
Interval Polyhedra: An Abstract Domain to Infer
Interval Linear Relationships ?

Liqian Chen1,2, Antoine Miné2,3, Ji Wang1, and Patrick Cousot2,4

1 National Laboratory for Parallel and Distributed Processing, Changsha, P.R.China
wj@nudt.edu.cn

2 École Normale Supérieure, Paris, France
{chen,mine,cousot}@di.ens.fr

3 CNRS, France
4 CIMS, New York University, New York, NY, USA

Abstract. We introduce a new numerical abstract domain, so-called interval
polyhedra (itvPol), to infer and propagate interval linear constraints over program
variables. itvPol, which allows to represent constraints of the form

∑
k[ak, bk]xk ≤

c, is more expressive than the classic convex polyhedra domain and allows to
express certain non-convex (even unconnected) properties. The implementation
of itvPol can be constructed based on interval linear programming and an inter-
val variant of Fourier-Motzkin elimination. The preliminary experimental results
of our prototype are encouraging, especially for programs affected by interval
uncertainty, e.g., due to uncertain input data or interval-based abstractions of dis-
junctive, non-linear, or floating-point expressions. To our knowledge, this is the
first application of interval linear algebra to static analysis.

1 Introduction

Abstract interpretation [7] is a theory of semantics approximation. One application is
to design computable abstractions and achieve a trade-off between efficiency and pre-
cision. Abstract interpretation provides a generic framework for devising static analy-
ses to automatically infer dynamic properties of programs. The notion of an abstract
domain is a core concept in this framework, and is used to denote a specific kind of
computer-representable properties (such as a family of constraints) together with effi-
cient manipulation algorithms to perform abstract operations (such as join, meet, widen-
ing, etc.). In particular, numerical abstract domains focus on numerical relationships
among program variables. There exists a wide variety of numerical abstract domains
with different expressiveness and complexity, such as intervals (a ≤ x ≤ b) [6], oc-
tagons (±x ± y ≤ c) [20], convex polyhedra (Σkak xk ≤ b) [10].

In the analysis and verification of hardware and software systems, after modeling
or abstraction, the given application data may be inexact or affected by uncertainty,
that is, they are only known to lie in certain intervals. Particularly, to analyze pro-
grams involving non-linear operations (e.g., multiplication or division of two expres-
sions) or floating-point arithmetic, one may resort to a so-called linearization technique
? This work is supported by the INRIA project “Abstraction” common to CNRS and ENS in

France, and by the National Natural Science Foundation of China under Grant No.60725206.

to abstract non-linear or floating-point expressions into linear expressions with inter-
val coefficients (

∑
k[ak, bk]xk + [c, d]) [19, 21]. Furthermore, when analyzing numerical

programs using a floating-point implementation (e.g., [4]) of a numerical abstract do-
main, a real number in the analyzed program might be abstracted as an interval of two
neighboring floating-point numbers for soundness. Moreover, many floating-point al-
gorithms can only output safe bounds, even when the input is an exact singleton value
(e.g., adding two floating-point numbers in the floating-point interval domain). In other
words, intervals appear naturally in practice. Hence, it is useful to have a numerical ab-
stract domain that allows interval linear relationships among numerical program quan-
tities to be maintained during the analysis.

This paper presents a new abstract domain, interval polyhedra (itvPol), to infer rela-
tionships of the form Σk[ak, bk]× xk ≤ b over program variables xk (k = 1, . . . , n), where
constants ak, bk, c ∈ R are automatically inferred by the analysis. Intuitively, itvPol is
an interval version of the classic convex polyhedra domain. In general, an interval poly-
hedron is non-convex (even unconnected); it is the union of a family of convex polyhe-
dra. Thus, itvPol can naturally encode certain disjunctive information. In this paper, we
propose a method to abstract disjunctions using interval linear constraints. The itvPol
domain is implemented based on interval linear programming and an interval variant
of Fourier-Motzkin variable elimination. The preliminary experimental results of the
prototype implementation are promising on benchmark programs; itvPol can find more
precise invariants than the convex polyhedra domain without too much overhead.

The rest of the paper is organized as follows. Section 2 discusses some related work.
Section 3 reviews the basic theory of interval linear systems and interval linear program-
ming. Section 4 defines our numerical abstract domain itvPol. Section 5 describes the
domain operations of itvPol. In Section 6, possible applications of the itvPol domain are
discussed. Section 7 presents our prototype implementation together with preliminary
experimental results before Section 8 concludes.

2 Related Work

Numerical Abstract Domains. Most of the current numerical abstract domains can
only represent convex properties using a subset of standard linear constraints, which
makes the analysis tractable. Examples include intervals [6], octagons [20], convex
polyhedra [10], SubPolyhedra [17], etc. Few abstract domains natively allow represent-
ing non-convex sets (i.e., that are not disjunctive completion of known convex domains),
e.g., congruences [12], max-plus polyhedra [2], domain lifting by max expressions [13].
To deal with disjunctions, a well-known solution is to use disjunctive completion [8, 9,
11] or reduced cardinal power [8]. Unfortunately, it can be very costly and also the
widening operators for such domains are difficult to design (e.g., as discussed in [3]).

The itvPol domain that we introduce in this article is closest to the classic domain of
convex polyhedra [10] but is strictly more expressive, since the coefficients of variables
are generalized to intervals. Our domain is orthogonal to max-plus polyhedra [2] in that

2

itvPol generalizes convex polyhedra [10] while max-plus polyhedra generalize octagons
[20]. 1 Moreover, itvPol can describe even some unconnected sets.
Interval Linear Systems. Solving interval linear systems is a challenging problem in
the community of interval analysis and interval linear algebra. This problem was first
considered by Oettli and Prager [22] in the middle of the 1960s. And since then, this
problem has received much attention [23, 24]. A deep insight of the topological and
graph theoretical properties of the solution set was given in [14]. However, both check-
ing the solvability and finding the solution set of an interval linear system are NP-hard
[24]. Some algorithms have also been proposed for interval linear programming [5, 15].

In contrast to the above community, we are interested in designing an abstract do-
main, and thus, need to design new operators tailored to the semantics of programs.

3 Preliminaries

In this section we briefly recall the basic theory and results on interval linear systems,
most of which can be found in [23, 24]. We use the following notations. Let A ∈ Rm×n

be a matrix. Intervals are denoted using boldface letters, such as x, and their bounds are
denoted as x and x so that x = [x, x]. This notation is extended to linear algebra over
intervals. Let IR be the set of all intervals on R. Throughout the paper, intervals and
other interval objects in interval algebra are typeset in boldface letters.

