Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 1

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com .]=
E-mail: jzus@zju.edu.cn Z S

Automatic Recovery from Resource Exhaustion
Exceptions by Collecting Leaked Resources*

Zi-ying DAI!, Xiao-guang MAOT#1:2| Li-qian CHEN', Yan LEI'3
L College of Computer, National University of Defense Technology, Changsha 410073, China
2Laboratory of Science and Technology on Integrated Logistics Support,
National University of Defense Technology, Changsha 410073, China
3 Department of Computer Science, University of California, Davis, USA
tE-mail: ziyingdai@nudt.edu.cn; xgmao@nudt.edu.cn

Received Nov. X, 2013; Revision accepted XX, 2013; Crosschecked XX, 2013

Abstract: Despite the availability of garbage collectors, programmers must manually manage non-memory finite
system resources such as file descriptors. Resource leaks can gradually consume all available resources and cause
programs to raise resource exhaustion exceptions. However, programmers commonly provide no effective recovery
for resource exhaustion exceptions, which often can cause programs to halt without completing their tasks. In this
paper, we propose to automatically recover programs from resource exhaustion exceptions caused by resource leaks.
We transform programs so that they can catch resource exhaustion exceptions, collect leaked resources, and then
retry failed code. A resource collector is designed to identify leaked resources and safely release them. We implement
our approach for Java programs. Experimental results show that our approach can successfully handle resource
exhaustion exceptions caused by reported resource leaks and allow programs to continue to complete their tasks
with an average execution time increase of 2.52% and negligible byte-code size increases.

Key words: Failure avoidance, Resource leaks, Resource collection, Exception handling, Reliability
doi:XX/jzus.C1000000 Document code: A CLC number:

1 Introduction bug that occurs when the cleanup method of the re-

source is not invoked after its last use. Resource leaks
Automatic garbage collection has gained con-

siderable success in many mainstream programming
languages, such as Java and C#. A garbage col-
lector relieves programmers from manual memory

are common in Java programs (Torlak and Chandra,
2010). Growing resource leaks can degrade an appli-
cation’s performance and can even result in system

crashes due to resource exhaustion.

management and improves productivity and pro-

gram reliability (Dybvig et al., 1993). However, The large majority of modern programs rely on
there are many other non-memory finite system re- ¢Xception handling constructs to notify abnormal sit-

sources (e.g. file descriptors and database connec- uations and allow customized recoveries from excep-

tions. When a semantic error occurs or some ex-
ceptional situation is encountered, an exception is

tions) that programmers must manage manually. For
programs written in Java-like languages, once ac-

quired, a resource must be released by explicitly call- thrown (e.g. throw in Java). This exception causes

ing a cleanup method. A resource leak is a software ~ the control flow to transfer from where the excep-

tion occurs to a point where the exception is caught
¥ Corresponding author

- Projects (Nos. 61379054 and 91318301) supported by the
National Natural Science Foundation of China, and Projects caught within the method where it occurs, it is im-
(No. 2012AA011201) supported by National High Technology s .
Research and Development Program of China (863 program) phCltly propagated to the caller of this method. If all

(©Zhejiang University and Springer-Verlag Berlin Heidelberg 2013 available resources are consumed (or leaked), a fur-

(e.g. try and catch in Java). If an exception is not

2 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

ther request for such resources will typically cause
the program to throw a resource exhaustion excep-
tion (REE). For example, a Java program will throw
a FileNotFoundException saying “Too many open
files" when no more available file descriptors can be
used to open a file.

Programmers can catch exceptions and provide
their recovery code. However, the recovery code pro-
vided by the the programmer is often unsatisfacto-
ry. The Java code in Fig. 1la is such an example.
This code snippet is from an old version of Ant!
and is the running example used throughout this pa-
The programmer opens a pattern file in line
5 but forgets to close it. If this method is repeat-

per.

edly called in cases where there are many pattern
files for a task, the available file descriptors can be
exhausted. The file open (line 3) can fail with a
thrown FileNotFoundException that is caught (line
6). The recovery code for this exception provided by
the programmer is disappointing because the pro-
grammer just logs this exception, re-throws anoth-
er exception and terminates the execution of this
method (line 9), without any recoveries. The fur-
ther the exception propagates from this method, the
less likely the program can be successfully recovered
from it. This usually causes the entire program to
halt without completing the task. Instead of an ex-
ceptional case, this logging-rethrowing-terminating
strategy is common for exception handling accord-
ing to recent studies (Shah et al., 2010; Cabral and
Marques, 2007).

Designing effective recovery strategies for excep-
tions (i.e. recovering from exceptional states and
continuing the execution of the program to complete
its task) is difficult. When encountering a resource
exhaustion exception, programmers typically do not
know where to find available resources. Existing ex-
ception recovery approaches (Carzaniga et al., 2013;
Chang et al., 2009) cannot avoid failures manifested
as REEs. Even if they can fix the causal resource
leak, there is no available resources to complete the
task without collecting leaked resources. Consider-
ing the abundance of resource leaks and the poor
quality of exceptional handling, REEs pose a great
threat to the reliability of programs.

n current version of Ant, the opened file is closed within
a finally statement at the end of this method. Howev-
er, the handling code for the IOException (superclass of
FileNotFoundException) remains.

This paper presents an approach to automat-
ically recover from REEs caused by resource leak-
s by collecting leaked resources and make the pro-
gram execution able to proceed to complete its task.
Our approach has two key components. The first
component is the program transformer that analyzes
the program, finds method calls where REEs can be
thrown and transforms the program by adding recov-
ery code for REEs. The recovery strategy consists of
collecting leaked resources first and then retrying the
exception-throwing method calls. We require that
the REE-throwing method is failure atomic (Fetzer
et al., 2004) (i.e., the method leaves the program in
a consistent state before exceptions are propagated
to its caller). For example, the transformed result
for the exception-throwing code in the lines 2 and
3 in Fig. 1la is presented in Fig. 1b%. The sec-
ond component is the resource collector (called by
System.rc() in the line 6 in Fig. 1b) that collects
leaked resources. First, the resource collector identi-
fies leaked resources as the unreleased and unreach-
able resources. For garbage collected languages, we
adapt the garbage collector to retain leaked resources
during garbage collections. Second, corresponding
cleanup methods such as close of BufferedReader
for the code in Fig. la are invoked to safely release
these leaked resources in the right order. We ensure
the safety of the resource collector by guaranteeing
that when a resource is released there are no objects
that depend on it and that have some actions (e.g.,
close and finalize) to perform in the future, and
this resource does not refer to resources that may be
manipulated later by the program.

We implement our approach based on Soot
(Vallée-Rai et al., 1999) and Jikes RVM (Arnold
et al., 2000) for Java programs. The input to our
approach is REEs as well as their corresponding
resource specifications. We conduct a series of ex-
periments to evaluate the effectiveness and overhead
of our approach on standard benchmarks in litera-
ture and reported resource leaks from real-world pro-
grams. The experimental results show that our ap-
proach can successfully recover from REEs caused by

20ur approach actually transforms the method
FileInputStream(File) that is called by FileReader (File).
We only transform calls to source methods of REEs. See
Section 2 for details. The transformation in Fig. 1b is for
illustration. All classes in this paper are from the Java sys-
tem library unless explicitly stated otherwise. We omit the
package name for brevity without confusions.

