
Static Bound Analysis of Dynamically Allocated
Resources for C Programs

Guangsheng Fan†‡ Taoqing Chen†‡ Banghu Yin§B Liqian Chen†B Tengbin Wang† Ji Wang†‡
†College of Computer, National University of Defense Technology, Changsha, China

‡HPCL, National University of Defense Technology, Changsha, China
§College of System Engineering, National University of Defense Technology, Changsha, China

{guangshengfan, chentaoqing, bhyin, lqchen, tengbin.wang, wj}@nudt.edu.cn

Abstract—It is widely desired to precisely predict bounds of
resource usages statically in a program, particularly when the
program runs in resource-limited contexts. The resource bound
problem becomes more challenging for C programs due to the
allowed flexible manipulations on dynamically allocated resources
in C. In this paper, we present a static analysis approach
to deriving the bounds of dynamically allocated resources for
C programs. The key idea is to combine numerical value
analysis with pointer analysis under the unified framework of
abstract interpretation. First, to track resource usage, we intro-
duce auxiliary numerical variables to model the resource usage
due to resource-manipulating functions such as allocation and
deallocation. Second, to handle resource-manipulating functions
involving pointers as parameters or return values, we propose
a pointer analysis approach designed specifically for resource
bound analysis, and combine it with numerical value analysis, to
handle pointer arithmetics, dynamic allocation and deallocation,
etc. Then, we infer the value bound of auxiliary resource-usage
modeling variables to predict resource bounds at each program
location. We have implemented our approach in a tool called
DARB and conducted experiments on a set of benchmarks
extracted from real-world programs. The results show that DARB
can deal with C programs with complex resource manipulations.

Index Terms—Static Analysis, Resource Bound Analysis, Ab-
stract Interpretation, Pointer Analysis, Numerical Value Analysis

I. INTRODUCTION

Resources refer to any abstractions that system calls offer
to a process, apart from the process itself. Such abstractions
liberate programmers from having to know details of the
underlying hardware and allow them to write portable code.
We call a kind of resources as dynamically allocated resources,
if they are dynamically allocated and released by function
calls explicitly. Dynamically allocated resources account a
large percent of resources in practice, including heap memory,
sockets, file handles, threads, database connections, etc.

When designing software running in the resource-limited
contexts (such as embedded software), developers often need
to predicate the worst-case resource bounds of a program
statically due to limited amount of hardware resources. When
the resources requested by the program exceed the amount
of available resources that the hardware can offer, the per-
formance of the program will significantly degrade. In this

∗Banghu Yin and Liqian Chen are both corresponding authors.

case, resource bounds would provide a proper guidance in
the design and configuration of software. Meanwhile, resource
bounds are beneficial to detect vulnerabilities (such as buffer
overflow, memory leak, etc.), and help preventing DDoS and
side channel attacks.

Lots of research has drawn attention to automatically derive
resource bounds for imperative programs in recent years [1]–
[11]. Many of them focus on deriving the upper-bound number
of visits to a given control location or simply the bound of iter-
ations of a loop (or recursion) for purely numerical programs.
In fact, when we look into real-world programs, resource-
manipulating operations often involve pointers, size-related
parameters, etc. Hence, inferring the number of visits to a
program location is only one aspect of resource bound analysis
of real-world programs, while determining the resource size
handled in each resource-manipulating operation is another
aspect. So far, only few work consider the second aspect.
C4B [5] has considered this, and allows users to use tick(n)
to specify the amount of resource usage (supporting both
increasing and decreasing) operated at a program location.
However, the resource-usage size n needs to be a constant
or symbolic parameter (fixed but arbitrary constant) and its
value is specified by users manually.

In practice, the resource-usage size of allocation functions
may depend on parameters or program variables. Even for the
same type of resources, the size for each allocated resource
may be different. Meanwhile, the starting memory address
of the dynamically allocated resource is often referred by a
pointer which may be propagated to other pointers (alias)
in the subsequent statements. Hence, it is challenging to
determine the usage size of dynamically allocated resources,
particularly to determine statically the size of the resource
being released when the parameter of the release function
involves pointers.

