
Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

Static Analysis of List-Manipulating Programs via
Bit-Vectors and Numerical Abstractions

Liqian Chen1,2 Renjian Li1 Xueguang Wu 1 Ji Wang1

1National University of Defense Technology, Changsha, China
2National Lab. for Parallel and Distributed Processing, Changsha, China

21/03/2013 – ACM SAC’13 (Track SVT)

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 1 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

Overview

Motivation

A combined abstract domain for lists

Analysis of list-manipulating programs

Conclusion

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 2 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

Motivation

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 3 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

Motivation

Linked list: a basic dynamic data structure

commonly used in OS kernels, network protocols, . . .

errors: memory leaks, dangling references, double free, null
pointer dereference, . . .

Analysis of list manipulating programs

problem: high complexity

solution: abstraction to make the problem tractable

abstraction according to the characteristics of lists
−→ simplify the problem & precise enough
shape abstraction + numerical abstraction
−→ numerical related properties over lists

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 4 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

Motivation

Idea: combining shape and numerical abstractions
under the framework of abstract interpretation

a combined abstract domain for singly-linked lists

shape: bit vectors
numerical: polyhedra, octagons, intervals, . . .

analysis of list-manipulating programs based on this domain

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 5 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

A combined abstract domain for lists

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 6 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Concrete heap state

	

u
q

v
p

NULL

n1

n2 n3 n4 n5

Shape graph: 〈N,V ,E 〉
N = {u, v , p, q, n1, n2, n3, n4, n5}
V = {u, v , p, q}
E = {〈u, n1〉, 〈p, n2〉, 〈q, n2〉, 〈v , n5〉, 〈n1, n4〉, 〈n2, n3〉,

〈n3, n4〉, 〈n4, n5〉, 〈n5,NULL〉}
Limitations of shape graphs:

high memory costs (explicit storage)

lists with symbolic length

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 7 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Shape abstraction for lists

Definition (Reach predicate)

Reach(n, n′) , ∃k ∈ N.∀0 6 i 6 k .ni ∈ N.
n0 = n ∧ nk = n′ ∧ ∀0 6 j < k .〈nj , nj+1〉 ∈ E

i.e., Reach(n, n′) = true iff there exists a path from n to n′

Definition (Variable Reachability Vector)

For each node n ∈ (N − V), we define a Variable Reachability
Vector (VRV) vecn ∈ {0, 1}|V | that is a bit-vector of length |V |,
where

vecn[i] = 1 iff Reach(Vi , n) = true

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 8 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Shape abstraction for lists

u
q

v
p

NULL

0100

0011 0011 0111 1111

n1

n2 n3 n4 n5

V0 = p; V1 = q;
V2 = u; V3 = v

	

Variable Reachability Vector: describe reachability properties of all
variables to nodes

each VRV can be considered as an abstract node

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 9 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Shape abstraction for lists

Reachability information from VRVs

Definition

Let ΓΓΓ denote the set of VRVs of all nodes. For arbitrary
vec ∈ ΓΓΓ, let Ivec denote the set of the 1-bits in vec:

Ivec , {i ∈ N | vec[i] = 1}
If i ∈ Ivec, then Vi can reach (the corresponding nodes) of
vec, denoted as Vi ∈ vec

E.g., I0100 = {2}; I0011 = {0, 1};

u
q

v
p

NULL

0100

0011 0011 0111 1111

n1

n2 n3 n4 n5

V0 = p; V1 = q;
V2 = u; V3 = v

	
Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 10 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Shape abstraction for lists

Definition (Reachability relations between VRVs)

Given two VRVs vec1, vec2,

if Ivec1 ⊆ Ivec2 , then vec1 can reach vec2 (vec1 ⊆ vec2)

if Ivec1 ⊂ Ivec2 , then vec1 can strictly reach vec2 (vec1 ⊂ vec2)

if Ivec1 ∩ Ivec2 = ∅, then vec1 and vec2 can not reach each other
(vec1 ∩ vec2 = ∅)

E.g., vec0100 ⊂ vec0111; vec0011 ⊂ vec0111; vec0100 ∩ vec0011 = ∅;

u
q

v
p

NULL

0100

0011 0011 0111 1111

n1

n2 n3 n4 n5

V0 = p; V1 = q;
V2 = u; V3 = v

	
Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 11 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Properties of VRVs

E.g., Given a set of VRVs {0011, 0100, 0111, 1111}
vec0011 ⊂ vec0111 ⊂ vec1111

p points to 0011

p, q are alias

p cannot reach the node pointed to by u

u
q

v
p

NULL

0100

0011 0011 0111 1111

n1

n2 n3 n4 n5

V0 = p; V1 = q;
V2 = u; V3 = v

	

The set ΓΓΓ of VRVs of a singly-linked list satisfies |Γ| ≤ 2|V |

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 12 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

VRVs with counters

	
	

	
	
	
	

uq

v
p

NULL

0100

0011 0011 0111 1111

V0 = p; V1 = q;
V2 = u; V3 = vn1

n2 n3 n4 n5

pquv

0100
0011

0111
1111

num

1
2

1
1

Definition

The set of VRVs with counters VRVCs ΓΓΓ+ ⊆ ΓΓΓ× N is defined as a
set of 2-tuples 〈vec, num〉 where

vec ∈ ΓΓΓ

num ∈ N: the number of the list nodes whose VRV is vec

Lists:

shape: VRVs ← nodes; VRV reachability relations ← edges

numerical: counters ← quantitative information of the nodes

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 13 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Numerical abstraction for lists