3.1 Interval Linear System

Let A, A ∈ Rm×n be two matrices with A ≤ A, where comparison operators are defined
element-wise, then the set of matrices

A = [A, A] = {A ∈ Rm×n: A ≤ A ≤ A}

is called an interval matrix, and the matrices A, A are called its bounds. Let us define
the center matrix of A as Ac =

1
2 (A + A) and the radius matrix as 4A =

1
2 (A − A). Then,

A = [A, A] = [Ac − 4A, Ac + 4A]. An interval vector is a one-column interval matrix
d = [d, d] = {d ∈ Rm: d ≤ d ≤ d}, where d, d ∈ Rm and d ≤ d.

Let A be an m× n interval matrix and b be a vector of size m. The following system
of interval linear inequalities

Ax ≤ b

denotes an interval linear system, that is, the family of all systems of linear inequalities
Ax ≤ b such that A ∈ A.

Definition 1 (Weak solution). A vector x ∈ Rn is called a weak solution of the interval
linear system Ax ≤ b, if it satisfies Ax ≤ b for some A ∈ A. Furthermore, the set

Σ∃(A, b) = {x ∈ Rn:∃A ∈ A. Ax ≤ b}

is said to be the weak solution set of the system Ax ≤ b.

1 As an example, Fig. 1(1.a) depicts an itvPol element which cannot be represented by max-plus
polyhedra while Fig. 1(2.b) shows a max-plus polyhedron that is not in itvPol.

3

The weak solution set of an interval linear system is characterized by the following
theorem [24].

Theorem 1. A vector x ∈ Rn is a weak solution of Ax ≤ b iff it satisfies Acx−4A|x| ≤ b.

In general, the weak solution set can be non-convex, and even unconnected (Fig. 1(1)).
The non-convexity can be derived from the non-linear factor |x| in Theorem 1. A (closed)
orthant is one of the 2n subsets of an n-dimensional Euclidean space defined by con-
straining each Cartesian coordinate axis to be either nonnegative or nonpositive. Note
that, in a given orthant, each component of x keeps a constant sign, so the intersection
of the weak solution set with each orthant can be described as a (possibly empty) con-
vex polyhedron. However, not all unions of convex polyhedra with at most one in each
orthant can be exactly encoded as interval linear systems (e.g., Fig. 1(2.c)).

The narrowest interval vector xH containing the weak solution set Σ∃(A, b), is called
the interval hull of Σ∃(A, b), i.e., xH

k = [xH
k , x

H
k], where xH

k = min{xk: x ∈ Σ∃(A, b)},
xH

k = max{xk: x ∈ Σ∃(A, b)}, for k = 1, . . . , n. Computing the interval hull of the solution
set Σ∃(A, b) is an NP-hard problem [23].

3.2 Interval Linear Programming
Let A ∈ IRm×n be an m × n interval matrix, b ∈ Rm be an m-dimensional vector, and
c ∈ IRn be an n-dimensional interval vector. The family of linear programming (LP)
problems

f (A, b, c) = min{cT x: Ax ≤ b}
with data satisfying

A ∈ A, c ∈ c
is called an interval linear programming (ILP) problem.

The interval [f (A, b, c), f (A, b, c)], where f (A, b, c) = inf{ f (A, b, c): A ∈ A, c ∈ c},
and f (A, b, c) = sup{ f (A, b, c): A ∈ A, c ∈ c}, is called the range of the optimal value of
the above ILP problem.

In this paper, we are only interested in computing the lower bound f (A, b, c). How-
ever, in general, to compute the exact f (A, b, c), in the worst case up to 2n LP problems
have to be solved, one for each orthant. In practice, [5] proposed an enumerative ap-
proach which can considerably reduce the number of LPs in many cases. Recently,
Jansson [15] proposed an iterative method to compute a safe lower bound for f (A, b, c)
by solving a sequence of midpoint problems, and in many cases, only a small compu-
tational effort is required. In the following sections, we use ILP as a black box.

4 The Interval Polyhedra Domain

We now introduce the interval polyhedra abstract domain (itvPol). The main idea is to
use interval linear inequality constraints in the representation of the new domain. An
important similarity between the itvPol domain and most existing numerical abstract
domains is that their elements can be defined as the solutions of systems of finitely
many constraints from a certain family. To some extent, one may consider the itvPol
domain as an interval version of the classic convex polyhedra domain which only sup-
ports standard (non-interval) linear constraints.

4

4.1 Representation

An interval polyhedron P is described as an interval linear system Ax ≤ b, where A ∈
IRm×n is an interval matrix and b ∈ Rm is a plain vector of real numbers. It represents
the set γ(P) = Σ∃(A, b), and each point x ∈ γ(P) is a possible program environment (or
state), i.e., an assignment of numerical/real values to program variables. Note that with
respect to the weak solution set, an interval linear equation ϕ:

∑
k [ak, ak] × xk = [b, b]

can be represented as a pair of interval linear inequalities ϕ′:
∑

k [ak, ak] × xk ≤ b and
ϕ′′:

∑
k [−ak,−ak] × xk ≤ −b. The set of interval polyhedra has the following properties:

– Non-convexity: an interval polyhedron is non-convex in general, but its intersection
with each orthant in Rn gives a (possibly empty) convex polyhedron.

– Closed for intersection: the intersection of two interval polyhedra is also an interval
polyhedron.

– Non-closed for union: the union of two interval polyhedra may not be an interval
polyhedron.

In general, an interval polyhedron has a complicated shape. Fig. 1 shows some
examples of interval polyhedra (1) as well as examples that are not interval polyhedra
(2). Specifically, (2.a), (2.b), (2.d) are not interval polyhedra because their intersection
with some orthant (e.g., the (+,+)-orthant) is not convex. (2.c) and (2.e) are not interval
polyhedra as they do not satisfy the topological properties described in [14].

(1)

x

y
y

x x

y

x

y

x

y

(2)

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Fig. 1. Examples that are (1) or are not (2) interval polyhedra in two dimensions. The examples
(1) correspond to the following interval linear systems: (1.a) {[−1, 1]x+y = 0, [−1, 1]y = 1}, (1.b)
{[−1, 0]x+y = [0, 1]}, (1.c) {[1, 2]x+[1, 2]y = [1, 2]}, (1.d) {[−1, 1]x+2y = [−2, 2], 2x+[−2, 1]y =
[−2, 2]}, (1.e) {[−1, 1]x = 1, [−1, 1]y = 1, x = [−2, 2], y = [−2, 2], x + y = [−1, 1]}.