In this paper, we present a novel approach to automatically
derive bounds of dynamically allocated resources for C pro-
grams. First, we introduce auxiliary integer variables to track
the resource usage, and the values of these auxiliary variables
reveal resource bounds of the program. In other words, we
transform the resource bound problem into the value bound
problem. However, the values of these auxiliary resource-
usage modeling variables often depend on the parameters

of resource-manipulating operations. These parameters may
be numerical expressions over program variables or pointers
(referring to certain resources). For parameters that are point-
ers, which is often the case for release operations, we need
pointer analysis technique to handle pointers. To this end,
second, we propose a pointer analysis specifically designed for
resource bound analysis to infer the points-to information of
all pointers, and then combine it with numerical value analysis
under the unified framework of abstract interpretation to
handle pointer arithmetics, dynamical allocation/deallocation
operations, etc. Finally, we use numerical value analysis to
infer the value bounds for auxiliary resource-usage modeling
variables, which reveal resource bound in the program.

We have implemented our approach in a prototype called
DARB (Static Analyzer of Dynamically Allocated Resource
Bounds), and experimentally evaluated its effectiveness by
analyzing programs extracted from open-source software like
C Producer [12], Redis [13], FastDFS [14], Sod [15], etc.
DARB successfully derives the bounds of dynamically allo-
cated resources for these programs, while all the existing tools
supporting resource bound analysis (such as LOOPUS [6] [10]
[11], C4B [5], KoAT [1] [4] and Rank [16]) fail to directly
handle these programs due to lack of analysis of pointers. In
addition, we show that the precision of our analysis can be
further improved by leveraging these state-of-the-art resource
bound analysis techniques (for numerical programs).

The main contributions of this paper are as follows:
• We propose an automatic static upper bound analysis

of dynamically allocated resources for C programs by
combining pointer analysis and numerical value analysis
under the unified framework of abstract interpretation.
For each program location, the analysis can infer both the
current resource-usage (resource-occupying) bound and
peak resource-usage bound before reaching the current
program location.

• We propose a Points-to abstract domain specifically de-
signed for resource bound analysis to infer points-to
information, and combine it with numerical abstract do-
mains to infer size information of a dynamically allocated
resource (that a pointer points to).

• We implement our resource bound analysis in the tool
DARB. Experiments on real-world open-source programs
show our approach is promising.

II. OVERVIEW

In this section, we give an overview of our approach by
illustrating how to analyze the bound of dynamically allocated
resources in a motivating example. As shown in Fig. 1(a), the
original program first uses two while-loops (Lines 13∼25) to
construct and deconstruct a list l1 headed by t1, and then uses
another two similar while-loops (Lines 27∼39) to construct
and deconstruct list l2 headed by t2. The main differences
between l1 and l2 are their lengths and the memory size of
each node in the list. The lengths of l1 and l2 are parameters
n1 and n2 respectively, assuming n2 ≥ n1 ≥ 1. Meanwhile,
each node of l1 and l2 applies sizeof(∗t) + s1 + 1 (Line

14) and sizeof(∗t) + s2 + 1 (Line 28) bytes heap memory
resources respectively. Note that the s1 + 1 units is to make
up the buf field, which includes a data content of length s1
and ends with 1 terminator.

Note that in this program, there are resource release opera-
tions which involve pointers whose values depend on the pre-
vious statements manipulating pointers. Moreover, the value
of the size of each allocated/deallocated node in different lists
needs to be distinguished, since s1 and s2 are variables and
have different values. Due to these factors, existing resource
bound analysis methods can not handle this program. We now
illustrate our static resource bound analysis step by step.