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 3

1 private void readPatterns(File patternfile, ...) throws BuildException {

2 try { BufferedReader patternReader =
3 new BufferedReader(new FileReader(patternfile));
4 /] Create one NameEntry in the pattern list for each line in the file.
5
6 }catch(IOException ioe) {
7 String msg = "An error occurred while reading from pattern file: "
8 + patternfile;
9 throw new BuildException(msg, ioe);
0}
11}

(a)

FileReader reader = null;
try {
reader = new FileReader(patternfile);
} catch (FileNotFoundException e) {
if (e.getMessage().contains("Too many open files")) {
System.rc(e); //collect leaked files
reader = new FileReader(patternfile);
} else
throw e;
}

BufferedReader patternReader = new BufferedReader(reader);
(b)

P OWOKNOOULAE WNE

e

Fig. 1 The left part (a) is an example code snippet from Ant, and the right part (b) is the transformed result

for the lines 2 and 3 from the left part

these reported resource leaks and make the programs
able to continue to complete their tasks. The run-
time overhead for benchmark programs is very low,
around 3%, and the average execution time increase
is 2.56%. The increase of byte-code size caused by
the program transformer is negligible.

The rest of this paper is organized as follows.
Section 2 presents the proposed approach and the
program transformer. In Section 3, we present the
design of the resource collector. We discuss the
soundness and completeness of our approach in Sec-
tion 4. The implementation of our approach for Ja-
va programs is presented in Section 5. Section 6
presents the experimental evaluation. Related work
is presented in Section 7. Finally, we conclude in
Section 8.

2 Proposed Approach

We aim to recover from REEs and then retry
the failed code to make the program able to con-
tinue its execution. Our approach is fully automat-
ic by transforming programs. The transformation
is source-to-source/byte-code-to-byte-code, without
any user annotations required. The architecture of
this approach is presented in Fig. 2. There are two
working stages. The first stage is the pre-deployment
transformation. In this stage, we transform the pro-
gram to add the recovery code for method calls possi-
bly throwing REEs. The second stage is the runtime
recovery by collecting leaked resources. A resource
collector is developed and deployed into the under-
lying virtual machine/execution system, on top of
which the hardened program from the first stage run-
s. If there are resources that have been exhausted
during runtime and the corresponding exception is
thrown by the program, the REE will be caught by

Resource Specification

Resource
/K Collection

|
|
|
|
| REE
|
|
|
|
|
|

Hardened
Program Program Program Program
Transformation Running

Pre-deployment Runtime

Fig. 2 Overview of our approach

the transformed program. Then, the resource collec-
tor begins to collect leaked resources and the failed
method call is retried. If the recovery succeeds, the
program continues to execute. Otherwise, the REE
will be thrown again and propagated to the caller in
the same way as the original program does.

Most garbage collectors adopt the finalization
mechanism that allows a finalize method to be
associated with an object. The garbage collector in-
vokes the finalize method to perform some cleanup
work before its associating object is garbage collect-
ed. Our resource collector and the finalization mech-
anism both aim at reclaiming leak resources. How-
ever, finalization is unqualified to perform resource
collections for various reasons. In contrast, our re-
source collector improves the situation based on its
several design decisions. Please refer to Section 7.2
for details.

The input to our approach includes the program
and resource specifications. A resource specification
(e, M) is a tuple, where e is the REE and M is the
set of methods that should be called to release the
exhausted resources. A method m € M is fully-
qualified with all its parameters specified, includ-
ing the type of the receiver this which we consider
as a special parameter for object-oriented program-
s. We use m.this to denote the type of the receiver

4 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

of m and use S to denote the set of all input re-
source specifications. The resource collector calls the
methods in M to release leaked resources in response
to the exception e. An example resource specifica-
tion for Java programs is (FileNotFoundException
saying “Too many open files", {BufferedReader:
void close(), FileReader: void close(), ...}).
The resource management API method pairs for ac-
quiring and releasing resources are sometimes called
resource-releasing specifications (Wu et al., 2011).
The problem of how to gain resource-releasing speci-
fications has be well-studied (Wu et al., 2011; Weimer
and Necula, 2005) and we consider it orthogonal to
our work. Converting such resource-releasing spec-
ifications to the resource specifications for our ap-
proach is straightforward. For a REE e, we find all
resources R whose exhaustion can cause programs
to throw e. We use M to denote the set of resource-
releasing methods of each r € R in resource-releasing
specifications. Then we get the resource specification
(e, M).

Besides common system-level resources, there
are also other application-specific resources that have
a limited amount available to programs for their
We expect that our approach can
not only manage common system resources but al-

OWN purposes.

so application-specific ones. It is an alternative to
catch REEs directly by the runtime system, but here
we choose to transform application code and/or li-
braries, which makes it easy for our approach to scale
to new application-specific resources without modi-
fications to the underlying runtime system. We ana-
lyze and transform the program by adding recovery
code for REEs. It consists of two steps. The first
step is to identify the REE-throwing method call-
s. The second step is to augment the program with
recovery code for these REE-throwing method calls.

2.1 Finding REE-Throwing Method Calls

To identify REE-throwing method calls, there
are three aspects to be considered. First, every REE
raised during runtime must be handled. Second, a
thrown REE should not be handled more than once.
Consider the fact that an exception can propagate
across multiple methods along the stack up and ex-
ceptions thrown by different method calls can be the
same one. If the program is not recovered from a
REE and this exception propagates to the calling
method (our approach can guarantee this), recov-

ery for calls to the calling method typically does not
succeed. Such a second recovery should not be per-
formed to avoid extra overhead. Third, the closer
the recovery code is from the source of the excep-
tion, the more likely the recovery succeeds. We re-
quire that REE-throwing methods are failure atomic
(Fetzer et al., 2004). If the recovery code is far from
the source of the exception, side effects produced by
failed code become nontrivial because the program
may have performed many actions and the state re-
version to maintain the failure atomicity becomes
costly. It is desirable to recover REEs at program
points as close as possible to the source of REEs.

We first introduce the concept of source methods
of a REE. A method m is the source of a REE if this
REE can propagate to m’s caller and this REE is cre-
ated by m (i.e., it is not propagated from m’s callees).
For the example code in Fig. la, readPatterns is
the source method of the BuildException. It is de-
sirable to handle REEs at the points of calls to the
source methods of these REEs.

We identify all source methods by analyzing ev-
ery method of the program. We analyze each REE
that is created by this method and decide whether
they can escape from (not caught by) the method. If
there is one such REE, this method is the source of
the REE. We use an intraprocedural points-to anal-
ysis to determine the may aliases of an exception.
Within the body of a method, an invocation of the
constructor of a REE class returns a REE and we
do not need to process invocations of other methods.
Our analysis forwardly propagates information along
the control flow edges. At control flow join points,
we merge the incoming sets of REEs for each vari-
able. For an assignment statement “v; = v5”, the set
of REEs to which v; can point is updated to the set
of REEs to which vs can point. This analysis to i-
dentify the source methods is sound. However, it can
produce false positives. After identifying the source
methods of REEs, we scan the program to find all
the calls to these source methods. These calls are
targets of our transformation.

