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Motivation

Linked list: a basic dynamic data structure

commonly used in OS kernels, network protocols, . . .

errors: memory leaks, dangling references, double free, null
pointer dereference, . . .

Analysis of list manipulating programs

problem: high complexity

solution: abstraction to make the problem tractable

abstraction according to the characteristics of lists
−→ simplify the problem & precise enough
shape abstraction + numerical abstraction
−→ numerical related properties over lists

Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 4 / 23



Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

Motivation

Idea: combining shape and numerical abstractions
under the framework of abstract interpretation

a combined abstract domain for singly-linked lists

shape: bit vectors
numerical: polyhedra, octagons, intervals, . . .

analysis of list-manipulating programs based on this domain
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Concrete heap state
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Shape graph: 〈N,V ,E 〉
N = {u, v , p, q, n1, n2, n3, n4, n5}
V = {u, v , p, q}
E = {〈u, n1〉, 〈p, n2〉, 〈q, n2〉, 〈v , n5〉, 〈n1, n4〉, 〈n2, n3〉,

〈n3, n4〉, 〈n4, n5〉, 〈n5,NULL〉}
Limitations of shape graphs:

high memory costs (explicit storage)

lists with symbolic length
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Shape abstraction for lists

Definition (Reach predicate)

Reach(n, n′) , ∃k ∈ N.∀0 6 i 6 k .ni ∈ N.
n0 = n ∧ nk = n′ ∧ ∀0 6 j < k .〈nj , nj+1〉 ∈ E

i.e., Reach(n, n′) = true iff there exists a path from n to n′

Definition (Variable Reachability Vector)

For each node n ∈ (N − V ), we define a Variable Reachability
Vector (VRV) vecn ∈ {0, 1}|V | that is a bit-vector of length |V |,
where

vecn[i ] = 1 iff Reach(Vi , n) = true
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Variable Reachability Vector: describe reachability properties of all
variables to nodes

each VRV can be considered as an abstract node
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Shape abstraction for lists

Reachability information from VRVs

Definition

Let ΓΓΓ denote the set of VRVs of all nodes. For arbitrary
vec ∈ ΓΓΓ, let Ivec denote the set of the 1-bits in vec:

Ivec , {i ∈ N | vec[i ] = 1}
If i ∈ Ivec, then Vi can reach (the corresponding nodes) of
vec, denoted as Vi ∈ vec

E.g., I0100 = {2}; I0011 = {0, 1};

u
q

v
p

NULL

0100

0011 0011 0111 1111

n1

n2 n3 n4 n5

V0 = p;   V1 = q;
V2 = u;   V3 = v

	  
Liqian Chen Static Analysis of Lists via Bit-Vectors and Numerical Abstractions p. 10 / 23



Motivation
A combined abstract domain for lists

Analysis of list-manipulating programs

shape abstraction for lists
numerical abstraction for lists

Shape abstraction for lists

Definition (Reachability relations between VRVs)

Given two VRVs vec1, vec2,

if Ivec1 ⊆ Ivec2 , then vec1 can reach vec2 (vec1 ⊆ vec2)

if Ivec1 ⊂ Ivec2 , then vec1 can strictly reach vec2 (vec1 ⊂ vec2)

if Ivec1 ∩ Ivec2 = ∅, then vec1 and vec2 can not reach each other
(vec1 ∩ vec2 = ∅)

E.g., vec0100 ⊂ vec0111; vec0011 ⊂ vec0111; vec0100 ∩ vec0011 = ∅;
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Properties of VRVs

E.g., Given a set of VRVs {0011, 0100, 0111, 1111}
vec0011 ⊂ vec0111 ⊂ vec1111

p points to 0011

p, q are alias

p cannot reach the node pointed to by u
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V0 = p;   V1 = q;
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The set ΓΓΓ of VRVs of a singly-linked list satisfies |Γ| ≤ 2|V |
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VRVs with counters
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Definition

The set of VRVs with counters VRVCs ΓΓΓ+ ⊆ ΓΓΓ× N is defined as a
set of 2-tuples 〈vec, num〉 where

vec ∈ ΓΓΓ

num ∈ N: the number of the list nodes whose VRV is vec

Lists:

shape: VRVs ← nodes; VRV reachability relations ← edges

numerical: counters ← quantitative information of the nodes
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Numerical abstraction for lists

Counter variables: auxiliary (non-negative) integer variables

for each vec ∈ VRVs, introduce a counter variable tvec∈ N
to record the number of the list nodes whose VRV is vec

a special auxiliary variable t0...00 ∈ N
to specify memory leak when t0...00 > 0

variable ordering: t0...00 ≺ t0...01 ≺ t0...10 ≺ · · · ≺ t1...11

a bijection between vec and tvec

{〈vec, tvec〉 | tvec > 0} represents a list, if it is consistent
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Numerical abstraction for lists