Tracking Resource Usage. As the first step, we intro-
duce auxiliary integer variables and instrument corresponding
statements for resource-manipulating functions (i.e., APIs)
into the original program (shown in Fig. 1a) to derive the
corresponding resource-usage modeling program as shown in
Fig. 1(b). The details of the instrumentation for each kind of
resource-manipulating functions will be shown in Table I∼II,
and explained in Sec. III(A∼B). Symbol F marks statements
of global declaration and initialization of auxiliary variables,
as well as declaration of our auxiliary function resc find size()
which is used to determine the size of the released resources.
Besides, N and H sign operations over auxiliary variables to
model allocation and deallocation respectively. This step can
be done automatically using a program transformation tool
(e.g., Coccinelle [17]). Then we track the usage of dynamically
allocated resources in the program using auxiliary variables
resc heap cur and resc heap peak. The first auxiliary variable
tracks the current resource usage (the amount of occupying
resources) at the current program location, while the latter
tracks the historical peak usage before reaching the current
program location. The value bounds of these auxiliary vari-
ables represent the resource bounds.

Moreover, for each allocation function called at Line #l
allocating a resource of size e (an arithmetic expression
involving program variables), we introduce an auxiliary in-
teger variable resc size alloc #l and instrument a statement
resc size alloc #l = e, in order to capture the size of allocated
resources and maintain its relation with variables in e. Symbol
> marks the instrumented statements of this step in Fig. 1(b).

Analysis of instrumented programs. To obtain the re-
source bound of resource-usage modeling program in Fig. 1(b),
we combine pointer analysis and numerical value analysis in
the framework of abstract interpretation. The pointer analysis
is conducted mainly based on a Points-to abstract domain B#
that records the points-to information of each pointer variable.
The numerical value analysis is conducted based on numerical
abstract domains N#, and we use the Polyhedra abstract do-
main [18] to illustrate. Now, we detail the computation process
of the value bounds of resc heap cur and resc heap peak as
follows.

After Line 12, we get the initial points-to and numerical

1typedef struct node{
2 struct node *next; char buf[];
3} Node;
4//precondition: assume(n2>=n1 && n1>=1);
5void list_mf(unsigned int n1, unsigned int n2){
6 int i=0;
7 int j=0;
8 int s1=10;
9 int s2=20;

10 Node *t1=NULL, *t2=NULL;
11 Node *curr1=NULL, *curr2=NULL;
12

13 while(i<n1){
14 t1 = malloc(sizeof(*t1)+s1+1);
15 t1->next = curr1;
16 curr1 = t1;
17 i++;
18 }
19

20 while(i>0){
21 t1 = curr1->next;
22 free(curr1);
23 curr1 = t1;
24 i--;
25 }
26

27 while(j<n2){
28 t2 = malloc(sizeof(*t2)+s2+1);
29 t2->next = curr2;
30 curr2 = t2;
31 j++;
32 }
33

34 while(j>0){
35 t2 = curr2->next;
36 free(curr2);
37 curr2 = t2;
38 j--;
39 }
40 return;
41}

(a) Original program

1unsigned int resc_size_alloc_14 = 0;>
2unsigned int resc_size_alloc_28 = 0;>
3int resc_heap_cur = 0;F
4int resc_heap_peak = 0;F
5extern int resc_find_size(void *p);F
6typedef struct node{
7 struct node *next; char buf[];} Node;
8//precondition: assume(n2>=n1 && n1>=1);
9void list_mf(unsigned int n1, unsigned int n2){