An interval linear inequality ϕ is entailed by an interval polyhedron P, denoted
as P |= ϕ, iff γ(P) ⊆ γ(ϕ). The order relation v on interval polyhedra is defined as
P1 v P2 iff γ(P1) ⊆ γ(P2), i.e., ∀ϕ ∈ P2.P1 |= ϕ, which can be implemented using ILP.
The inclusion P1 v P2 holds iff for all (

∑
k [ak, ak] × xk ≤ b) ∈ P2, µ ≤ b holds where

µ=max
∑

k [ak, ak] × xk subject to P1. However, vmay be too expensive to compute. We
define an approximate order relation vs on interval polyhedra based on syntactic repre-
sentations. Given ϕ:Σk[ak, ak]×xk ≤ b and ϕ′:Σk[a′k, a

′
k]×xk ≤ b′, ϕ vs ϕ

′ iff b ≤ b′ and
∀k.[ak, ak] ⊆ [a′k, a

′
k]. And P1 vs P2 iff for all ϕ2 ∈ P2 there exists some ϕ1 ∈ P1 such

5

that ϕ1 vs ϕ2. Then, P1 vs P2 implies P1 v P2, while the converse does not hold. The
intersection of P1 and P2, denoted as P1uP2, is an interval polyhedron whose constraint
system is the conjunction of those of P1 and P2, thus γ(P1 u P2) = γ(P1)∩ γ(P2). Also,
we use the term bounding box of an interval polyhedron P, denoted as BB(P), to refer to
the interval hull xH of Σ∃(A, b). BB(P) can be computed by ILP, namely by calculating
max(min) xk subject to P, which is NP-hard (Sect. 3.1). In practice, BB(P) is updated
on-the-fly, and an over-approximated bounding box which is sound can be obtained by
cheaper methods, as in [4].

As in the classic convex polyhedra abstract domain, the constraint representation of
an interval polyhedron is not unique. E.g., the interval linear equation [−1, 1]x = 1 and
the inequality [−1, 1]x ≤ −1 have the same weak solution set {x ∈ [−∞,−1]∪ [1,+∞]}.
For efficiency reasons, it is desirable to have as few and simple constraints as possible.

Reduction. According to Theorem 1, an interval linear inequality ϕ:
∑

k [ak, ak] × xk ≤

b can be reduced to ϕ′:
∑

k [a′k, a
′
k] × xk ≤ b, where xk ∈ [xH

k , x
H
k] and

[a′k, a
′
k] =

[ak, ak] if xH

k ≥ 0,
[ak, ak] if xH

k ≤ 0,
[ak, ak] otherwise.

The reduction is useful in practice, since ϕ′ will cause less precision loss in the subse-
quent computations, e.g., in the interval combination operation (see Sect. 5.2.1).

Redundancy Removal. An interval linear inequality ϕ ∈ P is said to be redun-
dant when ϕ is entailed by the other constraints in P, that is, P \ {ϕ} |= ϕ. Given
ϕ: (

∑
k [ak, ak] × xk ≤ b) ∈ P, we can check whether ϕ is redundant by solving the

ILP problem: µ= max
∑

k [ak, ak] × xk subject to P \ {ϕ}. If µ ≤ b, then ϕ is redundant
and can be eliminated from P. This process is repeated for all inequalities in P. To be
more efficient, it is worth using lightweight methods first and resorting to the expen-
sive ILP-based method only when necessary. For example, given ϕ ∈ P, if there exists
another interval linear inequality ϕ′ ∈ P such that ϕ′ vs ϕ, then ϕ is redundant in P.
Secondly, given ϕ: (

∑
k [ak, ak] × xk ≤ b) ∈ P, if ∀k.0 ∈ [ak, ak] and b ≥ 0, then ϕ defines

the universe space and can be removed from P.

4.2 itvPol as an (Abstracted) Reduced Cardinal Power of Convex Polyhedra

In this section we consider itvPol as a reduced cardinal power (see Sect. 10.2 of [8]) that
maps each orthant to a convex polyhedron, by exploiting the fact that the intersection
of an interval polyhedron with an orthant is a (possibly empty) convex polyhedron.
An n-dimensional interval polyhedron is at worst a set of 2n convex polyhedra. More
precisely, let p be the number of variables in an interval polyhedron that are unrestricted
in sign and are associated with at least one (non-singleton) interval coefficient, then the
interval polyhedron is partitioned into a set of at most 2p convex polyhedra.

In the general case, we maintain one (possibly empty) convex polyhedron in each
orthant. Each operation on the itvPol domain is obtained by “lifting” the corresponding
operation from the convex polyhedra domain. E.g., to join two interval polyhedra, one
would compute pair-wisely the convex hull of the convex polyhedra in each orthant. The
assignment transfer function needs more care, since applying an assignment transfer

6

function on a convex polyhedron in one orthant may cause it to “enter” other orthants. In
such a case, the result in each orthant is then updated to be the polyhedral convex hull of
the regions which belong to that orthant after the transfer operation. Thus, this domain
is not simply equivalent to a finite disjunctive completion of convex polyhedra. In our
case, it is perhaps better called an orthant partitioning domain of convex polyhedra.

In order to enjoy the benefits of the compact representation of interval polyhedra,
one may abstract further a set of convex polyhedra with at most one in each orthant
back to an interval polyhedron after each operation. However, there may not exist an
interval polyhedron that exactly defines the union of those convex polyhedra, e.g., by
referring to Fig. 1(2.c). And, to our knowledge, up to now there exists no method to
compute the smallest interval polyhedron that encloses those convex polyhedra.

We propose an algorithm to calculate a (not necessarily smallest) interval poly-
hedron that soundly encloses those convex polyhedra. Given a variable ordering, an
n-dimensional space is described by a binary tree with variables at internal nodes and
convex polyhedra at leaves. Each node represents a variable x, and its left (right) branch
specifies the subspace in which x ≤ 0 (x ≥ 0). Thus the path from the root to a leaf (in-
volving all variables with respect to the given ordering) defines an orthant, and the
convex polyhedron attached at the leaf corresponds to the convex polyhedron in that or-
thant. At each internal node Nodex, an interval polyhedron is constructed in a bottom-up
manner, to enclose all the convex polyhedra within the subtree rooted at Nodex, using
the weak join operation tw defined in Sect. 5.2.2. When a variable has a fixed sign, one
of its subtrees is empty, which speeds up the computation. Finally, the interval polyhe-
dron at the root of the whole binary tree is an interval polyhedron that encloses all the
convex polyhedra in each orthant.
Example 1. Given the interval polyhedron P = {[−1, 0]x+y = [0, 1]} shown in Fig. 1(1.b),
after performing the assignment transfer function [[x := x + 1]]# on P in the powerset
domain of convex polyhedra, we obtain the region shown in Fig. 1(2.b), which can-
not be exactly encoded by any interval polyhedron. Then, by computing the polyhedral
convex hull in each orthant, we get the convex polyhedra {x ≥ 0, y ≥ 0,−x + y ≤ 1} in
the (+,+)-orthant and {x ≥ 0,−1 ≤ y ≤ 0} in the (+,−)-orthant. Finally, we obtain the
interval polyhedron {[−1, 0]x + y = [−1, 1]} using the above algorithm.

