with CINV [4] and THOR [15] on those benchmark programs, as
shown in Fig. 12 and Fig. 13 respectively. The column “#PVars” indicates the
total number of pointer variables in the program. The columns “Time (s)” and
“Memory (MB)” present the analysis times in seconds and the memory usage in
MB respectively when the analyzer is run on a 2.5GHz PC with 2GB of RAM
running Fedora 12.

Comparison with CINV. Fig. 12 shows the experimental comparison results of
our analysis with CINV [4] which is a tool for analyzing programs manipulating
singly linked lists developed by Bouajjani et al. CINV combines shape abstrac-
tion (via shape graph) and numerical abstractions, and is able to infer not only
length properties of list segments but also properties over the numerical list con-
tents (such as the sums or the multisets of list elements, sortedness). We compared
our analysis with CINV on inferring length properties of list segments, since the
benchmark programs used in this paper do not involve operations over list con-
tents. Since CINV cannot handle circular lists, the time and memory cost of CINV
over those programs manipulating circular lists are marked with “-”.

From Fig. 12, we can see that our analysis based on the CD domain outper-
forms CINV both in execution time and memory usage. Concerning the memory
usage, CINV utilizes shape graph to represent the shape of lists, while our anal-
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Program Key Property Discovered

create Created list has length n
(e.g., t10 = n)

traverse Sum of traversed and remained list sizes is n during the loop
(e.g., t010 + t011 = n)

reverse Sum of reversed and remained list sizes is n during the loop
(e.g., t001 + t010 = n)

length equal The two input lists have the same length n
(e.g., t00011 − t01100 = 0)

merge Merged list size is the sum of input list sizes
(e.g., t10001 = n1 + n2)

copy and delete2 Copied list has the same length as input list before delete
(e.g., t00011 − t11000 = 0)

dispatch Sum of (two) dispatched and remained list sizes is n
(e.g., t000010 + t000100 + t001000 = n)

counter Sum of countered and remained list sizes is n during the loop
(e.g., t001 − counter = 0, t011 + counter = n)

double len After deleting half the longer list, the lengths of the two lists are equal
(e.g., t00001 − t00010 = 0)

create circular Created circular list has length n
(e.g., t0011 = n)

reverse circular Sum of reversed and remained list sizes is n during the loop
(e.g., t00100 + t01000 + t11100 = n)

copy and delete2 Copied list has the same length as input list before delete
circular (e.g., t0000101 − t0100001 = 0)

counter circular Sum of countered and remained list sizes is n during the loop
(e.g., t0011 − counter = 0, t0111 + counter = n)

del without head A memory leak is detected
(e.g., t000 = 1)

one branch free A null pointer dereference is detected
(e.g., p := q→ next where tvec0

q ∈ [0, 1])

Figure 11: Key properties discovered for benchmark examples by the CD domain
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Program Time (s) Memory (MB)
Name #PVars CINV CD CINV CD

create 2 0.872 0.022 20.2 6.5
traverse 3 0.920 0.027 21.0 6.7
reverse 3 0.933 0.044 23.8 6.7

length equal 5 1.453 0.162 30.5 17.0
merge 5 0.953 0.127 25.9 13.5

copy and delete2 5 1.042 0.197 23.9 17.2
dispatch 6 1.24 0.52 57.8 39.6
counter 3 1.242 0.079 21.1 8.2

double len 5 3.822 0.158 35.5 15.4
create circular 3 - 0.041 - 8.4
reverse circular 4 - 0.077 - 9.8

copy and delete2 6 - 0.543 - 61.9circular
counter circular 3 - 0.040 - 8.3

del without head? 3 0.020 0.009 20.7 6.6
one branch free 2 0.005 0.005 19.3 6.5

Figure 12: Experimental comparison of our approach with CINV

ysis utilized bit vectors and thus consumes much less memory to describe the
shape information. Concerning the execution time, CINV needs to perform shape
analysis over shape graph to infer shape properties, while our analysis utilizes
bit-wise operations on bit-vectors which is quite efficient. For the precision of
the analysis, we have compared the discovered numerical invariants over lengths
of list segments given by CINV and the CD domain. The generated invariants
are equivalent for all benchmark programs manipulating non-circular lists except
the del without head program marked with ? which incurs memory leaks. CINV
does not consider memory leaks, while our analysis can detect memory leaks or
prove their absence since our CD domain utilizes a special counter variable t0...0 to
capture the relations of the amount of memory leaks with other counter variables
and integer program variables.