10 int i=0, j=0, s1=10, s2=20;
11 Node *t1=NULL, *t2=NULL;
12 Node *curr1=NULL, *curr2=NULL;
13 while(i<n1){
14 t1 = malloc(sizeof(*t1)+s1+1);//if(!t1) abort();
15 resc_size_alloc_14 = sizeof(*t1)+s1+1;>
16 resc_heap_cur += sizeof(*t1)+s1+1;N
17 t1->next = curr1; curr1 = t1; i++;
18 }
19 if(resc_heap_cur > resc_heap_peak)N
20 resc_heap_peak = resc_heap_cur;N
21 while(i>0){
22 t1 = curr1->next;
23 free(curr1);//if(!curr1) abort();
24 resc_heap_cur -= resc_find_size(curr1);H
25 curr1 = t1; i--;
26 }
27 while(j<n2){
28 t2 = malloc(sizeof(*t2)+s2+1);//if(!t2) abort();
29 resc_size_alloc_28 = sizeof(*t2)+s2+1;>
30 resc_heap_cur += sizeof(*t2)+l2+1;N
31 t2->next = curr2; curr2 = t2; j++;
32 }
33 if(resc_heap_cur > resc_heap_peak)N
34 resc_heap_peak = resc_heap_cur;N
35 while(j>0){
36 t2 = curr2->next;
37 free(curr2);//if(!curr2) abort();
38 resc_heap_cur -= resc_find_size(curr2);H
39 curr2 = t2; j--;
40 }
41 return;
42}

(b) Resource-usage modeling program

Fig. 1. Motivating example

abstract state:
B# : B#

t1 = NULL ∧ B#
curr1 = NULL ∧ · · ·

N# : resc heap cur = resc heap peak = 0 ∧ · · ·

When the first time we meet the malloc function (i.e, Line
14), we use an abstract (symbolic) address &alloc 14 to
represent the memory block address allocated by the system.
The resource size sizeof(∗t)+s1+1 of this memory block is
evaluated to 19 through numerical value analysis. Note that in
this paper, we assume that all calls to malloc (e) will succeed.
That is to say, the call of malloc (e) will always return a
fresh memory of the applied size e as needed. This can be
understood as that we add a statement {if (!t1) abort(); }
after the malloc statement at Line 14. Then, the abstract state
after Line 15 is:
B# : B#

t1 = {&alloc 14} ∧ B#
curr1 = NULL ∧ · · ·

N# : resc heap cur = resc heap peak = 0

∧ resc size alloc 14 = 19 ∧ · · ·

As current resource usage has changed, we track this by
the statement marked N at Line 16, and update the value of

resc heap cur. At Line 17, we know the base address of t1–
> next is alloc 14.next, and update it as the current base
address of curr1 (i.e.,NULL). The abstract state after the
first iteration of the first while-loop is:

B# : B#
t1 = B#

curr1 = {&alloc 14}
∧ B#

alloc 14.next = NULL ∧ · · ·
N# : resc heap cur = resc size alloc 14 = 19

∧ resc heap peak = 0 ∧ · · ·
After several analysis iterations of the first while-loop, we

finally get the convergence of the fixed point iteration, and
get the abstract state after the first while-loop:

B# : B#
t1, B

#
curr1, B

#
alloc 14.next = {&alloc 14, NULL} ∧ · · ·

N# : resc heap cur = 19 ∗ n1 ∧ resc heap peak = 0

∧ resc size alloc 14 = 19 ∧ · · ·

The if statements labeled with N (Lines 19∼20) are used
to update the historical peak resource usage, since current
resource usages have been changed inside the first while-loop.

By doing this update, the abstract state becomes:

B# : B#
t1, B

#
curr1, B

#
alloc 14.next = {&alloc 14, NULL} ∧ · · ·

N# : resc heap cur = resc heap peak = 19 ∗ n1
∧ resc alloc 14 = 19 ∧ · · ·

For the second while-loop, the handling of pointer opera-
tions is similar to the first while-loop. The main challenge is to
determine the resource size deallocated at Line 23. We use an
auxiliary function resc find size() to represent the process
of automatically determining resource size released (at Line
24). This process first gets the base address set {&alloc 14}
that the pointer parameter curr points to by querying the
Points-to domain. Note that in this paper, we assume that all
calls to free (p) will succeed (that is to say, p is not NULL).
Hence, although the analysis infers that the abstract base
address of curr1 is {&alloc 14, NULL} before Line 23, the
analysis will update the base address of curr1 to {&alloc 14},
since we can not deallocate a NULL pointer. This can be un-
derstood as that we add a statement {if (!curr1) abort(); }
after the free statement at Line 23. Since we have recorded
resc size alloc 14 = 19 as the resource size of base address
&alloc 14 in the numerical abstract state, the resource size
that curr points to is determined as 19. Then we get the
numerical abstract state after Line 26:

N# : resc heap cur = 0 ∧ resc heap peak = 19∗n1 ∧ · · ·
The analysis process of the subsequent two while-loops is

similar as above. Note that each allocated resource size at Line
28 is 29 bytes obtained from numerical value analysis. Thus,
after analyzing the third while-loop (Lines 27∼32) which
constructs list l2, we get resc heap cur = 29 ∗ n2. We then
compare the value of resc heap cur and resc heap peak
(Lines 33∼34). By numerical value analysis, we know n1 ≤
n2 ∧ 19 ≤ 29 and the numerical abstract state after Line 34
becomes:

N# : resc heap cur = resc heap peak = 29 ∗ n2 ∧ · · ·
After analyzing the last while-loop which deallocates list

l2, the final values of resource-usage modeling variables are :

N# : resc heap cur = 0 ∧ resc heap peak = 29∗n2 ∧ · · ·
which means that the peak resource usage in the whole
program is 29 ∗ n2 and the resource-occupying amount at the
end of the program is 0. Note that this result is sound and
precise, according to the concrete semantics of the program.

III. TRACKING RESOURCE USAGE

In this section, we present how to transform an original
program to a resource-usage modeling program.

A. Modeling Resource Usage

We divide resource-manipulating APIs into two types ac-
cording to types of change size over the resources, i.e.,
constant-size type and variant-size type. While APIs of the
first type increase or decrease resource usage amounted to
constant size each time, APIs of the latter type increase or
decrease resource usage amounted to undetermined size that

TABLE I
MODELING FILE HANDLE RESOURCE USAGE

Resource operation Resource modeling statements
FILE *fp =
fopen(char *filename,

int flag);

resc file cur += 1;
if (resc file cur > resc file peak)

resc file peak = resc file cur;
fclose(FILE *fp); resc file cur -= 1;

TABLE II
MODELING HEAP RESOURCE USAGE

Resource operation Resource modeling statements

l : ptr = (void*)
malloc(unsigned int size);

resc size alloc #l = size;
resc heap cur += size;
if (resc heap cur > resc heap peak)

resc heap peak = resc heap cur;

l : ptr = (void*)
calloc(unsigned int n,

unsigned int size);

resc size alloc #l = n*size;
resc heap cur += n*size;
if (resc heap cur > resc heap peak)

resc heap peak = resc heap cur;

l : ptr = (void*)
realloc(void *old,

unsigned int size);

resc size alloc #l = size;
int resc size pre = resc find size(old);
int resc size delta = size - resc size pre;
resc heap cur += resc size delta;
if (resc heap cur > resc heap peak)

resc heap peak = resc heap cur;
free(void *ptr); resc heap cur -= resc find size(ptr);

depends on other parameters (or variables). The modeling of
resource usage for these two different types are also different.

APIs of constant-size type, for example, includes fopen()
and fclose() that operate file handle resources, socket() and
closesocket() that operate socket resources, etc. Usually, allo-
cation functions of this type only apply 1 unit size resource
from the system each time, and the corresponding release
functions release 1 unit size resource. Therefore, modeling
resource usages of this type is straightforward. As shown
in Table I, we model file handle usages by introducing aux-
iliary integer variables resc file cur and resc file peak in
which file identifies the resource type, to track the current
resource usages and the historical peak usages. Each time we
call these APIs, resc file cur increases or decreases 1, and
resc file peak updates if needed.