2.2 Exception Handling Transformation

The transformation is performed on the byte-
code. However, we discuss the approach here on
the source code level for convenience. The calls to
source methods of REEs are targets for which we

augment the recovery code. There are two cas-

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 5

es. The first case is that the call to the source
method is a separate statement. We simply sur-
round this call with the exception handling state-
ment (try and catch in Java). The handling code
(within the catch statement in Java) consists of the
call to the resource collector with the REE thrown
by the source method as the parameter, and then
the call to the source method. The second case
is that the called source method has a return and
the call is involved within some expression (e.g.,
in Fig.
volved in the expression new BufferedReader (new
FileReader (patternfile))). The program trans-

la, new FileReader (patternfile) is in-

former first adds a few lines of code just before the
statement involving the source method call. The first
line of code added is the introduction of a local vari-
able of the return type of the source method with
the null initial value (e.g. line 1 in Fig. 1b). The
second line of code added is assigning the call to the
source method (exactly the copy of its call in the o-
riginal program) to the local variable (e.g. line 3 in
Fig. 1b). This added line of code is augmented with
the recovery code in the same way as that in the first
case. Finally, the call to the source method within
the expression is replaced with the local variable (e.g.
line 11 in Fig. 1b). Each REE is handled separately
if there are multiple REEs that may be raised by a
source method call.

3 Resource Collector

We recover the program from REEs by collect-
ing leaked resources. We assume that the execution
environment has been reasonably configured to pro-
vide adequate resources for the normal execution of
the program. During runtime when the REE oc-
curs, the typical cause is that the activated resource
leak bugs of the program lead to too many leaked re-
sources. To collect leaked resources, we adapt the
garbage collector if any to leave leaked resources
alone during garbage collections. When the REE oc-
curs, we first identify corresponding leaked resources
and then release these resources by invoking releas-
ing methods provided in the resource specifications.

We identity two requirements of the resource
collector. The first and most important is safety.
The aim of the resource collector is to recover the
program from exceptions. Hence, it is obligated to

cause no unexpected side effects and should not leave

the program in inconsistent states such as states that
can crash the program. The second requirement is
that it should release all leaked resources if possible.
More collected leaked resources means higher likeli-
hood that the recovery succeeds. To coordinate these
two conflicting requirements, we design the following
strategy. A leaked resource r is released by the re-
source collector if and only if (1) there are no objects
that depend on 7 and that have some actions (e.g.
close or finalize) to perform in the future, and (2)
resource-releasing methods of » do not have access
to resources that may be manipulated later by the
program.

3.1 Retaining Leaked Resources
Garbage Collections

during

Managed languages such as Java are often e-
quipped with garbage collectors. For such languages,
the garbage collector and our resource collector coex-
ist. The garbage collector is triggered by large mem-
ory consumption and the resource collector is trig-
gered by REEs caused by exhaustion of non-memory
Consider cases when there are
some leaked resources that have not yet been re-

system resources.

leased by the resource collector. If the garbage col-
lector begins to work then, the objects of these leaked
resources will be destroyed and their occupied re-
sources will be permanently leaked, that is, resource
collections in the future can not release them. To
avoid this, we adapt the garbage collector to retain
leaked resources during garbage collections. The set
R = {m.this | m € M A 3e.({e, M) € S)} denotes
all types of interesting resources whose exhaustion
will trigger the resource collector. Before destroy-
ing a garbage (typically unreachable) object whose
type belongs to R, the garbage collector first checks
whether this resource has been released. If so, the
garbage collector retains it.

We require that a resource has a field that in-
dicates whether it has been released, such as the
boolean field closed in Socket. If there is no such
field, we can easily instrument the code of the re-
source to add one. The instrumentation is as follows.
We first add a boolean field closed with the initial
value as true to the code of the resource. Then, at
each exit point of each releasing (acquiring) method
of the resource, we insert this statement “closed =
true;" (“closed = false;").

6 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

3.2 Identifying Leaked Resources

The problem of determining whether an object
is live (will be used later) or not is undecidable in
general. Garbage collectors and most resource leak
detection approaches conservatively consider leaked
resources as unreachable ones (Torlak and Chandra,
2010; Weimer and Necula, 2008; Martin et al., 2005).
We also employ the same idea and identify leaked
resources as those unreachable ones among all unre-
leased resources. To identify leaked resources that
can be safely released, we traverse the heap three
times. The first pass is to determine whether objects
in the heap are reachable from the root objects of the
program by tracing the references between objects in
the heap, just like the common tracing garbage col-
lector. The output of the first pass consists of three
sets:

e R, as the set of unreleased and unreachable
resources whose exhaustion causes the thrown
REE;

e R, as the set of reachable resources whose ex-
haustion causes the thrown REE;

e [, as the set of unreachable objects with actions
to perform in the future such as finalization-
ready objects. These actions are required by

other mechanisms such as the finalization of the

garbage collector (R, N F,, = ().

The second pass is to determine whether objects
in R, are reachable from objects in F,. If F, is
empty, this pass is not necessary. The output of the
second pass is the set:

e IR, s asthe set of objects in R, that are reachable
from objects in F,.

The algorithm to perform the third pass is pre-
sented in Algorithm 1 and Algorithm 2. The out-
put of this algorithm includes S as the set of leaked
resources that can be safely released, and S, C S
that includes leaked resources that can be released
immediately. The function wvisited records whether
an object has been visited during the traverse. The
function reached records whether an object can be
reached from root objects in R, — R,¢. The func-
tion refer records whether an object or its refer-
ence objects (objects directly or indirectly referring
to it) can directly or indirectly refer to an objec-
t in R,. The algorithm performs the depth first

Algorithm 1 Algorithm to identify leaked resources
Require:
H,R.,R,s, R,

Ensure:

S, Sy

S0

Sp 0

for o€ H do
visited(o) < false
reached(o) < false
refer(o) < false

end for

: for o€ R, — R,y do

if visited(o) = false then
DFT(o)

end if

: end for

: fOI‘OGRu—RTf do

if refer(o) = false then
S+ SuU{o}
if reached(o) = false then

Sy =Sy U {O}

end if

end if

: end for

[T e el
[Yo B LR LN > I e

search to traverse the heap by following references
between objects. It first performs the initialization
(lines from 1 to 7). Then, it traverses the heap from
objects in R, — R, (lines from 8 to 12). Finally, it
identifies objects from R, — R,; that belongs to S
and/or Sy (lines from 13 to 20). An object o € S
is safe to be released because (1) it is not reachable
from the program (o € R,), (2) it is not depended
on by objects with actions to perform in the future
(0 ¢ R,r), and (3) it and its reference objects do not
refer to any reachable resources (refer(o) = false).
An object in S, can be safely released immediately
because it is not depended on (referred to) by objects
in R, — R,¢. The procedure DFT (o) (Algorithm 2)
performs the depth first search from o. Algorithm
1 is a variant of the classic depth first search algo-
rithm. Its complexity is the same as that of the
classic depth first search algorithm. To illustrate Al-
gorithm 1, Fig. 3 presents an example heap. We as-
sume R, = {r1,re,r3,74,75}, oy € F,, and 1y € R,.
ro is reachable from a local variable. If taking this
heap as input, the Algorithm 1 will produce the out-
put S = {ry,r5} and S, = {ry}. Please note that
r1 € R,y and refer(ry) = refer(rs) = true.

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 7

Algorithm 2 DFT algorithm to perform the depth-
first traversal of the heap

Require:
o : the current object
1: visited(o) true
2: for o'referred by o do
3. if o’ € R, then
refer(o) < true
continue
end if
if refer(o) = ture then
refer(o') < true
end if
10: reached(o') = true

11: if visited(0o') = false then
12: DFS(o')

13: end if

14: if refer(o’) = true then
15: refer(o) < true

16: end if

17: end for

3.3 Releasing Leaked Resources

We make the assumption that resource-releasing
methods just perform the work related to release the
occupied resources and do nothing else. For example,
a resource-releasing method typically nullifies a field
referring to a resource but we rarely observe cases
that a resource-releasing method assigns a resource
This as-

sumption is reasonable for existing resources and we

to fields of another accessible resources.

believe that it should be obeyed when designing new
resources considering that low coupling is one of the
key principles of software engineering.