Comparison with THOR. Fig. 13 shows the experimental comparison results of
our analysis based on the CD domain with THOR [15] which is a tool able to
translate a heap-manipulating program into a purely numerical program based
on separation logic reasoning. THOR itself only performs sound shape analysis
based on separation logic and has limited capability of numerical reasoning. It can

31



either prove the memory safety of the program or issue memory error alarms. If
an alarm is issued by THOR, we need to feed the generated numerical program by
THOR to a separate safety tool with more powerful numerical reasoning capabil-
ities, to check whether the alarm is a false or true alarm. During our experiments,
we chose BLAST to analyze the generated numerical programs, as in [15].

Program Time (s) Memory (MB)
THOR

CD

THOR
CDName #PVars THOR BLAST total THOR BLAST total.native .native

create 2 0.502 0.415 0.917 0.022 43.1 8.2 51.3 6.5
traverse 3 0.249 0.103 0.352 0.027 34.5 15.6 50.1 6.7
reverse 3 0.219 0.208 0.427 0.044 34.5 9.1 43.6 6.7

length equal 5 1.782 60.624 62.406 0.162 38.2 53.6 91.8 17.0
merge 5 1.211 0.364 1.575 0.127 44.8 9.5 54.3 13.5

copy and delete2 5 0.196 93.864 94.06 0.197 34.2 132.6 166.8 17.2
dispatch 6 5.339 0.434 5.773 0.520 56.1 9.2 65.3 39.6
counter 3 0.902 0.245 1.147 0.079 40.2 9.1 49.3 8.2

create circular 3 0.592 0.433 1.025 0.041 43.5 9.3 52.8 8.4
reverse circular 4 1.589 6.679 8.268 0.077 45.8 12.8 58.6 9.8

copy and delete2 6 2.167 2.940 5.107 0.543 56.8 12.6 69.4 61.9circular
counter circular 3 1.866 8.092 9.958 0.040 46.1 15.6 61.7 8.3
one branch free 2 0.273 0.138 0.411 0.005 38.2 1.1 39.3 6.5

del without head? 3 0.411 31.815 32.226 0.009 42.8 38.4 81.2 6.6
double len? 5 1.878 1.015 2.893 0.158 47.8 26.4 74.2 15.4

Figure 13: Experimental comparison of our approach with THOR

In Fig. 13, the column “THOR.native” corresponds to the THOR tool itself.
The benchmark programs are classified into three groups, according to the analy-
sis results. For the programs in the first group (from create to counter circular)
that are in fact safe in memory, THOR itself issues unsafe memory alarms but
which are found to be false alarms by BLAST afterwards. Our analysis based on
the CD domain can also prove the memory safety of all those programs. For the
program in the second group, i.e., one branch f ree which contains a null pointer
dereference, THOR itself issues a null pointer dereference alarm which cannot be
eliminated by BLAST afterwards, while our analysis also detects a null pointer
dereference for this program. For the programs marked with ? in the third group,
THOR and our analysis provide different results. For del without head, THOR
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does not detect the memory leak in the program while our analysis does. For the
program double len which is in fact safe in memory, THOR itself issues memory
error alarms which are actually false alarms but cannot be eliminated by BLAST
afterwards. double len is a program with two input lists, i.e., xList with length n
and yList with length 2n. First, the program traverses the list nodes of xList in an
outer loop and after each traverse step over a list node of xList an inner loop re-
moves a tail node of yList. After this process, the lengths of the two lists should be
equal. Then the program deletes both lists simultaneously in another loop. THOR
together with BLAST cannot prove the memory safety of this problem while our
analysis based on the CD domain can.

From Fig. 13, we can see that our analysis based on the CD domain outper-
forms the THOR approach (i.e., THOR together with BLAST) both in execution
time and memory usage.