As an abstracted reduced cardinal power of convex polyhedra, itvPol is at worst
exponentially more complex than the convex polyhedra domain. However, in some real-
life applications, many of the variables do not change their signs, that is, the weak
solution set intersects only a few orthants. In such situations, itvPol as an abstracted
reduced cardinal power of convex polyhedra has a reasonable complexity.

5 itvPol as a New Abstract Domain

In general, itvPol as an abstracted reduced cardinal power of convex polyhedra may
be too complex to be applied to program analysis. To solve this problem, we present
an alternative construction based on faster approximate algorithms. Similarly to the
constraint-based convex polyhedra abstract domain [4], this construction is based on
two main operations: projection and (interval) linear programming. We will now briefly
describe the implementation of the most common domain operations.

7

5.1 Projection

The projection operation is used to remove all information pertaining to a variable xi

while preserving the relational information between other variables. It can be computed
by eliminating all occurrences of xi in the constraints defining P, using an Interval
Fourier-Motzkin Elimination (IFME) algorithm defined below, which is an adaptation
of the classic Fourier-Motzkin elimination algorithm to interval arithmetic.

Let P = {Ax ≤ b} be an interval polyhedron and xi be a variable to be eliminated.
If all non-zero interval coefficients of xi in P do not contain zero, the classic Fourier-
Motzkin elimination algorithm can be easily adapted to interval arithmetic. However, in
general, the constraint ϕ: (

∑
k[ak, ak]xk ≤ b) ∈ P in which [ai, ai] , [0, 0] but 0 ∈ [ai, ai],

will break the algorithm due to division by an interval containing zero. To avoid this,
we apply the following linearization operator ζ(ϕ, xi) beforehand.

Definition 2 (Linearization operator). Let ϕ:
∑

k [ak, ak] × xk ≤ b be an interval lin-
ear inequality and xi ∈ [xH

i , x
H
i].

ζ(ϕ, xi)
def
=

ai × xi +

∑
k,i

[ak, ak] × xk ≤ b if xH
i ≥ 0

ai × xi +
∑
k,i

[ak, ak] × xk ≤ b if xH
i ≤ 0

c × xi +
∑
k,i

[ak, ak] × xk ≤ sup(b − [ai − c, ai − c] × [xH
i , x

H
i]) otherwise

where c can be any real number.

In practice, we often choose c = (ai + ai)/2 that is the midpoint of the interval [ai, ai],
which causes the least loss of precision (minimizing sup(b− [ai− c, ai− c]× [xH

i , x
H
i])).

Example 2. Consider the interval linear inequality [0, 2]x + y ≤ 2 with respect to the
bounds x, y ∈ [−2, 4]. If we choose the midpoint of [0, 2] as c, ζ(ϕ, x) will give x+y ≤ 6.
Note that some loss of precision happens here, e.g., the point (0,4) satisfies the result
inequality x + y ≤ 6 but does not satisfy the original interval inequality [0, 2]x + y ≤ 2.

Theorem 2 (Soundness of the linearization operator). Given an interval linear in-
equality ϕ and a variable xi ∈ [xH

i , x
H
i], ζ(ϕ, xi) soundly over-approximates ϕ, that is,

∀x.(xi ∈ [xH
i , x

H
i] ∧ x ∈ γ(ϕ))⇒ x ∈ γ(ζ(ϕ, xi)).

By falling back to the above linearization technique, IFME can be applied to general
interval polyhedra. Given an inequality ϕ:

∑
k[ak, ak]xk ≤ b, we define ι(ϕ, xi) as

ι(ϕ, xi)
def
=

{
ζ(ϕ, xi) if 0 ∈ [ai, ai] ∧ [ai, ai] , [0, 0],
ϕ otherwise.

Then, the Interval Fourier-Motzkin Elimination algorithm can be defined as

IFME(P, xi)
def
= { (

∑
k[ak, ak]xk ≤ b) ∈ P′ | [ai, ai] = [0, 0] }

∪

{∑
k,i

(
[a+k , a

+
k]

[a+i , a
+
i]
+

[a−k , a
−
k]

[−a−i ,−a−i]

)
xk ≤ b′

∣∣∣∣∣∣ (
∑

k[a+k , a
+
k]xk ≤ b+) ∈ P′, a+i > 0

(
∑

k[a−k , a
−
k]xk ≤ b−) ∈ P′, a−i < 0

}
where P′ = {ι(ϕ, xi) | ϕ ∈ P} and b′ = sup

(
b+

[a+i , a
+
i]
+ b−

[−a−i ,−a−i]

)
.

Theorem 3 (Soundness of the Interval Fourier-Motzkin Elimination). Given an in-
terval polyhedron P and a variable xi, any point satisfying P also satisfies IFME(P, xi),
that is, ∀x ∈ γ(P)⇒ x ∈ γ(IFME(P, xi)).

8

5.2 Join

In order to abstract the control-flow join, we need to compute the union of environments
of program variables. However, to our knowledge, no existing method is available to
compute the smallest interval polyhedron enclosing this union. We propose to compute
an overapproximation of this union cheaply using an operation that we call weak join.

The main idea is as follows. We first define an operation] on constraints that over-
approximates the set union ∪ such that γ(ϕ′) ∪ γ(ϕ′′) ⊆ γ(ϕ′] ϕ′′). Given two interval
polyhedra P′ and P′′, by distributivity
γ(P′)∪ γ(P′′)= (

⋂
ϕ′∈P′
γ(ϕ′))∪ (

⋂
ϕ′′∈P′′

γ(ϕ′′))=
⋂
ϕ′∈P′
ϕ′′∈P′′

(γ(ϕ′) ∪ γ(ϕ′′)) ⊆
⋂
ϕ′∈P′
ϕ′′∈P′′

(γ(ϕ′] ϕ′′)) .

Our weak join can be constructed basically by pairwise combinations of inequalities
from P1 with those from P2 using the] operation.