Under such an assumption, we can deduce that
resource releasing methods destruct existing refer-
ences among resources but not construct new refer-
ences among them. Leaked resources are not guar-
anteed to be independent. The ordering of releasing
of leaked resources is important. The general rule
is that reference resources should be released before
their referent resources. The algorithm to decide the
ordering of resource releases and then release leaked
resources in order is presented in Algorithm 3. The
input includes the reference graph H of the heap
whose edge (o,0’) represents that o directly refer-
s to o/, and two sets S and S; that are outputs of
Algorithm 1. The procedure RELEASE(0) calls re-
leasing methods of o to release it. The function ¢
records the number of references from objects in S

a local variable
ro r3 rs

Fig. 3 Example heap reference graph. Circles repre-
sent objects. Arrows represent references, originating
from reference objects (variables) and pointing to the
referents

to an object in S. The main idea of this algorithm
is to release a leaked resource in .S when there is no
reference to it from leaked resources in S. Leaked
resources in the input Sj can be released immediate-
ly (lines from 9 to 16). After a leaked resource o is
released (line 11), we decrement c(o’) by 1 for each
leaked resource o’ in S that o directly refers to (lines
from 12 to 15). These objects referred to by a re-
leased resources are candidates for the next iteration
of resource collections (lines from 18 to 22). For each
released resource, the cost of the algorithm to update
c and choose leaked resources for the next iteration of
resource collection (lines from 12 to 15 and from 18
to 22) is no more than two times the number of ref-
erences from the released resource to objects in S. If
the reference graph of leaked resources in S is denot-
ed as (S, E'), then the complexity of Algorithm 3 is
O(]S| x O(RELEASE) + 2|E'|). The algorithm avoids
traversing the heap multiple times and gets the low
complexity linear to the scale of the reference graph
of leaked resources.

The procedure RELEASE(0) calls

methods of o specified in the resource specifications.

releasing

To dynamically call a method is not easy in gener-
al. The most difficult task is to decide values for
parameters of the method. Fortunately, we observe
that resource-releasing methods are simple in terms
of the way of their invocations in practice. Formal-
ly, we make the following assumption on resource-
releasing methods: there is only one releasing method
for each resource type and this releasing method has
no parameters. This assumption holds for all non-
memory resources in the Java system library and we
believe that programmers should obey it when de-
signing new resources. For example, all resources in
the java.io package and some other resources im-
plement the interface Closeable that is introduced

8 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

since Java 1.5 to release resources. This interface
includes only one method close without parame-
ters. Socket, ServerSocket and Connection also
have a similar releasing method close. The inter-
face AutoClosable?® is newly introduced into Java
1.7 and also meets the assumption. Under this as-
sumption, the procedure RELEASE(0) is as simple as
calling the single releasing method on o. To avoid
possible dead locks, we employ a separate thread to
perform RELEASE(0). This thread is given the privi-
lege to run immediately. All application threads are
blocked until this thread terminates or it is blocked

by some locks.

Algorithm 3 Algorithm to collect leaked resources

Require:
H=(V,E),S, Sy

1: for o€ S do

2. c(o)«0

3: end for
4: for {(0,0')€ Est.oe SAd €8S do
5. c(0)=rc(d)+1
6
7
8
9

: end for

: 0«0

: while S, # () do

for o € S do

10: S+ S—{o}
11: RELEASE(0)
12: for (0,0') e EAN0 € S do
13: O+ 0uU{d}
14: c(d)=c(d) -1
15: end for
16: end for
17 Sy« 0
18: for o € O do
19: if ¢(0) = 0 then
20: Sy +— Sp U {0}
21: end if

22: end for
23: end while

4 Discussions

If the original program would not raise REEs,
our transformation guarantees that the transformed
program behaves exactly in the same way as the o-
If a REE would be thrown, our
recovery code first collects leaked resources and then
retries to execute the REE-throwing method call. If

riginal program.

3http://jdk7.java.net/

the REE is raised not because of resource exhaustion
but for some intended reasons such as no-local con-
trol transfers, the transformed program retains this
intended behavior, that is, the retrial of the execu-
tion of the REE-throwing method call should raise
the REE as before, provided that the resource collec-
tor does not cause unexpected side effects. This kind
of special use of REEs is rare. We did not observe
such cases in our experiments. Other exception han-
dling approaches Dobolyi and Weimer (2008) explic-
itly assume that programs do not employ exceptions
for such special purposes.

It can be seen that the soundness of our ap-
proach depends on the safety of the resource collec-
tor. The resource collector is safe provided that the
assumptions made above hold. In practice, these as-
sumptions are reasonable. However, we admit that
there may be some exceptional resources in poor-
ly designed programs that contradict these assump-
tions. In such cases, we can manually refactor re-
source releasing methods such that they just release
resources and do nothing else. Although we can not
provide a general solution for all such cases, we be-
lieve that it is worthy to perform the recovery be-
cause otherwise the task will be inevitably aborted
and the entire program may possibly halt or even
crash. If a resource releasing method does not meet
the assumption in Section 3.3 that is intended to sim-
plify its invocation, the resource collector does not
release corresponding leaked resources. In our cur-
rent implementation, we do not consider reflection
when finding REE source methods. This may lead
to some raised REEs that can not be handled by our
approach. In future work, we plan to dynamically
capture calls of these methods.

In addition, we do not claim that our approach
can collect all leaked resources. There are two
reasons for the incompleteness. First, there may
be some leaked resources that are still reachable.
Our resource collector cannot release such leaked
This is a limitation to all existing leak
detection approaches that approximate the liveness
of resources by their reachability, such as Torlak and
Chandra (2010); Weimer and Necula (2008); Martin

et al. (2005). Second, the resource collection Algo-

resources.

rithm 3 may omit to release some leaked resources.
The release of a leaked resource o may destroy ref-
erences indirectly reachable from o besides these ref-
erences directly from o and thus the algorithm may

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 9

omit to release some leaked resources. To release all
leaked resources in such cases, we have to traverse
the heap once more after each leaked resource has
been released. Our algorithm traverses the heap on-
ly once and we prefer its low complexity because it
works well in practice.

5 Implementation

We employ the Soot (Vallée-Rai et al., 1999)
program analysis framework to implement a pro-
totype tool for Java programs to find REE source
methods and transform the original program to ad-
d recovery code. This tool statically analyzes and
transforms a standard intermediate representation of
Java bytecode and no source code of the target pro-
gram is needed. We implement the resource collector
on Jikes RVM v3.1.1, a production-level, open-source
Java-in-Java virtual machine (Arnold et al., 2000).
The resource collector is based on the MMTK mem-
ory management toolkit (Blackburn et al., 2004) that
Jikes RVM employs to perform its memory manage-
ment. We mainly utilize the full-heap tracing func-
tionality of MMTK to decide unreachable resources.
We employ the Java’s reflection utility to dynamical-
ly call resource-releasing methods to collect leaked
resources. The design and implementation of the re-
source collector are independent of the garbage col-
lector, so the resource collector can work with any
garbage collectors of Jikes RVM. Currently, our im-
plementation uses the Mark-Sweep garbage collector
and straightforwardly adapts it to retain leaked re-
sources during its collections. The interface of the
resource collector is a method rc added to the class
System with the caught REE as the parameter. The
resource specifications are provided to the resource
collector through a configuration file.