Experiments on different number of pointer variables. Given a program with |V |
number of pointer variables, the number of auxiliary counter variables (i.e., tvec)
is 2|V |. However, Theorem 3 and Theorem 6 show that to describe the list shape at
some program point, at most 2|V | + 2 counter variables are non-zero. At different
program points in the same program, the shape of lists is changing and the set of
non-zero counter variables are changing. Considering this, in our implementation,
inside each abstract CD domain element we maintain a dynamic list of non-zero
counter variables and maintain numerical constraints among only these non-zero
counter variables.

Program Time (s) Memory (MB)
Name #PVars CINV THOR CD CINV THOR CD

traverse-1 3 0.920 0.249 0.027 21.0 34.5 6.7
traverse-2 6 1.046 1.615 0.059 23.9 45.836 6.9
traverse-3 9 1.119 >10min 0.081 27.8 - 7.1
traverse-4 12 1.263 >10min 0.120 34.2 - 7.4
traverse-5 15 1.397 >10min 0.144 43.0 - 7.6
traverse-6 18 1.501 >10min 0.183 53.4 - 8.0
traverse-7 21 1.719 >10min 0.225 66.4 - 8.5
traverse-8 24 1.828 >10min 0.264 81.8 - 9.2
traverse-9 27 2.092 >10min 0.330 100.3 - 9.8

traverse-10 30 2.368 >10min 0.383 122.4 - 10.5

Figure 14: Experiments on different number of pointer variables.

In order to evaluate the performance of our analysis on different number of
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pointer variables, we have conducted an experiment over a series of programs
that have the same functionality but with different number of pointer variables, as
shown in Fig. 14. In Fig. 14, the program traverse-n is composed of n copies of
the traverse program which contains a loop traversing a list and different copies
use different set of pointer variables. The experimental results in Fig. 14 show that
increasing of numbers of pointer variables does not necessarily cause significant
performance degradation for our analysis. However, THOR (itself) cannot com-
plete the transformation of list manipulating programs into numerical programs in
10 minutes when the number of pointer variables is greater than 9.

8. Related Work

Shape abstractions. Programs manipulating lists have gained much attention
within the past decade [16, 17, 18]. And various abstractions have been used for
analyzing shape properties of lists and other dynamically linked data structures
that are more general, such as canonical abstraction [2, 17], boolean heaps [19],
separation logic [20], etc. The TVLA system [21] is one of the first shape analy-
sis engines for implementing shape abstractions via 3-valued logic formulae [2].
TVLA provides a set of predicates [17] for users to describe the shape of linked
lists, including the Reach predicate that we use in our work. However, TVLA
itself does not perform numerical reasoning and thus is not able to infer numerical
relations among list segments. Recently, Ferrara et al. [22, 23] proposed a generic
approach to combine TVLA with value analyses in the framework of abstract in-
terpretation, but in which the value analyses are used to track the value contents
contained in abstract heap nodes rather than length properties.

One work that is close to our shape abstraction is boolean heaps [19] by Podel-
ski et al. It adopts also the concept “bit-vector” and utilizes sets of bit-vectors to
encode boolean heaps. Their approach is general for modeling all kinds of re-
lations in heaps by using proper heap predicates, while in this paper we focus
on lists and utilize one basic predicate (Reach). In addition, our approach main-
tains automatically numerical relations among list segments. Recently, Gulwani
et al. [24] propose an abstract domain that allows representation of must and may
equalities among pointer expressions. Our work uses also equalities but to track
the numerical properties over the number of list nodes.

In recent years, great progress has been made in automatic verification of heap-
manipulating programs using separation logic [25, 26]. A number of automatic
tools based on separation logic have been developed, including Smallfoot [27],
SpaceInvader [28], SLAyer [29], Predator [30], Forrester [31]. Using separation
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logic predicates can describe more general data structures (such as trees) besides
linked lists. However, these approaches mainly focus on analyzing only shape
properties, while our work considers not only shape properties but also length
properties over lists in the framework of abstract interpretation.
Combining shape and numerical abstractions. Recently, much attention has
been focused on combining shape and numerical abstractions [5, 6, 7, 18].