Counter variables: auxiliary (non-negative) integer variables

for each vec ∈ VRVs, introduce a counter variable tvec∈ N
to record the number of the list nodes whose VRV is vec

a special auxiliary variable t0...00 ∈ N
to specify memory leak when t0...00 > 0

variable ordering: t0...00 ≺ t0...01 ≺ t0...10 ≺ · · · ≺ t1...11

a bijection between vec and tvec

{〈vec, tvec〉 | tvec > 0} represents a list, if it is consistent

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 14 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Numerical abstraction for lists

Numerical abstract domains in abstract interpretation

infer relations among numerical variables

examples

intervals (a ≤ x ≤ b)
octagons (±x ± y ≤ c)
polyhedra (Σkakxk ≤ b)

y

x

Chosen numerical abstract domains for counter variables tvec

intervals (a ≤ x ≤ b)

affine equalities (Σkakxk = b)

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 15 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Analysis of list-manipulating programs

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 16 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Analysis of list-manipulating programs

p, q ∈ PVar
AsgnStmnt := p := null | p := q | p := q → next | p → next := null |

p → next := q | p := malloc() | free(p)
Cond := p == q | p == null | ¬Cond | Cond1 ∨ Cond2 |

Cond1 ∧ Cond2 | true | false | brandom
BranchStmnt := if Cond then {Stmnt; }∗ [else {Stmnt; }∗] fi
WhileStmnt := while Cond do {Stmnt; }∗ od

Stmnt := AsgnStmnt | BranchStmnt |WhileStmnt
Program := {Stmnt; }∗

Domain operations: on top of shape and numerical abstraction
inclusion test v
join t
widening ∇
transfer functions τ

condition test
assignment

. . .
Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 17 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

[[p := q]]]

Let vec′
def
= vec/{p}←q. For each vec ∈ Γ s.t. vec′ 6= vec, we build numerical

statements:
if (tvec ≥ 1){ tvec′ := tvec′ + tvec; tvec := 0; }

u
q

v
p

NULL

0100

0011 0011 0111 1111

V0 = p; V1 = q;
V2 = u; V3 = vn1

n2 n3 n4 n5

vuqp
0011
0100
0111
1111

num
2
1
1
1

u

q
v

p

NULL

0101

0010 0010
0111 1111

n1

n2 n3
n4 n5

vuqp
0010
0101
0111
1111

num
2
1
1
1

p := u t0010 := t0010 + t0011; t0011 := 0;
t0101 := t0101 + t0100; t0100 := 0;

	
Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 18 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Example analysis

void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */

/ ∗ t0100 = 9; t0100 ∈ [9, 9];♥ ∗ /
2: yList = xList; qList = pList = null ;

/ ∗ t0100 + t1100 = 9, t0011 + t1100 = 9; t0100 ∈ [1, 9], t1100 ∈ [0, 9], t0011 ∈ [0, 9];♥ ∗ /
3: while (yList != null){

/ ∗ t0100 + t1100 = 9, t0011 + t1100 = 9; t0100 ∈ [1, 8], t1100 ∈ [1, 9], t0011 ∈ [0, 8];♥ ∗ /
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;}

/ ∗ t0011 = 9, t0100 = 9; t0011 ∈ [9, 9], t0100 ∈ [9, 9];♥ ∗ /
6 : yList = xList;

/ ∗ t0011 − t1100 = 0; t0011 ∈ [0, 9], t1100 ∈ [0, 9];♥ ∗ /
7 : while (yList != null){

/ ∗ t0011 − t1100 = 0; t0011 ∈ [1, 9], t1100 ∈ [1, 9];♥ ∗ /
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: } / ∗ ∀vec.tvec = 0 ∗ /
}

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 19 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Example analysis

void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */
2: yList = xList; qList = pList = null ;
3: while (yList != null){
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;}
6 : yList = xList;
7 : while (yList != null){

/* {t0011 − t1100 = 0; t0011 ∈ [1, 9], t1100 ∈ [1, 9]};♥ */
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: }
}
• pList, qList are alias; xList, yList are alias

• the length of pList equals to that of xList

• no null pointer dereference

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 20 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Example analysis

void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */
2: yList = xList; qList = pList = null ;
3: while (yList != null){
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;
6 : yList = xList;
7 : while (yList != null){
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: } / ∗ ∀vec.tvec = 0;♥ ∗ /
}

• all heap cells are freed

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 21 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Example analysis

void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */
2: yList = xList; qList = pList = null ;
3: while (yList != null){
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;
6 : yList = xList;
7 : while (yList != null){
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: }
}

• Global invariants: t0···0 ≡ 0 no memory leak

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 22 / 23

Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs
Example analysis

Conclusion

Summary: analysis of lists via abstract interpretation

main idea: combining shape and numerical abstractions

a combined abstract domain for lists
the structural information of the shape: bit vectors

each bit-vector represents a list segment

the number of nodes in a segment: numerical abstract domains

a counter variable to record the number of nodes in a list segment

Future work

reasoning over the content of lists (e.g., lists of integers)

enable infering advanced properties such as sortedness, no
duplicated elements

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 23 / 23

	Motivation
	A combined abstract domain for lists
	shape abstraction for lists
	numerical abstraction for lists

	Analysis of list-manipulating programs
	Example analysis