6 Experimental Results

In this section, we conduct several experiments
to evaluate our approach. The main issues include
(1) the effectiveness of our approach to recover real-
world programs from REEs, and (2) the overhead of
our approach in terms of running time and the size
of class files. In the experiments, we use the default
configuration of Jikes RVM. This configuration has
the highest performance. Each running time given
here is the geometric mean of results of ten trials.

We conducted all experiments on a machine of the
3.0 GHz Intel Core i5-2320 CPU and 4 GB RAM,
running Linux 2.6.38.6.

6.1 Examples of Recoveries from REEs

In this section, we present two examples that
our approach successfully recovers real-world pro-
grams (Ant* and BIRT®) from REEs. We find that
resource leaks are common in bug repositories and
forums. However, there are few resource leaks that
have attached reproducible test cases to cause corre-
sponding REEs to be thrown. We analyze resource
leaks and write by ourselves reproducible test cases,
which is very time-consuming, or we use the attached
test cases if they can reliably reproduce the leak and
trigger corresponding REEs. We then transform the
program and run it under the modified Jikes RVM
with the resource collector. We guarantee that raised
REEs are successfully recovered. In these two exam-
ples, we try to evaluate the overhead of the resource
collector. The overhead is computed as the ratio of
the time spent on identifying and collecting leaked
resources to the time spent on the whole run.

The first example is from the Apache Ant that
is a famous Java project build tool. There is a file
descriptor leak numbered 4008 in Ant v1.4 in the
bug database of Ant. The code snippet of this bug
is presented in Fig. la. The readPatterns method
opens a file, reads its content but does not close it
at the end. Each call of this method will leak one
file descriptor. Because there is no attached repro-
ducible test case in the bug report, we analyze the
leak and then write one by ourselves. We have ten
copies of the 515 files in the src directory of the An-
t v1.4 source distribution. The test case is an Ant
task that copies all these 5150 files to another di-
rectory. To trigger the FileNotFoundException, we
use one pattern file for each of the 5150 files. The
median 256M memory is used to run programs here.
The per-process limit of the file descriptor is 1024
that is the default value on our experimental ma-
chine. The details to transform programs to handle
FileNotFoundException are presented in the next
Section (Section 6.2).

We first run the original
the unmodified Jikes RVM. Ant
FileNotFoundException saying “Too many open

Ant
raises the

under

4http://ant.apache.org/
Shttp://www.eclipse.org/birt /phoenix/.

10 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

files" and none of the 5150 files is copied. We then
transform Ant and run it under the modified Jikes
RVM with the resource collector. Ant successfully
copies all the 5150 files this time and normally stops.
During this run, the resource collector is triggered
5 times and it releases in total 5120 leaked file
descriptors. The overhead of the resource collector
is 5.37%.

The second example is from BIRT that is
an open source Eclipse-based reporting system.
There is a database connection leak numbered
237190 in BIRT v2.3.1 in the BIRT bug database.
The connection leak occurs when there are more
than one data sources in the report design.
The method dataEngineShutdown of the class
DataSource$ShutdownListener in the package
org.eclipse.birt.data.engine.executor only
closes connections of the current data source, which
will lead to serious resource leaks. The experimental
environment is set up by deploying BIRT v2.3.1
into Tomcat® v5.5.26. MySQL” v5.0.67 is used as
the database. We use the default configuration
of Tomcat. We configure the maximal concurrent
connections of MySQL to be 100 that is also the
default value. The reproducible test case used here
is the one provided by the bug reporters. This test
case is a report design that contains a single JDBC
data source and a single scripted data source. The
JDBC data source selects a single column from a
simple table. The scripted data source simply prints
“Hello world.". We use the Firefox® to display the
report on the local machine. To reproduce the bug,
we write a Firefox plugin to repeatedly open the
same web page, that is, iteratively run the test
report. The plugin also records the time spent on
each page loading to evaluate the overhead of the
resource collector.

It is shown that each iteration of the page
display leaks one database connection. We first
run the original programs under the unmodi-
fied Jikes RVM. The first 100 iterations all com-
plete successfully. the 101th
tion halts abnormally with the exception message
as “Cannot open the connection for the driver

Too many connections." The “Hello World."

However, itera-

is not displayed. @~ Then we transform the pro-

Shttp://tomcat.apache.org/
"http://www.mysql.com/
8http://www.getfirefox.net/.

grams. We confine the transformation to BIRT.
The REE is the JDBCException in the package
org.eclipse.birt.report.data.oda. jdbc saying
“Too many connections”. A few of the source meth-
ods of this REE are failure non-atomic. We ensure
their failure atomicity by simply adding several lines
of code to revert values of several variables before
the REE is thrown. We run the hardened programs
under the modified Jikes RVM with the resource col-
lector. This time we successfully run the report for
more than half an hour until we terminate it. The
report is repeated for about 4000 iterations. Each it-
eration completes its task and correctly prints “Hello
World.". The time spent on page display for each
one of the first 1001 iterations is presented in Fig. 4.
The Base series represent times of runs of the origi-
nal programs under the unmodified Jikes RVM. The
resource collector is triggered 10 times. It releas-
es in total 1000 leaked connections. It can be seen
that our approach has little overhead in an iteration
except when the limit of maximal connections is vi-
olated and the resource collector is triggered. The
performance of our approach remains stable in the
long term. For the total 1001 iterations, the resource
collector has the overhead of 0.92%. For single iter-
ations, the resource collector poses an average time
increase of 32.45% on iterations triggering the re-
source collector over other iterations. The byte-code
size increase in this experiment is negligible.

6.2 Performance and Overhead

Our approach modifies both the program and
the Java Virtual Machine (JVM). To validate the
usefulness of our approach, we must evaluate its im-
pact on the execution time and the size of class files.
We use programs from the DaCapo benchmark suite
Blackburn et al. (2006) of both version 2006-10-MR2
and version 9.12-bach, and SPECjvm98 Corporation
(1999). We run each benchmark program with avail-
able memory as fixed at two times the minimum with
which it can execute. The default workload is used
for the DaCapo benchmark suite. For programs from
SPECjvm98, we run them with the large input size
(-s100).

In these experiments, we consider the system
resource file descriptor and the corresponding REE
is the FileNotFoundException saying “Too many
open files". Resources whose exhaustion can throw
this REE include file input /output streams, file read-

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 11

700

600

W
(=3
(=)

IS
S
S

W
(=3
(=)

MWWMMW

Time (ms)

(3]
(=3
S

Base

——Our Approach

100

0 r T T T T

1 2 4 8 16 32

64 128 256 512 1024

Page Dispaly Iteration

Fig. 4 Time for each page display of the first 1001 iterations of the BIRT example. The x-axis is logarithmic

120 4
11Q.04

110 110319+ 1 10543103 96 5 67100 89101.89101 55

100 +
90 4
80 4
70 A
60 -
50 A
40 4
30 A
20 A

Normalized execution time

10 A

Fig. 5 Runtime overhead on the DaCapo and SPECjvm98 benchmarks.