5.2.1 Interval Combination
Definition 3 (Interval Combination). Given two interval linear inequalities ϕ′:∑

k [a′k, a
′
k] × xk ≤ b′ and ϕ′′:

∑
k [a′′k , a

′′
k] × xk ≤ b′′, the interval combination of ϕ′ and

ϕ′′ is defined as
ϕ′] ϕ′′

def
=

(∑
k [ak, ak] × xk ≤ b

)
,

where b = max(b′, b′′) and [ak, ak] = [min(a′k, a
′′
k),max(a′k, a

′′
k)].

This definition straightforwardly lifts to interval polyhedra. Given two interval poly-
hedra P′ and P′′, P′] P′′ def

= {ϕ′] ϕ′′ | ϕ′ ∈ P′ ∧ ϕ′′ ∈ P′′}.
Example 3. Consider two interval polyhedra P′ = {y ≤ 1,−y ≤ −1} and P′′ = {−x + y ≤
0, x − y ≤ 0}. By interval combination, we obtain P = P′] P′′ = {[−1, 0]x + y = [0, 1]},
whose weak solution set is depicted in Fig. 1(1.b). Note that some loss of precision
happens here, e.g., the point (1,0) satisfies the result P but satisfies neither P′ nor P′′.
Theorem 4 (Soundness of the interval combination). Given two interval linear in-
equalities ϕ′ and ϕ′′, their interval combination ϕ′]ϕ′′ soundly over-approximates the
union of ϕ′ and ϕ′′, that is, ∀x.(x ∈ γ(ϕ′) ∨ x ∈ γ(ϕ′′))⇒ x ∈ γ(ϕ′] ϕ′′).

The above theorem implies the soundness of] on interval polyhedra, i.e., ∀x.(x ∈
γ(P′) ∨ x ∈ γ(P′′)) ⇒ x ∈ γ(P′] P′′). However, the result of ϕ′] ϕ′′ may not be
the tightest interval linear inequality whose weak solution set encloses the union of the
weak solution sets of ϕ′ and ϕ′′. Moreover, the precision of the interval combination
depends on the representation of the input. The tighter the input coefficient intervals
are, the more precise the result will be. Hence, the reduction operation (in Sect. 4.1) is
often used before performing interval combinations.

In some cases, the interval combination can be improved. Given ϕ′:
∑

k [a′k, a
′
k] × xk ≤

b′ and ϕ′′:
∑

k [a′′k , a
′′
k] × xk ≤ b′′, if there exists a positive multiplier λ such that λ ×

[a′i , a
′
i]= [a′′i , a

′′
i] (i.e., λa′i = a′′i and λa′i = a′′i) for some i, then the interval combina-

tion of ϕ′ and ϕ′′ can be computed as ϕ′] ϕ′′ = (
∑

k [ak, ak] × xk ≤ b), where b =
max(λb′, b′′) and [ak, ak] = [min(λa′k, a

′′
k),max(λa′k, a

′′
k)]. In most cases, the interval

combination with multiplier is more precise than the general one. E.g., given ϕ1: x+y ≤
2 and ϕ2:−x + 2y ≤ 2, ϕ1] ϕ2 gives ϕ: [−1, 1]x + [1, 2]y ≤ 2. However, if we use a
version with multiplier (i.e., rewrite ϕ1: x + y ≤ 2 as ϕ′1: 2x + 2y ≤ 4), ϕ′1] ϕ2 will give
ϕ′: [−1, 2]x + 2y ≤ 4, and the result ϕ′ is more precise than the previous one ϕ.

9

5.2.2 Weak Join
Definition 4 (Envelope). Given two interval polyhedra P1 and P2, the envelope of P1
and P2 is defined as

env(P1,P2) def
= S1 ∪ S2

where S1 = { ϕ1 ∈ P1 | P2 |= ϕ1 },S2 = { ϕ2 ∈ P2 | P1 |= ϕ2 }.

Let i ∈ {1, 2}, for any ϕ ∈ Pi, if ϕ ∈ env(P1,P2), we say that ϕ is an enve-
lope constraint in Pi, otherwise ϕ is a nonenvelope constraint in Pi. We denote the
set of nonenvelope constraints in Pi as env(Pi). Given two boxes B′ = [b′, b′] and
B′′ = [b′′, b′′], their join in the interval abstract domain is defined as B′ tI B′′ =
[min(b′, b′′),max(b′, b′′)]. Note that BB(γ(P1) ∪ γ(P2)) = BB(P1) tI BB(P2).

Definition 5 (Weak Join). Given two interval polyhedra P1 and P2, we define a weak
join operation for the itvPol domain as

P1 tw P2
def
= env(P1,P2) u (env(P1)] env(P2)) u (BB(P1) tI BB(P2)).

Note that the weak join operation may introduce redundant constraints in the result,
but most of them can be eliminated by syntactic means (see Sect. 4.1).
Example 4. Consider two interval polyhedra P1 = {[−1, 1]x+2y ≤ 2,−2x−y ≤ 2, x−y ≤
1,−y ≤ 0} (i.e., the region above the x-axis in Fig. 1(1.d)) and P2 = {[−1, 1]x − 2y ≤
2, 2x + y ≤ 2,−x + y ≤ 1, y ≤ 0} (i.e., the region below the x-axis in Fig. 1(1.d)).
env(P1,P2) = {[−1, 1]x + 2y ≤ 2, [−1, 1]x − 2y ≤ 2} = {[−1, 1]x + 2y = [−2, 2]}.
env(P1)] env(P2) = {−2x− y ≤ 2, x− y ≤ 1,−y ≤ 0}] {2x+ y ≤ 2,−x+ y ≤ 1, y ≤ 0} =
{2x + [−2, 1]y = [−2, 2]}. Thus, P1 tw P2 = {[−1, 1]x + 2y = [−2, 2], 2x + [−2, 1]y =
[−2, 2]}, whose weak solution set is depicted in Fig. 1(1.d).

Theorem 5 (Soundness of the Weak Join). Given two interval polyhedra P1 and P2,
the weak join P1 tw P2 is an overapproximation of both P1 and P2, that is, ∀x.(x ∈
γ(P1) ∨ x ∈ γ(P2))⇒ x ∈ γ(P1 tw P2).

The above weak join can construct constraints that are satisfied by the set-union of
the input interval polyhedra but not satisfied by their convex hull (e.g., γ(P1 tw P2) =
γ(P1) ∪ γ(P2) holds in Example 4). However, when both interval polyhedra P1 and
P2 are convex polyhedra and in the same orthant, P1 tw P2 is less precise than their
polyhedral convex hull. In such a case, one may use the polyhedral convex hull instead.
E.g., given two points (0, 0) and (1, 1) in the (+,+)-orthant of the x-y plane, tw can only
give {0 ≤ x ≤ 1, 0 ≤ y ≤ 1}, which is less precise than the result of their polyhedral
convex hull (i.e., {0 ≤ x ≤ 1, y = x}).