Bouajjani et al. [4, 18, 32] utilize counter automata as an abstract model for
lists, and propose a framework for combining a heap abstraction with various ab-
stractions over the sequences of data in a list. Their method maintains the exact
data stored in a list segment as well as their sequences and thus can discover rela-
tional properties over list contents. Compared with the counter automata model,
our heap abstraction based on bit-vectors is quite lightweight. Experimental com-
parison results in Fig. 12 show that our prototype is more efficient than their im-
plementation CINV both in time and memory. Moreover, CINV cannot handle
circular lists while our prototype can. In addition, our approach can also detect
the amount of memory leak, which is not considered in CINV.

Chang and Rival [5] propose relational inductive shape analysis based on an
abstract shape graph representation, in which heaps are described by user-supplied
inductive predicates defined via separation logic. Their approach provides a mod-
ular framework to combine shape and numerical data abstract domains, and can
handle more generic data structures such as red-back trees. Compared with their
work, our work targets at only linked lists but provides a more lightweight en-
coding of shape abstraction for lists than their graph representation, thanks to the
compact bit-vectors. Moreover, they use inductive predicates to specify the shape
of the heap and do not allow changing the type of the shape, but our approach
allows a program to change non-circular lists into circular lists and vice versa.
In addition, as far as we know, in their implementation Xisa, they have not yet
employed numerical abstract domains to perform numerical reasoning.

More recently, Qin et al. [7, 33, 34] propose a separation logic based approach
to synthesize loop invariants involving both shape and numerical properties by
utilizing a combined separation and numerical domain to enhance the Hip/Sleek
[35, 36] system which previously relied on users to provide annotations describ-
ing loop invariants. Due to the usage of separation logic, their approach enjoys
the benefit from the frame rule and thus supports local reasoning, but relies on
a separation logic prover for entailment checking over the heap domain. Their
approach can handle more general data structures such as trees, but requires user-
supplied inductive shape predicates. To ensure the termination of the fixpoint
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iteration, their analysis algorithm needs a user-provided parameter to specify a
finite upper bound of the number of shared logical variables [7]. Compared with
their approach, our approach focuses on linked lists and is lightweight (thanks to
the bit vector based shape abstraction), with no need of complex logic reasoning
engine and user-supplied predicates. Moreover, we have adapted traditional nu-
merical abstractions to fit for inferring length properties of list manipulating pro-
grams, taking into account special characteristics of the analyzed program. E.g.,
we have modified the traditional interval widening by taking into account the fact
that counter variables are non-negative integer variables.

Gulwani et al. [6] propose a general combination framework for tracking re-
lationships between sizes of memory partitions. It combines a set domain (for
tracking memory partitions) with a set cardinality domain (for tracking relations
between cardinalities of the partitions) via reduced products. Our work encodes
the shape abstraction by bit-vectors that itself can be considered as numerical
values, which makes it easy to build a combined domain based on numerical ab-
stractions taking into account the semantics of shape abstractions, without resort
to reduced product.
Reducing heap-manipulating to numerical programs. Magill et al. [15, 37]
propose a method to automatically transform heap manipulating programs into
numeric ones, based on their shape analysis over user-supplied separation logic
predicates. The idea of separating shape abstraction and numerical abstraction in
[15] has clear engineering advantages to make use of existing numeric reasoning
tools. However, the transformation is unidirectional and thus may lose precision
especially when the shape aspect and the numerical aspect interact in complicated
ways. Our work takes into consideration both shape and numerical information
at the same time during the analysis, and thus can be more precise. For example,
our approach can detect the amount of memory leaks, while those information is
lost during the transformation of their approach. In the experimental section, we
have an example that our approach can prove the safety of the program while their
implementation THOR [15] together with BLAST [38] could not. Moreover, ex-
perimental results in Sect. 7 show that our approach is more efficient than THOR
(together with BLAST) both in time and memory.
Analysis and verification of circular lists. Little existing work considers ana-
lyzing and verifying properties over circular lists [17, 39, 40, 41]. Manevich et
al. [17] use predicate abstraction and canonical abstraction for (potentially cir-
cular) singly-linked lists in the TVLA abstract interpreter [21], where a so-called
instrumentation predicate cn(v) is introduced to describe that v resides on a cycle

36



of n fields, which is similar to idea of our circular flag bit. However, our approach
further cuts a circular list into a non-circular one and tracks numerical relations
among the sizes of list segments on the same cycle. Bouajjani et al. [40] propose
an automata based approach to verify programs with singly-linked lists by regular
model checking. The shape of (circular) lists is described by regular expressions
and 0-k counter abstraction is used to describe single size of each list segment.
However, our approach uses numerical abstract domains to capture the relations
among the sizes of list segments. Bozga et al. [41] consider the complexity of
checking safety and termination properties for flat programs with singly-linked
lists. They show that verifying safety and termination for programs working on
heaps with more than one cycle are undecidable, whereas decidability can be es-
tablished when the input heap may have at most one loop.