102.77%03-65102.19101.24100.88

3110%65101.69107.56102 7810101 10395101 1410252

Base
W Our Approach

The time is normalized so that the

time of running untransformed benchmarks on the unmodified Jikes RVM (Base series) is 100. The thin error

bars represent the ranges of the ten trials

er/writer, and sockets in the Java system library.
Specifications for this resources are simple and we
mainly refer to the Java API documentation and
the source code if necessary to create these speci-
fications. The per-process limit of the file descrip-
tor is 1024 that is the default value on our experi-
mental machine. There are four source methods of
this exception: private native void open(String
name) of FileInputStream, private native void
open(String name) and private native void
openAppend (String name) of FileOutputStream,
and private native void open(String name, int
mode) of RandomAccessFile. They are all failure
atomic. There are only 4 calls of these source meth-
ods and these 4 calls are all in Java system library.
The effect of our transformer on the size of class files
is negligible.

We found that the resource collector was never

triggered in these experiments. However, many of

these benchmarks leak some file descriptors during
runtime. To evaluate our approach, We write a call-
back to intentionally run the resource collector once
for each benchmark just before it exits. The runtime
overhead of the resource collector is also evaluated
in the above section (Section 6.1) against two known
resource leak bugs. The runtime overhead of bench-
mark programs is presented in Fig. 5. To avoid
name collisions between benchmark programs from
DaCapo 2006-10-MR and DaCapo 9.12-bach, we ap-
pend names of benchmark programs from DaCapo
2006-10-MR with 6 and append names of benchmark
programs from DaCapo 9.12-bach with 9. Because
there are many programs from DaCapo 9.12-bach
that can not run under Jikes RVM v3.3.1, we on-
ly present results of those ones that can successfully
execute in Fig. 5. It can be seen that the run-
time overhead of our approach is very low, typically

around 3%. The geometric mean of overhead for

12 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

all programs is 2.52%. Two large runtime increas-
es come from bloat with 6.89% and lusearch with
10.04% from DaCapo 2006-10-MR2. Time increases
for all other programs are below 4%.

7 Related Work

Our approach targets REEs caused by leaks of
non-memory system resources such as file descrip-
tors and database connections. There is a great deal
of work that addresses memory leaks (Bond and M-
cKinley, 2008; Guyer et al., 2006). General automat-
ic approaches to localize bugs (Lei et al., 2012) and
fix bugs (Qi et al., 2012) are also proposed. Our ap-
proach is closely related to the work that falls into t-
wo categories: recovery from exceptions and resource
leaks.

7.1 Recovery from Exceptions

Carzaniga et al. (2013) propose to recover from
runtime exceptions in Java programs by automatical-
ly applying workarounds. Chang et al. (2009) pro-
pose a self-healing approach to mask manifestation
of faults derived from the integration of COTS com-
ponents into applications. The healing connectors
derived from already experienced integration faults
are injected into applications to respond to excep-
tions. Those two approaches may fix the resource
leak that causes the REE, but they cannot success-
fully recover from the REE because all available re-
sources have been exhausted. Dobolyi and Weimer
(2008) propose to transform Java programs to in-
sert null checks and recovery actions guarding every
dereference that is potentially null. Friedrich et al.
(2010) propose to automatically handle exceptions in
service-based processes in a self-healing manner and
to repair errors through a model-based approach. S-
inha et al. (2009) present an approach for locating
and repairing faults in the form of incorrect assign-
ments in Java programs. Such a fault manifests as
a flow of an incorrect value that finally leads to an
exception. Exceptions originating from these types
of faults typically exclude REEs.

Based on their survey (Cabral and Marques,
2007), Cabral and Marques (2008) claim that there
is something wrong with current exception handling
models and propose the automatic exception han-
dling model. Benign recovery actions are predefined
for platform-level exceptions and shipped directly

with the runtime system. When an exception oc-
curs inside a try block, the system will execute one
or more corresponding recovery actions, and then the
code inside the try block is retried. This approach
only applies to platform-level exceptions while ours
transforms application programs and has no such
limitations. It has more reflexibility and can handle
both platform-level and application-level REEs.

Fetzer et al. (2004) introduce the concept of fail-
ure atomicity. A method is failure atomic if its failed
executions due to occurred exceptions leave the pro-
gram in a consistent state. This state consistency
can be guaranteed through reverting all modifica-
tions performed by the method before the exception
propagates to its calling method. Failure atomicity
is necessary for all retry based recoveries to succeed.
Fetzer et al. (2004) implement the failure atomicity
by using checkpointing. Cabral and Marques (2008)
implement the failure atomicity through Software
Transactional Memory (STM) Herlihy et al. (2006).
These techniques can be used to implement failure
atomicity for our approach.

7.2 Language Features to Facilitate Resource
Management

Most garbage collectors allow a finalize
method to be associated with an object. The
finalize method is intended to perform some
cleanup work before its associating object is garbage
collected. Our approach is analogous to the fi-
nalization mechanism since both aim at reclaiming
However, the execution of
finalize methods may be arbitrarily delayed in an

indeterminate way (Boehm, 2003), which makes it a

unreachable resources.

known fact that finalization is unqualified to perfor-
m resource collections. There are two main reasons:
(1) finalize methods are bound to garbage collec-
tor that may not run until the application is about
to run out of memory. However, the application may
already exhaust some non-memory resources or may
suffer performance degradation due to huge resource
consumption while there is still a large amount of
available memory, and (2) various finalization imple-
mentations do not always execute finalize meth-
ods immediately when they are ready to be called
(Boehm, 2003). Asynchronous finalization is a nec-
essary feature for the correct implementation, but
the situation becomes worse because of delayed in-
vocations of ready finalize methods. Besides this

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 13

delayed execution, another main drawback of Java’s
finalization is that the ordering of invocations of d-
ifferent finalize methods cannot be guaranteed. As
dependencies between resources are common, Java’s
finalization is not safe.

Our approach improves the situation based on
three design decisions. First, our approach sepa-
rates non-memory resource collections from mem-
ory collections. Resource collections are triggered
in response to REEs independently of memory us-
age. Second, the separate thread to release leaked
resources is given the privilege to run immediately.
Third, while we release as many leaked resources as
possible we guarantee the ordering of leaked resource
releases and the safety of the resource collector by the
design strategy that a leaked resource r is released by
the resource collector if and only if (1) there are no
objects that depend on r and that have some actions
(e.g., close and finalize) to perform in the future,
and (2) resource releasing methods of r do not have
access to resources that may be manipulated later by
the program.

Many languages provide the mechanism of au-
When a
resource is out of its lexical scope, its releasing
method is automatically invoked.
clude destructors of C +4 and the using state-
ment of C# (Hejlsberg et al., 2003). Java 7 intro-
duces the try-with-resource statement called Au-
tomatic Resource Management (ARM). Resources
declared in this statement will be automatical-

tomatic releases of scoped resources.

Examples in-

ly closed once the program runs out of the try
block. The declared resource should implemen-
t the java.lang.AutoCloseable interface. When
resources are used in the local scope, these mech-
anisms can automatically release resources in time.
However, there are situations in which resources are
not confined to a convenient lexical scope. Our ap-
proach can collect leaked resources whether they are
used “locally" or “globally".