Numerical abstract domains in abstract interpretation

infer relations among numerical variables

examples

intervals (a ≤ x ≤ b)
octagons (±x ± y ≤ c)
polyhedra (Σkakxk ≤ b)

y

x

Chosen numerical abstract domains for counter variables tvec

intervals (a ≤ x ≤ b)

affine equalities (Σkakxk = b)
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Analysis of list-manipulating programs

p, q ∈ PVar
AsgnStmnt := p := null | p := q | p := q → next | p → next := null |

p → next := q | p := malloc() | free(p)
Cond := p == q | p == null | ¬Cond | Cond1 ∨ Cond2 |

Cond1 ∧ Cond2 | true | false | brandom
BranchStmnt := if Cond then {Stmnt; }∗ [else {Stmnt; }∗ ] fi
WhileStmnt := while Cond do {Stmnt; }∗ od

Stmnt := AsgnStmnt | BranchStmnt |WhileStmnt
Program := {Stmnt; }∗

Domain operations: on top of shape and numerical abstraction
inclusion test v
join t
widening ∇
transfer functions τ

condition test
assignment

. . .
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[[p := q]]]

Let vec′
def
= vec/{p}←q. For each vec ∈ Γ s.t. vec′ 6= vec, we build numerical

statements:
if (tvec ≥ 1){ tvec′ := tvec′ + tvec; tvec := 0; }
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p := u t0010 := t0010 + t0011; t0011 := 0;
t0101 := t0101 + t0100; t0100 := 0;
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void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */

/ ∗ t0100 = 9; t0100 ∈ [9, 9];♥ ∗ /
2: yList = xList; qList = pList = null ;

/ ∗ t0100 + t1100 = 9, t0011 + t1100 = 9; t0100 ∈ [1, 9], t1100 ∈ [0, 9], t0011 ∈ [0, 9];♥ ∗ /
3: while (yList != null){

/ ∗ t0100 + t1100 = 9, t0011 + t1100 = 9; t0100 ∈ [1, 8], t1100 ∈ [1, 9], t0011 ∈ [0, 8];♥ ∗ /
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;}

/ ∗ t0011 = 9, t0100 = 9; t0011 ∈ [9, 9], t0100 ∈ [9, 9];♥ ∗ /
6 : yList = xList;

/ ∗ t0011 − t1100 = 0; t0011 ∈ [0, 9], t1100 ∈ [0, 9];♥ ∗ /
7 : while (yList != null){

/ ∗ t0011 − t1100 = 0; t0011 ∈ [1, 9], t1100 ∈ [1, 9];♥ ∗ /
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: } / ∗ ∀vec.tvec = 0 ∗ /
}
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void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */
2: yList = xList; qList = pList = null ;
3: while (yList != null){
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;}
6 : yList = xList;
7 : while (yList != null){

/* {t0011 − t1100 = 0; t0011 ∈ [1, 9], t1100 ∈ [1, 9]};♥ */
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: }
}
• pList, qList are alias; xList, yList are alias

• the length of pList equals to that of xList

• no null pointer dereference
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Example analysis

void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */
2: yList = xList; qList = pList = null ;
3: while (yList != null){
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;
6 : yList = xList;
7 : while (yList != null){
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: } / ∗ ∀vec.tvec = 0;♥ ∗ /
}

• all heap cells are freed
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Example analysis

void copy and delete(List* xList) { /* ♥ : ∀tvec .NoOccurenceOf vec implies tvec = 0 */

/* assume \length(xList)==9; */
1: List* yList, pList, qList; /* pList ≺ qList ≺ xList ≺ yList */
2: yList = xList; qList = pList = null ;
3: while (yList != null){
4: yList = yList → next; qList = malloc();
5: qList → next = pList; pList = qList;
6 : yList = xList;
7 : while (yList != null){
8: yList = yList → next; qList = qList → next;
9: free(xList); free(pList); xList = yList; pList = qList;
10: }
}

• Global invariants: t0···0 ≡ 0  no memory leak
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Conclusion

Summary: analysis of lists via abstract interpretation

main idea: combining shape and numerical abstractions

a combined abstract domain for lists
the structural information of the shape: bit vectors

each bit-vector represents a list segment

the number of nodes in a segment: numerical abstract domains

a counter variable to record the number of nodes in a list segment

Future work

reasoning over the content of lists (e.g., lists of integers)

enable infering advanced properties such as sortedness, no
duplicated elements
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