For variant-size type, the most obvious example APIs
are heap-manipulating related functions, including malloc(),
calloc(), realloc() and free(). The resource usage modeling
of heap is shown in Table II. The main differences of the
operations over auxiliary variables between constant-size and
variant-size types APIs are the determination of the size of the
operated resource. Note that we only concentrate on resource
size while ignoring the stored contents. According to the
concrete semantics, for allocation operations such as malloc()
and calloc(), the allocated sizes are apparent (assuming that all
allocations are always successful). For realloc(), it is a bit more
complex. According to its concrete semantics, we first find
out the previous size of the memory block that the parameter
pointer points to, using an auxiliary function resc find size().
The functionality of auxiliary function resc find size(ptr) is to
determine the size of memory that ptr points to, and the details
of how to analyze the auxiliary function resc find size()

will be detailed in Section IV-D4. The increase or decrease
amount of resource usage of realloc() is the increment between
the new size and the previous size. The released size of
free function is also determined by the auxiliary function
resc find size().

B. Instrumentation of Auxiliary Variables and Statements

To automatically deriving resource-usage modeling pro-
grams, we need to insert necessary resource-modeling state-
ments (e.g., those presented in Table I∼II) into the origi-
nal program. To do this process automatically, we can take
strength of existing work on program instrumentation and
make use of automatic tools, such as Coccinelle [17].

When instrumenting resource-usage modeling statements
into the original program, we usually instrument these state-
ments immediately after the resource-manipulating APIs, like
Line 24 in Fig. 1(b). This is a natural way to track the
resource usage change. Modeling statements for allocation
functions normally include adding an if branch to update
the value of resc heap peak immediately after the update
statements of resc heap cur (as shown in Table II). However,
it is worthy noting that for a loop including only allocation
and containing no deallocation, the update for resc heap peak
can be delayed after the end of the loop. Based on this insight,
as shown in Fig. 1(b), we delay the instrumentation of the
if statements that update resc heap peak to the end of the
while-loop (Lines 19∼20, Lines 33∼34), since there are just
allocations inside the loop. Note that this optimization does
not change the semantics, but can improve efficiency and
sometimes even precision of the analysis. For those loops that
include both allocation and deallocation operations, we still
instrument the peak-update statements immediately after the
update statements of resc heap peak.

IV. ANALYSIS OF INSTRUMENTED PROGRAMS

In this section, we introduce how to derive the value
bound of the resource-usage modeling auxiliary numerical
variables of the instrumented programs. The main idea is to
combine pointer analysis and numerical value analysis under
the framework of abstract interpretation.

A. Memory Model of Pointers

In this subsection, we present the syntax of pointer programs
that we consider and the memory model we use.

bexp ::= p == q | p ≤ q | p ≥ q
exp ::= m * n | m + n | c (c ≥ 0)
S ::= p = &x | p = q + exp

| p = &A [exp] | p = A + exp
| p = malloc(exp) | p = calloc(c, exp)
| p = realloc(q, exp) | p = (void*) c
| S ;S | if (bexp) then S else S
| while (bexp) do S

Fig. 2. Syntax of pointer programs

A pointer records a memory address during the execution
of a program. Consider a simple imperative language shown

in Fig. 2. It captures the core pointer operations of C language.
The variables p, q denote pointer variables, while m, n
are integer variables, and c represents nonnegative integer
constants. A pointer p can be assigned to a physical address
c, the address of one variable x (i.e., &x), the address of an
element in array A (i.e., &A[exp]), or the returned address of
an allocation operation. For any other complex assignments to
p, we can transform them to SSA (Static Single Assignment)
form, and derive programs in the form shown in Fig. 2.