5.3 Emptiness Test

An interval polyhedron P is empty iff its constraint set is not weakly solvable, that is,
γ(P) = ∅. Theorem 1 shows that checking weak solvability of interval linear systems
can be in principle performed by checking solvability of one linear system per orthant,
by some finite procedure (e.g., linear programming). During program analysis, con-
straints are often added one by one. Thus, the emptiness test can be done incrementally.
When adding a new constraint

∑
k [ak, bk] × xk ≤ b to a nonempty interval polyhedron

P, we solve the ILP problem: µ= min
∑

k [ak, bk] × xk subject to P. If µ > b, the new
interval polyhedron is indeed empty.

10

5.4 Transfer Functions

Test Transfer Function. The result of a test [[
∑

k [ak, ak] × xk ≤ b]]#(P) is simply the
interval polyhedron P with the constraint

∑
k [ak, ak] × xk ≤ b added, where [[·]]# (P) de-

notes the effect of a program statement on the interval polyhedron P. More complicated
cases, such as tests involving disjunctive, non-linear or floating-point expressions can
be soundly abstracted to the form

∑
k [ak, ak] × xk ≤ b, as discussed in Sect. 6.

Assignment Transfer Function. The assignment of a certain expression e to the vari-
able x j can be modeled using test, projection and variable renaming as follows:

[[x j:= e]]#(P) def
= (IFME([[x′j − e = 0]]#(P), x j))[x′j/x j] . (1)

The fresh variable x′j, introduced to hold the value of the expression e, is necessary
when x j also appears on the right hand of the assignment, e.g., x := [−1, 2]x + [2, 3].

Alternatively, the assignment transfer function can be implemented by substitution,
when the coefficient of x j in e does not contain zero. Let e =

∑
k[dk, dk]xk+ [c, c], where

0 < [d j, d j]. Then the assignment transfer function by substitution is defined as

[[x j:= e]]#(P) def
=

{
[a′j, a

′
j]x j +

∑
k, j[a′k, a

′
k]xk ≤ b′ | (

∑
k[ak, ak]xk ≤ b) ∈ P

}
(2)

where [a′j, a
′
j] =

[a j, a j]

[d j, d j]
, [a′k, a

′
k] =

[ak, ak] −
[dk, dk]
[d j, d j]

 and b′ = sup

b + [c, c]
[d j, d j]

.
Note that unlike the case of convex polyhedra, neither (1) nor (2) is an exact or best

abstraction for interval polyhedra. In most cases, (2) gives more precise results than (1).
E.g., given an interval polyhedron P = {[−1, 1]x ≤ −1}, for the assignment x := −x,
(1) will give the whole space as the result while (2) will result in P′ = {[−1, 1]x ≤ −1}
which is exact.

5.5 Widening

itvPol does not satisfy the ascending chain condition. Thus, a widening [7] operator
is needed to ensure convergence of fixpoint computations (used to analyze loops). We
define the widening in the itvPol domain as follows:

Definition 6 (Widening). Given a threshold k and two interval polyhedra P1 v P2 in
the i-th iteration, we define the widening in the i-th iteration as

P1 5
[k]
i P2

def
=

{
S1 ∪ S2 if i ≤ k
S1 otherwise

where S1 = {ϕ1 ∈ P1 |P2 |= ϕ1},S2 = {ϕ2 ∈ P2 | ∃ϕ1 ∈ P1, γ(P1) = γ((P1 \{ϕ1})∪{ϕ2})}.

S1 keeps stable inequalities from P1. S2 recovers precision by adding those inequalities
from P2 that are mutually redundant with an inequality of P1 with respect to P1. Unlike
the classic convex polyhedra domain where the widening is defined as S1 ∪ S2 in all
cases, itvPol needs a threshold k to guarantee convergence of the above widening by
disabling S2 after the k-th iteration. Given a chain (Xi)i∈N, the increasing chain (Yi)i∈N

defined by Y0=X0 and Yi+1=Yi 5
[k]
i Xi+1, is stable after a finite time, since after the k-th

iteration, the set of constraints in Y j+1 is a subset of the constraints in Y j (j > k).

11

6 Applications of the Interval Polyhedra Domain

6.1 Handling Disjunctions

We propose to apply the technique of interval combination to abstract disjunctions of
linear constraints by interval linear inequalities. In general, given a DNF (Disjunctive
Normal Form) formula, each DNF-term can be considered as a convex polyhedron. The
disjunction of those convex polyhedra can be abstracted as an interval polyhedron using
the join operation of itvPol (Sect. 5.2). On the other hand, given a CNF (Conjunctive
Normal Form) formula, each CNF-term can be abstracted as one interval linear inequal-
ity by interval combination (Sect. 5.2.1), thus the whole CNF formula can be abstracted
as an interval polyhedron.

For example, consider the program in Fig. 2. At , the negation of −1 ≤ x ≤ 1 on
integers gives x ≤ −2 ∨ −x ≤ −2, which can be exactly encoded as an interval linear
inequality [−1, 1]x ≤ −2. And, using itvPol, we can obtain the exact information at °,
i.e., y = −1, which implies y , 0. However, the convex polyhedra domain can only
obtain −1 ≤ y ≤ 0 at ° which fails to prove the assertion y , 0.

int x, y;
if (x ≥ −1 and x ≤ 1) then

y := x − 1; ¬

else

y := x; ®

endif; ¯

if(x == 0) then
° assert(y , 0);
endif;

Loc Convex Polyhedra Interval Polyhedra
¬ x − y = 1 ∧ −1 ≤ x ≤ 1 x − y = 1 ∧ −1 ≤ x ≤ 1
 > (no information) [−1, 1]x ≤ −2
® y = x y = x ∧ [−1, 1]x ≤ −2
¯ 0 ≤ x − y ≤ 1 0 ≤ x − y ≤ 1

∧[−1, 1]x + [0, 1]y ≤ −1
∧x + [−1, 0]y ≤ 1

° x = 0 ∧ −1 ≤ y ≤ 0 x = 0 ∧ y = −1

Fig. 2. Example program1 (left) and the generated invariants (right).

6.2 Handling Non-Linear Expressions

Miné has proposed a so-called linearization algorithm able to abstract arbitrary ex-
pressions into interval linear form Σk[ak, ak] × xk + [c, c] [21]. However, most current
numerical abstract domains, such as the convex polyhedra domain, cannot deal with
interval linear forms directly. Thus, one has to employ a so-called quasi-linearization
technique to convert the interval linear form Σk[ak, ak] × xk + [c, c] into quasi-linear
form Σka′k × xk + [c′, c′] [19]. The quasi-linearization process may cause precision loss.
However, using itvPol, one can avoid (at least delay) such precision loss, since itvPol
directly supports the representation of interval linear forms.