To cope with resource leaks, Weimer and Necu-
la (2008) propose a language extension called com-
pensation stack that allows programmers to an-
notate resource-acquiring methods with compensa-
tions such as resource-releasing method invocation-
s. These compensations are put into stacks that
guarantee included compensations to execute in the
last-in-first-out order. If compensations are within
a heap-allocated stack, they will be executed auto-

matically when the stack is finalized. In such cases,
this approach can not guarantee the timely releas-
es of leaked resources. The Furm (Park and Rice,
2006) groups resources into a resource tree in which
a single release call can close all these resources in
a deterministic order. Resource trees can be closed
automatically when the thread that uses it dies. Sim-
ilarly to compensation stacks (Weimer and Necula,
2008), Furm can not guarantee the timely releases of
leaked resources to avoid REEs. The type system of
the Vault programming language (DeLine and Fah-
ndrich, 2001) allows function post-conditions to be
specified to guarantee that annotated functions can-
not allocate and leak resources.

7.3 Dynamic Resource Leak Detection and
Collection

Our previous work presents the Resco tool (Dai
et al., 2013) to collect leaked non-memory resources.
Resco counts the consumption of resources and en-
sures that the limits of resources are not violated.
When the limit of resources is about to be reached
(i-e., when 90% of available resources are consumed),
Resco identifies unreachable resources and then re-
leases them. The improvement over Resco of the
work presented in this paper mainly lies in two as-
pects.

First, our approach aims to recover from REEs.
Even if all available resources are consumed, it is
not necessarily obligatory to collect leaked resources
considering cases in which the program does not ac-
quire such resources any more. Our approach collects
leaked resources in response to REEs to avoid fail-
ures caused by resource leaks and meanwhile it does
not perform unnecessary collections to avoid unnec-
essary overhead. In addition, Resco’s requirement
of counting resource consumptions compromises its
applicability. To perform such resource consump-
tion counting, the specific quantities of resources ac-
quired by resource-acquiring methods and released
by resource-releasing methods must be specified in
the resource collection configuration. Limits of re-
sources must also be specified in resource monitors
before the program deployment. However, in dynam-
ically reconfigurable systems (Walsh et al., 2007),
resource limits may not be fixed but change as the
program runs.

Second, our approach can release more leaked
sources that are omitted by Resco. For Resco, ob-

14 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

jects of leaked resources may be destroyed by the
garbage collector and their occupied resources will
be permanently leaked. In contrast, our approach
retains leaked resources during garbage collections
and can release them later by the resource collec-
tor if necessary. In addition, Resco only releases
leaked resources that can be safely released imme-
diately (Sp) while our approach tries to release all
leaked resources in S (details are in Section 3.3). As
would be expected, our approach imposes more run-
time overhead than Resco. However, this overhead
is low enough to be acceptable.

The QVM (Arnold et al., 2011) is based on a Ja-
va Virtual Machine that detects and helps diagnose
defects as violations of specified correctness prop-
erties. The PQL (Martin et al., 2005) approach is
shown to be effective to find mismatched method
pairs which typically include resource leaks. As
mismatched method pairs are liveness queries that
depend on the absence of the second method call,
pattern matches are found at the end of an execu-
tion. Performing resource releasing then is too late
and makes no sense. Other approaches based on as-
pects (e.g., Allan et al. (2005) and Chen and Rogu
(2007)) cannot precisely capture object death due to
the lack of direct support from garbage collectors.
So, they are not suitable to detect resource leaks.
There are several techniques that explore the stale-
ness of objects to aggressively collect leaked memory
(Bond and McKinley, 2008). However, as cleanup of
non-memory resources is not reversible, the objec-
t staleness cannot be easily applied to non-memory
resource collections.

8 Conclusion

This paper presents an approach to automati-
cally recover programs from REEs caused by leak-
s of non-memory system resources. We transform
the program to add recovery code only for calls to
source methods of REEs. This avoids handling many
methods that are possibly failure nonatomic and sig-
nificantly reduces the amount of needed transforma-
tion. In response to REEs, the recovery code first
triggers the resource collector to safely collect leaked
resources and then retries the failed method call. We
design a linear algorithm to try to collect all leaked
resources. Meanwhile, it avoids traversing the heap
multiple times. Our approach improves the resilience

of the program to resource leaks and its reliability
by enabling it to continue to complete its task after
REEs occur.

References

Allan, Chris, Avgustinov, Pavel, Christensen, Aske Si-
mon, Hendren, Laurie, Kuzins, Sascha, Lhotak,
Ondfej, de Moor, Oege, Sereni, Damien, Sittam-
palam, Ganesh, Tibble, Julian, 2005. adding
trace matching with free variables to aspec-
tj. SIGPLAN Not., 40(10):345-364. Available

from http://doi.acm.org/10.1145/1103845.1094839.
[doi:10.1145/1103845.1094839]

Arnold, Matthew, Fink, Stephen, Grove,
Michael, Sweeney, Peter F., 2000. Adaptive op-
timization in the jalapeno jvm. Proceedings of
the 15th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Ap-
plications, New York, NY, USA, p.47-65, Avail-
able from http://doi.acm.org/10.1145/353171.353175.
[doi:10.1145/353171.353175]

Arnold, Matthew, Vechev, Martin, Yahav, 2011.
qvm: runtime for detecting defects
in deployed systems. ACM Trans. Soft-
w. Eng. Methodol., 21(1):2:1-2:35. Available
from http://doi.acm.org/10.1145/2063239.2063241.
[doi:10.1145/2063239.2063241]

Blackburn, Stephen M., Cheng, Perry, McKinley, Kathryn S.,
2004. Oil and water? high performance garbage
collection in java with mmtk. Proceedings of the
26th International Conference on Software Engineer-
ing, Washington, DC, USA, p.137-146, Available from
http://dl.acm.org/citation.cfm?id=998675.999420

Blackburn, Stephen M., Garner, Robin, Hoffmann, Chris,
Khang, Asjad M., McKinley, Kathryn S., Bentzur,
Rotem, Diwan, Amer, Feinberg, Daniel, Frampton,
Daniel, Guyer, Samuel Z., Hirzel, Martin, Hosking,
Antony, Jump, Maria, Lee, Han, Moss, J. Eliot B.,
Phansalkar, Aashish, Stefanovi¢, Darko, VanDrunen,
Thomas, von Dincklage, Daniel, Wiedermann, Ben,
2006. The dacapo benchmarks: Java benchmarking
development and analysis. Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applica-

New York, NY, USA, p.169-190, Available
from http://doi.acm.org/10.1145/1167473.1167488.
[doi:10.1145/1167473.1167488]

Boehm, Hans-J., 2003. Destructors, finalizers, and synchro-

Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, New York, NY, USA, p.262-272, Avail-
able from http://doi.acm.org/10.1145/604131.604153.
[doi:10.1145/604131.604153)]

Bond, Michael D., McKinley, Kathryn S., 2008. Tol-
erating memory leaks. Proceedings of the 23rd
ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applica-
tions, New York, NY, USA, p.109-126, Available
from http://doi.acm.org/10.1145/1449764.1449774.
[doi:10.1145/1449764.1449774]

David, Hind,

Eran,
an efficient

tions,

nization.

Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron) 15

Cabral, B., Marques, P,
for automatic exception handling. Proceed-
ings of the 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software En-
gineering, = Washington, @ DC, USA, p.403-406,
Available from http://dx.doi.org/10.1109/ASE.2008.59.
[d0i:10.1109/ASE.2008.59]

Cabral, Bruno, Marques, Paulo, 2007. Exception handling:
A field study in java and .net. ECOOP 2007 Eu-
ropean Conference on Object-Oriented Programming,
4609:151-175. [doi:10.1007/978-3-540-73589-2]

Carzaniga, Antonio, Gorla, Alessandra, Mattavelli, Andrea,
Perino, Nicolo, Pezzé, Mauro, 2013.
covery from runtime failures. Proceedings of the
2013 International Conference on Software Engineer-
ing, Piscataway, NJ, USA, p.782-791, Available from
http://dl.acm.org/citation.cfm?id=2486788.2486891

Chang, Herve, Mariani, Leonardo, Pezze, Mauro,
2009. In-field healing of integration problems
with cots components. Proceedings of the 3lst
International Conference on Software Engineer-
ing, Washington, DC, USA, p.166-176, Available
from http://dx.doi.org/10.1109/ICSE.2009.5070518.
[d0i:10.1109/ICSE.2009.5070518]

Chen, Feng, Rosu, Grigore, 2007. Mop: An efficient and
generic runtime verification framework. Proceedings
of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Appli-
cations, New York, NY, USA, p.569-588, Available
from http://doi.acm.org/10.1145/1297027.1297069.
[doi:10.1145/1297027.1297069]

2008. A case

Automatic re-

Corporation, Standard Performance Evaluation, 1999.
specjvm98 documentation. release 1.03 edition, .
Dai, Z., Mao, X., Lei, L., Wan, X., Ben, K., 2013. resco:

automatic collection of leaked resources. IEICE Trans-
actions on Information and Systems, 96(1):28-39.

DeLine, Robert, F&hndrich, Manuel, 2001. En-
forcing high-level protocols in low-level software.
Proceedings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and Imple-
mentation, New York, NY, USA, p.59-69, Avail-
able from http://doi.acm.org/10.1145/378795.378811.
[doi:10.1145/378795.378811]

Dobolyi, K., Weimer, W., 2008. Changing java’s semantics
for handling null pointer exceptions. Software Reliabil-
ity Engineering, 2008. ISSRE 2008. 19th International
Symposium on, p.47-56. [d0i:10.1109/ISSRE.2008.59]

Dybvig, R. Kent, Bruggeman, Carl, Eby, David, 1993.
Guardians in a generation-based garbage collector.
Proceedings of the ACM SIGPLAN 1993 Confer-
ence on Programming Language Design and Imple-
mentation, New York, NY, USA, p.207-216, Avail-
able from http://doi.acm.org/10.1145/155090.155110.
[doi:10.1145/155090.155110]

Fetzer, C., Felber, P., Hogstedt, K., 2004. automatic
detection and masking of nonatomic exception han-
dling. Software Engineering, IEEE Transactions on,
30(8):547-560. [doi:10.1109/TSE.2004.35]

Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.,
2010. exception handling for repair in service-based
processes. Software Engineering, IEEE Transactions
on, 36(2):198-215. [doi:10.1109/TSE.2010.8]

Guyer, Samuel Z., McKinley, Kathryn S., Frampton,
Daniel, 2006. Free-me: A static analysis for
automatic individual object reclamation. Proceed-
ings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementa-
tion, New York, NY, USA, p.364-375, Available
from http://doi.acm.org/10.1145/1133981.1134024.
[d0i:10.1145/1133981.1134024]

Hejlsberg, A., Golde, P., Wiltamuth, S., 2003. c# language
specification. Addison Wesley, .

Herlihy, Maurice, Luchangco, Victor, Moir, Mark,
2006. a flexible framework for implement-
ing software transactional memory. SIG-
PLAN Not., 41(10):253-262. Available from
http://doi.acm.org/10.1145/1167515.1167495.
[d0i:10.1145/1167515.1167495]

Lei, Yan, Mao, Xiaoguang, Dai, Ziying, Wei, Deng-
ping, 2012. effective fault localization approach

using feedback. IEICE TRANSACTIONS ON
INFORMATION AND SYSTEMS, 95(9):2247-2257.
[doi:10.1587 /transinf.E95.D.2247]

Martin, Michael, Livshits, Benjamin, Lam, Monica S., 2005.
Finding application errors and security flaws using pql:
A program query language. Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applica-
tions, New York, NY, USA, p.365-383, Available
from http://doi.acm.org/10.1145/1094811.1094840.
[d0i:10.1145/1094811.1094840]

Park, Derek A., Rice, Stephen V., 2006. A frame-
work for unified resource management in java.
Proceedings of the 4th International Symposium

on Principles and Practice of Programming in
Java, New York, NY, USA, p.113-122, Available
from http://doi.acm.org/10.1145/1168054.1168070.
[d0i:10.1145/1168054.1168070]

Qi, YuHua, Mao, XiaoGuang, Wen, YanJun, Dai, ZiY-
ing, Gu, Bin, 2012.
pair of large-scale programs using weak recompila-
tion. SCIENCE CHINA-INFORMATION SCIENCES,
55(12):2785-2799. [doi:10.1007/s11432-012-4741-1]

Shah, H.B., Gorg, C., Harrold, M.J., 2010. understand-
ing exception handling: viewpoints of novices and ex-
perts. Software Engineering, IEEE Transactions on,
36(2):150-161. [doi:10.1109/TSE.2010.7]

Sinha, Saurabh, Shah, Hina, Gorg, Carsten, Jiang,
Shujuan, Kim, Mijung, Harrold, Mary Jean, 2009.
Fault repair for
exceptions. Proceedings of the Eighteenth In-
ternational Symposium on Software Testing and
Analysis, New York, NY, USA, p.153-164, Available
from http://doi.acm.org/10.1145/1572272.1572291.
[d0i:10.1145/1572272.1572291]

more efficient automatic re-

localization and java runtime

Torlak, Emina, Chandra, Satish, 2010. Effective
interprocedural resource leak detection. Pro-
ceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume
1, New York, NY, USA, p.535-544, Available

from http://doi.acm.org/10.1145/1806799.1806876.
[d0i:10.1145/1806799.1806876|

Vallée-Rai, Raja, Co, Phong, Gagnon, Etienne, Hendren,
Laurie, Lam, Patrick, Sundaresan, Vijay, 1999. Soot -

16 Dai et al. / J Zhejiang Univ-Sci C (Comput & Electron)

a java bytecode optimization framework. Proceedings
of the 1999 Conference of the Centre for Advanced S-
tudies on Collaborative Research, p.13—, Available from
http://dl.acm.org/citation.cfm?id=781995.782008

Walsh, J. DafArcy, Bordeleau, F., Selic, B., 2007. domain
analysis of dynamic system reconfiguration. Softw Syst
Model, 6:355-380.

Weimer, Westley, Necula, George C., 2008. exceptional
situations and program reliability. ACM Trans.
Program. Lang. Syst., 30(2):8:1-8:51. Available
from http://doi.acm.org/10.1145/1330017.1330019.
[d0i:10.1145/1330017.1330019]

Weimer, Westley, Necula, GeorgeC., 2005. Mining tempo-
ral specifications for error detection. Tools and Algo-
rithms for the Construction and Analysis of Systems,
3440:461-476. [doi:10.1007/978-3-540-31980-1]

Wu, Qian, Liang, Guangtai, Wang, Qianxiang, Xie, Tao, Mei,
Hong, 2011. Iterative mining of resource-releasing spec-
ifications. Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software En-
gineering, Washington, DC, USA, p.233-242, Available
from http://dx.doi.org/10.1109/ASE.2011.6100058.
[doi:10.1109/ASE.2011.6100058]