9. Conclusion

We have presented an approach in the framework of abstract interpretation for
analyzing list-manipulating programs. The main idea is to combine heap and nu-
merical abstractions. The structural information of the shape of a list is encoded in
a lightweight way via bit vectors, one for each list segment, while numerical rela-
tions among the number of list nodes in these segments are tracked by numerical
abstract domains. We have instantiated our approach by establishing a combina-
tion domain of intervals and affine equalities to infer relations over the length of
list segments. We have also show how our approach works for circular lists. A
key benefit of our approach is the ability to leverage the power of the state-of-the-
art numerical abstract domains to analyze intricate properties of list-manipulating
programs.

Future work will consider extending our approach to infer properties over the
content of lists, e.g., sortedness, no duplicated elements. Inferring non-trivial
relational properties over list contents requires reasoning over inter-segment re-
lations among different segments and intra-segment relations among elements in
the same segment. Following the same idea of introducing counter variables, for
each vec ∈ Γ, we could introduce an auxiliary content variable dvec to abstract the
contents of the list nodes whose VRV is vec. If the list contents are of numerical
data type, we could apply numerical abstractions to dvec, similarly to what we do
over tvec. However, to be sound, we can only apply weak update semantics to
handle assignments to p → data. In order to obtain more precise information
over p → data, we need to extend our bit-vector shape abstraction to distinguish
the first element from the rest elements in a list segment. Another direction of
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the work is to deal with doubly linked lists that are well-founded [42]. We could
maintain reachability properties for the next field and the prev field separately.
In other words, we could maintain different VRV sets for next and prev. And
we perform communication and propagation between the two fields when needed.
Finally, it would be also interesting to consider more general data structures such
as trees. However, our shape encoding via bit-vectors is initially designed specif-
ically for linked lists. For other data structures such as trees, we need to design
other kinds of shape abstraction, but the general idea of combining shape abstrac-
tion and numerical abstraction is still applicable.
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Appendix A.

Theorem 1. Given two list nodes n1, n2 such that vecn1 , vecn2 and vecn1 , 0,
there exists one path from n1 to n2 if and only if vecn1 ⊂ vecn2 holds.

Proof. ⇒):
Suppose that there exists one path from n1 to n2. We then have vecn1 ⊆ vecn2

according to the Definition 2. Since vecn1 , vecn2 by hypothesis, we then have
vecn1 ⊂ vecn2 .
⇐):
Suppose vecn1 ⊂ vecn2 holds. Then we have (vecn1 ∩ vecn2) , ∅. Let i ∈

Ivecn1
∩Ivecn2

. There must exist a sequence of nodes nk0 , nk1 , · · · , nkp ∈ N satisfying
nk0 = Vi, nkp = n1 and 〈nk, nk+1〉 ∈ E for each k0 ≤ k < kp. Similarly, there must
also exist a sequence of nodes nt0 , nt1 , · · · , ntq ∈ N satisfying nt0 = Vi, ntq = n2 and
〈nt, nt+1〉 ∈ E for each t0 ≤ t < tq. Then we consider case by case as follows:

• Assume p = q. For singly linked lists, there is only one next node for each
list node. Starting from the same node Vi and traverse the same number of
next edges, we should always reach the same node. Hence, n1 is identical
with n2, which conflicts with the hypothesis vecn1 , vecn2 .

• If p < q, then there must exist tp, · · · , tq such that ntp = n1. Then we get one
path from n1 to n2.

• If p > q, then there must exist kq, · · · , kp such that nkq = n2. Then we get
one path from n2 to n1. According to the discussion in the⇒ part, we then
have vecn2 ⊂ vecn1 , which conflicts with the hypothesis vecn1 ⊂ vecn2 .