Given the program in Fig. 3, after the linearization of the non-linear expression
z× x+1, we obtain [−5, 5]x+y = 1 at ¬. When using the convex polyhedra domain, we
have to apply quasi-linearization to [−5, 5]x + y = 1. And the best quasi-linearization
will be −5x + y ≤ 21 ∧ −5x − y ≤ 19. Note that some precision loss happens here, e.g.,
the point (0, 0) satisfies −5x+y ≤ 21∧−5x−y ≤ 19 but does not satisfy [−5, 5]x+y = 1.
Finally, the convex polyhedra domain can only obtain x ≥ −1 at while using itvPol
we can prove x ≥ 3 at .

12

int x, y, z;
assume −5 ≤ z ≤ 5;
assume x ≥ −2;
y := z × x + 1; ¬

assume y == −14;

Loc Convex Polyhedra Interval Polyhedra
¬ −5 ≤ z ≤ 5 ∧ x ≥ −2 −5 ≤ z ≤ 5 ∧ x ≥ −2
∧ − 5x + y ≤ 21 ∧ −5x − y ≤ 19 ∧[−5, 5]x + y = 1

 y = −14 ∧ −5 ≤ z ≤ 5 y = −14 ∧ −5 ≤ z ≤ 5
∧x ≥ −1 ∧x ≥ 3

Fig. 3. Example program2 (left) and the generated invariants (right).

6.3 Handling Floating-Point Arithmetic

Real-life programming languages do not manipulate rationals or reals, but floating-point
numbers, which are much more difficult to abstract. One solution is to approximate
floating-point expressions as linear expressions in the real field with interval coefficients
by making rounding explicit [19]. Rounding is highly non-linear but can be abstracted
using intervals. For instance, X + Y in the floating-point world can be abstracted into
[1 − p, 1 + p] × X + [1 − p, 1 + p] × Y + [−m f ,m f] with the relative error p and the
absolute error m f (the smallest non-zero positive value in the floating-point format),
e.g., p = 2−23 and m f = 2−149 in the single precision floating-point format. This fits
the linearization framework which can be extended to treat floating-point arithmetic
soundly. Thus, floating-point programs can be directly analyzed using itvPol after ap-
plying floating-point abstractions.

Let us consider the program in Fig. 4. The quasi-linearization of both floating-point
assignments y :=−2 ⊗r x ⊕r 1 and y :=−x ⊕r 1 will give y ← [−∞,+∞], since x is un-
bounded. Thus, the convex polyhedra domain will obtain no useful information, while
itvPol can prove 0.4999998 ≤ x ≤ 1.0000002 at , which indicates that x is bounded
and thus there is no overflow exception in the last statement (i.e., x := x ⊕r 1).

real x, y;
if random() then

y := −2 ⊗r x ⊕r 1;
else

y := −x ⊕r 1;
endif; ¬

assume y == 0;

x := x ⊕r 1;

Loc Convex Polyhedra Interval Polyhedra
¬ >(no information) [0.9999999, 2.0000005]x + y ≤ 1.0000001

∧[0.9999999, 2.0000005]x + y ≥ 0.9999999
 y = 0 y = 0 ∧ 0.4999998 ≤ x ≤ 1.0000002

Fig. 4. Example program3 (left) and the generated invariants (right). �r denotes single precision
floating-point semantics with arbitrary rounding mode (� ∈ {⊗,⊕}, r ∈ {+∞,−∞}).

7 Implementation and Experimental Results

Our prototype domain, itvPol, is developed based on Sect. 5 using double precision
floating-point numbers. It makes use of GLPK (GNU Linear Programming Kit) [18]
which implements the simplex algorithm for linear programming. We implemented an
interval linear programming solver based on GLPK following the methods from [5,
15]. The soundness of the floating-point LP/ILP solver is guaranteed by rigorous linear
programming [4, 15]. The whole itvPol domain is implemented based on interval arith-
metic with outward rounding (i.e., rounding upper bounds upward and lower bounds
downward), which guarantees the soundness of the floating-point implementation.

13

real x, y;
x := −1;
while (true) do
¬ x := −x;
done;

Loc Convex Polyhedra Interval Polyhedra
¬ −1 ≤ x ≤ 1 −1 ≤ x ≤ 1 ∧ [−1, 1]x ≤ −1

Fig. 5. program4 (left) and the generated invariants (right).

itvPol is interfaced to the APRON [1] numerical abstract domain library. Our exper-
iments were conducted using the Interproc [16] static analyzer. We extended Interproc
to support input data with intervals (such as expressions and constraints with interval
coefficients). In order to assess the precision and efficiency of itvPol, we compare the
obtained invariants as well as the performance of itvPol with our previous work FPPol
[4] which is a sound floating-point implementation of the convex polyhedra domain.

To demonstrate the expressiveness of itvPol, two simple typical loops are shown in
Fig. 5 and Fig. 6, together with the invariants generated by the analyzer. program4 is a
loop that reverses the sign of variable x at each iteration, and program5 consists of two
stages, increasing y in the inner loop first and then increasing x in the outer loop. For
program4 in Fig. 5, itvPol can prove that x = −1 ∨ x = 1 at ¬, which is exact and more
precise than the invariant −1 ≤ x ≤ 1 given by FPPol. For program5 in Fig. 6, itvPol
can prove that −20 ≤ y ≤ −10 ∨ y ≥ 10 at , while FPPol can only prove y ≥ −20.

int x, y;
x := 1;
y := −20;
while (x ≤ 9) do
¬ x := x + 1;

while (y ≤ 9) do
y := y + 1;

done;
done;

Loc Convex Polyhedra Interval Polyhedra
¬ y ≥ −20 y ≥ −20
∧1 ≤ x ≤ 9 ∧1 ≤ x ≤ 9

∧ − x + [0, 1]y ≤ −2
∧[−1, 1]y ≤ −10

 y ≥ −20 ∧ x ≥ 10 y ≥ −20 ∧ x ≥ 10
∧[−1, 1]y ≤ −10

Fig. 6. program5 (left) and the generated invariants (right).

Fig. 7 shows the comparison of performance and result invariants for a selection of
benchmark examples.2 The first set of benchmark programs, program1-5, corresponds
to examples shown in Fig. 2-6. The second set of examples is reused from our previous
work [4], most of which come from Interproc. For each program, “#vars” indicates the
total number of program variables, and “#±” indicates the number of variables which
have unrestricted sign. The column “#∇delay” specifies the value of the widening delay
parameter for Interproc (i.e., the number of loop iterations performed before applying
the widening operator with the fixed threshold k = 10 in Def. 6). “#iterat.” gives the
number of increasing iterations during the analysis.

Invariants. The column “Result Invar.” compares the invariants obtained. A “>”
(“<”) indicates that itvPol outputs stronger (weaker) invariants than FPPol. For pro-

2 We also analyzed the benchmark programs using NewPolka which is implemented in exact
arithmetic, and the result invariants are almost the same as those by FPPol. itvPol performs 2
times faster than NewPolka on ratelimiter f and at worst 4 times slower on other programs.

14

Program Analyzer itvPol FPPol Result
name #vars(#±) #∇delay #iterat. #lp time(ms) #iterat. #lp time(ms) Invar.

program1 2(2) 1 1 256 31 1 138 24 >

program2 3(3) 1 1 78 12 1 54 11 >

program3 2(2) 1 1 68 13 1 0 6 >

program4 1(1) 3 4 19 10 4 8 7 >

program5 2(1) 1 5 270 49 6 187 35 >

sequencewhiles 3(1) 1 9 368 61 9 237 46 >

ratelimiter f 5(4) 4 4 5846 792 5 2966 1425 >

bubblesort 4(4) 1 8 845 123 8 646 101 >

maccarthy91 3(2) 1 4 609 83 4 442 63 >

heapsort 7(7) 1 4 1534 273 4 1929 374 <

symmetricalstairs 2(1) 1 5 245 45 6 469 78 <

ackerman 4(2) 1 4 883 127 6 1477 298 <

Fig. 7. Experimental results for benchmark examples.

grams involving variables unrestricted in sign, itvPol can often find some interesting
non-convex invariants. When all variables in the program are restricted in sign, in most
cases itvPol generates no better invariants than FPPol, since itvPol uses the weak join
tw which is weaker than the polyhedral convex hull of FPPol in such a case.

Performance. “time(ms)” presents the analysis times in milliseconds when the ana-
lyzer is run on a 1.6GHz PC with 768MB of RAM running Fedora 9. Fig. 7 shows that
the overall computation cost of itvPol is not so high compared with FPPol. The reason
can be derived mainly from the fact that itvPol uses the weak join tw. In some cases,
e.g., ratelimiter f and heapsort, itvPol even outperforms FPPol. “#lp” shows the number
of LP queries issued to GLPK. During our experiments, we found that the time spent in
the LP solver frequently takes at least half of the total analysis time when using itvPol.

8 Conclusion

In this paper, a new numerical abstract domain called interval polyhedra (itvPol) was
presented, which introduces interval linear algebra to static analysis. This domain can
represent and manipulate linear constraints with interval coefficients. itvPol has some
attractive features in that it natively allows expressing certain non-convex (even uncon-
nected) properties without any explicit disjunctive representations. The domain opera-
tions can be constructed by interval linear programming and interval Fourier-Motzkin
elimination. Possible applications of itvPol are described, e.g., to handle programs in-
volving disjunctive, non-linear, or floating-point expressions. itvPol can discover inter-
esting non-convex properties for programs involving variables unrestricted in sign.

It remains for future work to design more precise or even optimal abstractions for
the join of the itvPol domain, and to test itvPol on large realistic programs. We also plan
to improve the efficiency of itvPol, e.g., by reducing the number of LP queries.

Acknowledgements. We would like to thank Axel Simon and Jiri Rohn for useful
discussions, and the anonymous reviewers for their helpful comments and suggestions.

15

References
1. APRON numerical abstract domain library. http://apron.cri.ensmp.fr/library/.
2. X. Allamigeon, S. Gaubert, and E. Goubault. Inferring min and max invariants using max-

plus polyhedra. In SAS’08, volume 5079 of LNCS, pages 189–204. Springer Verlag, 2008.
3. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In

VMCAI’04, volume 2937 of LNCS, pages 135–148. Springer Verlag, 2004.
4. L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract domain. In

APLAS’08, volume 5356 of LNCS, pages 3–18. Springer Verlag, 2008.
5. J.W. Chineck and K. Ramadan. Linear programming with interval coefficients. Journal of

the Operational Research Society, 51(2):209–220, 2000.
6. P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc.

of the 2nd International Symposium on Programming, pages 106–130. Dunod, Paris, 1976.
7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In ACM POPL’77, pages 238–252.
ACM Press, New York, 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In ACM
POPL’79, pages 269–282. ACM Press, New York, 1979.

9. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to comport-
ment analysis generalizing strictness, termination, projection and PER analysis of functional
languages). In ICCL’94, pages 95–112. IEEE Computer Society Press, 1994.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In ACM POPL’78, pages 84–96. ACM Press, New York, 1978.

11. R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpretation. Sci.
Comput. Program, 32(1-3):177–210, 1998.

12. P. Granger. Static analysis of arithmetical congruences. International Journal of Computer
Mathematics, 30:165–199, 1989.

13. B. S. Gulavani and S. Gulwani. A numerical abstract domain based on expression abstraction
and max operator with application in timing analysis. In CAV’08, volume 5123 of LNCS,
pages 370–384. Springer-Verlag, 2008.

14. C. Jansson. Calculation of exact bounds for the solution set of linear interval systems. Linear
Algebra and Its Applications, 251:321–340, 1997.

15. C. Jansson. Rigorous lower and upper bounds in linear programming. SIAM Journal on
Optimization, 14(3):914–935, 2004.

16. G. Lalire, M. Argoud, and B. Jeannet. Interproc. http://pop-art.inrialpes.fr/people/bjeannet/
bjeannet-forge/interproc/.

17. V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer linear in-
equalities. In VMCAI’09, volume 5403 of LNCS, pages 229–244. Springer Verlag, 2009.

18. A. Makhorin. The GNU Linear Programming Kit, 2000. http://www.gnu.org/software/glpk/.
19. A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In

ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.
20. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–

100, 2006.
21. A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In

VMCAI’06, volume 3855 of LNCS, pages 348–363. Springer, 2006.
22. W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with

given error bounds for coefficients and right-hand sides. Numer. Math., 6:405–409, 1964.
23. J. Rohn. A handbook of results on interval linear problems. Technical report, Czech

Academy of Sciences, Prague, Czech Republic, April 2005.
24. J. Rohn. Solvability of systems of interval linear equations and inequalities. In Linear

Optimization Problems with Inexact Data, pages 35–77. Springer, 2006.

16