To summarize, there must exist one path from n1 to n2 if vecn1 ⊂ vecn2 . �

Theorem 2. The set of VRVs of a singly-linked list is consistent.

Proof. Consider two arbitrary VRVs vecn1 , vecn2 from the set of VRVs of a singly-
linked list such that vecn1 , vecn2 . There exists only two possibilities: vecn1 ∩

vecn2 = ∅ or vecn1 ∩vecn2 , ∅. When vecn1 ∩vecn2 , ∅, following the same line of
reasoning as in the⇐ part of the proof of Theorem 1, it is not hard to prove that
vecn1 ⊂ vecn2 ∨ vecn2 ⊂ vecn1 . �

Theorem 3. A consistent set of VRVs Γ satisfies |Γ| ≤ 2|V |.
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Proof. Let Γ′ = Γ \ {0}. And we will prove that |Γ′| ≤ 2|V | − 1.
We first define the sets of predecessors and direct predecessors respectively

as following: pred∗(vec) = {vec′ ∈ Γ′ | vec′ ⊂ vec} and pred(vec) = {vec′ ∈
pred∗(vec) | @vec′′ ∈ pred∗(vec).vec′ ⊂ vec′′}. And it’s easy to see that we have
the following properties
¬ For any distinct vec1, vec2 ∈ pred(vec), we have that vec1 ∩ vec2 = ∅.
­ For any distinct vec1, vec2 ∈ pred(vec) and vec′1 ∈ pred∗(vec1), vec′2 ∈ pred∗(vec2),
we have vec′1 ∩ vec′2 = ∅.

Now,we will prove by induction that for each vec ∈ Γ′, its predecessor set
pred∗(vec) satisfies |pred∗(vec)| 6 2(|Ivec| − 1).

1. The basis:

• When |Ivec| = 1, pred∗(vec) must be an empty set and thus satisfies
|pred∗(vec)| 6 2(|Ivec| − 1).

• When |Ivec|=2, suppose Ivec = {m, n}. For each vec′ ∈ pred∗(vec),
Ivec′ must be exactly {m} or {n}. Hence pred∗(vec) can contain at most
two elements and thus |pred∗(vec)| 6 2(|Ivec| − 1) holds.

2. The inductive step: Assume |pred∗(vec)| 6 2(|Ivec| − 1) holds whenever
|Ivec| 6 M. Then for the case of |Ivec| = M + 1, we have:

• If pred(vec) = ∅, pred∗(vec) must also be an empty set. Then |pred∗(vec)| 6
2(|Ivec| − 1) holds obviously.

• Suppose pred(vec) = {vec1, ..., vecs}. According to properties ¬ ­,
we know that for every vec′ ∈ pred∗(vec), either vec′ ∈ pred(vec)
holds, or there exists one and only one 1 6 i 6 s such that vec′ ∈
pred∗(veci). On the other hand, for each 1 6 i 6 s, pred∗(veci) ⊆
pred∗(vec) holds obviously. So we get |pred∗(vec)| =

∑
16i6s
|pred∗(veci)|+

|pred(vec)|. For each 1 6 i 6 s, |Iveci | 6 M holds because of Iveci ⊂

Ivec. According to the inductive assumption, we know that |pred∗(veci)| 6
2(|Iveci |−1). Hence |pred∗(vec)| =

∑
16i6s
|pred∗(veci)|+s 6

∑
16i6s

2(|Iveci | − 1)+
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s = 2
∑

16i6s
|Iveci | − s.

– When s > 2, for all 1 6 i, j 6 s ∧ i , j, we have Iveci ⊂ Ivec
and Ivec j ⊂ Ivec. We also know that Iveci ∩Ivec j = ∅ according to
¬. So we have

∑
16i6s
|Iveci | 6 |Ivec|. Finally, we get the result that

|pred∗(vec)| 6 2|Ivec| − s 6 2(|Ivec| − 1).
– When s = 1, vec has only one predecessor. Suppose veci is the

unique predecessor. Then |Iveci | < |Ivec| holds because Iveci ⊂

Ivec. Thus, |pred∗(vec)| 6 2(|Ivec| − 1) also holds for this case.

Therefore, |pred∗(vec)| 6 2(|Ivec| − 1) holds for every vec ∈ Γ′.

We say that vec ∈ Γ′ is a maximal VRV of Γ′ if there doesn’t exist one
vec′ ∈ Γ′ satisfying vec ⊂ vec′. Supposing all the maximal VRVs in Γ′ are
vec1, ..., vect. It’s obviously that Iveci ∩ Ivec j = ∅ holds for all 1 6 i, j 6 t and
i , j. For each x ∈ Iveci , it must satisfy 0 6 x < |V |. So

∑
16i6t
|Iveci | 6 |V | holds.

According to ­, for each vec′ ∈ Γ′, either vec′ ∈ {vec1, ..., vect} holds, or there
exists one and only one 1 6 i 6 t satisfying vec′ ∈ pred∗(veci). So we know that
|Γ′| =

∑
16i6t
|pred∗(veci)| + t 6

∑
16i6t

2(|Iveci | − 1) + t = 2
∑

16i6t
|Iveci | − t 6 2|V | − t 6

2|V | − 1. �

Theorem 4. In singly-linked lists, a list node could be on at most one cycle.

Proof. Recall that a list node in a singly-linked list has one next field and has at
most one successive node. If a list node lies on two cycles, then some list node in
the same singly-linked list should have two successive nodes, which is impossible.

�

Theorem 5. A set of circular VRVs of singly-linked lists is circularly consistent.

Proof. Let Γ̆ be a set of circular VRVs of singly-linked lists. Let us consider two
arbitrary ˘vecn1 , ˘vecn2 ∈ Γ̆. Let vecn1

def
= ˘vecn1 >> 1, vecn2

def
= ˘vecn2 >> 1. In other

words, we get vecn1 , vecn2 by removing the circular flag bit from ˘vecn1 , ˘vecn2 .

1) If ˘vecn1 , ˘vecn2 respectively belong to two different singly-linked lists that are
not connected, then it is easy to see that vecn1&vecn2 = 0x0.
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2) If ˘vecn1 , ˘vecn2 belong to a connected graph, we consider that ˘vecn1 , ˘vecn2 are
defined by cutting the cycle and a new variable Vc is introduced to point to
the destination node of the next edge that is cut. After cutting, the connected
graph turns to a set of non-circular singly-linked lists that is consistent over
variable set V ∪ {Vc}. Hence, according to Definition 4 and Theorem 2, it
holds that ˘vecn1 ∩ ˘vecn2 = ∅ ∨ ˘vecn1 ⊂ ˘vecn2 ∨ ˘vecn2 ⊂ ˘vecn1 . When both

˘vecn1 , ˘vecn2 belong to a connected graph, ˘vecn1 ∩ ˘vecn2 = ∅ implies that
vecn1&vecn2 = 0x0. Hence, vecn1 ∩ vecn2 = 0x0 ∨ ˘vecn1 ⊂ ˘vecn2 ∨ ˘vecn2 ⊂

˘vecn1 holds. �

Theorem 6. A circularly consistent set of circular VRVs Γ̆ satisfies |Γ̆| ≤ 2|V |+ 2.

Proof. In memory, there may exist several unconnected linked lists at the same
time. The shape graph of those lists could be divided into several maximal con-
nected subgraphs. And one pointer variable can reach only one of the maximal
connected subgraphs. Hence, we now consider a circularly consistent set Γ̆1 of
circular VRVs of one arbitrary maximal connected subgraph of the shape graph,
which could be reached by a subset of pointer variables V ′. Let Γ̆′1 = Γ̆1 \ {0}. And
we will prove that |Γ̆′1| ≤ 2|V ′| + 1.

As we have explained, the set of circular VRVs Γ̆′1 can be considered as the
representation of non-circular VRVs for non-circular singly-linked list over the
variable set V ′ ∪ {Vc}. Hence, according to the proof of Theorem 3, we have
|Γ̆′1| ≤ 2(|V ′| + 1) − 1, i.e., |Γ̆′1| ≤ 2|V ′| + 1.

And we use 0 to denote the set of list nodes that cannot be reached by any
variable. Hence, overall, a circularly consistent set of circular VRVs Γ̆ satisfies
|Γ̆| ≤ 2|V | + 2. �
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