In this paper, we use a pair <baseaddr, offset> as the
memory model to describe a pointer at each program location.
baseaddr means the base address of a memory region, which
can be physical address, base address of an array, or access
path expression for member field of complex struct type. For
a returned pointer p of an allocation function, we abstract
the returned address of the (dynamically allocated) region
as &alloc #line, where #line denotes the program location
(e.g., the line number) where the allocation function being
called. Note that this notion abstracts (over-approximates) the
concrete semantic of the allocation function, although in the
concrete semantics, different times of calls to the allocation
function at #line returns addresses of different memory re-
gions. More clearly, &alloc #line can be considered as the
set of all possible addresses returned at #line through the
allocation function. Note that, our analysis for realloc() is
also sound. The reason is that, in the concrete semantics,
the new allocated size may be so large that systems have
to return one another large enough memory block to satisfy
the need and free q after copying contents in q to the new
block. In our analysis, we just consider that it returns a new
address &alloc #line when the realloc function is called at
Line #line. This is sound, though p may equal to q in the
concrete semantics. offset is an integer value, and denotes the
offset of the current address of a pointer with respect to its
base address.

1struct s{
2 int data; int buf[8];}s1;
3void pointer_model(){
4 int *p = s1.buf;
5 s *q = malloc(sizeof(

struct s));
6 int *d = &s1.data;
7 int *t=(int*)(0x10000000);
8 int *r = p+2;
9}

Fig. 3. An example pointer program

TABLE III
MEMORY MODEL

Ptr Memory model
p <s1.buf, 0>
q <&alloc 5, 0>
d <&s1.data, 0>
t <0x10000000, 0>
r <s1.buf, 2>

Example 1. For pointer program in Fig. 3, its corresponding
memory model of all pointers in the program are shown
in Table III. Note that we assume different variables have
different names (after converting to the SSA form).

Note that in the concrete semantics, the possible base
address and offset information of a pointer p may be
{〈base1, offset1〉 , ..., 〈basen, offsetn〉} at a program lo-
cation, while in that abstract semantics, we abstract it as〈
B#

p , O#
p

〉
where B#

p = {base1, ..., basen} and O#
p =

Jp = &xKP#
(
B#,O#, l

)
,

(
B′#p 7→ {&x}

)
∧ JO#

p = 0KN
(O#

)
Jp = q + expKP#

(
B#,O#, l

)
,

(
B′#p 7→ B#q

)
∧ JO#

p = O#
q + exprKN

(O#
)

Jp = &A [exp]KP#
(
B#,O#, l

)
,

(
B′#p 7→ {A}

)
∧ JO#

p = expKN
(O#

)
Jp = A+ expKP#

(
B#,O#, l

)
,

(
B′#p 7→ {A}

)
∧ JO#

p = expKN
(O#

)
Jp = (void∗) cKP#

(
B#,O#, l

)
,

(
B′#p 7→ {c}

)
∧ JO#

p = 0KN
(O#

)
Jp = malloc (exp)KP#

(
B#,O#, l

)
,

(
B′#p 7→ {&alloc #l}

)
∧ JO#

p = 0KN
(O#

)
Jp = calloc (c, exp)KP#

(
B#,O#, l

)
,

(
B′#p 7→ {&alloc #l}

)
∧ JO#

p = 0KN
(O#

)
Jp = realloc (q, exp)KP#

(
B#,O#, l

)
,

(
B′#p 7→ {&alloc #l}

)
∧ JO#

p = 0KN
(O#

)
Fig. 4. Assignment transfer function

Jp ≥ &xKP#
(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {&x}

)
∧ JO#

p ≥ 0KN
(O#

)
Jp ≥ q + expKP#

(
B#,O#, l

)
,

(
B′#p ,B#q 7→ Bp# ∩ B#q

)
∧ JO#

p ≥ O#
q + expKN

(O#
)

Jp ≥ &A [exp]KP#
(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {A}

)
∧ JO#

p ≥ expKN
(O#

)
Jp ≥ A+ expKP#

(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {A}

)
∧ JO#

p ≥ expKN
(O#

)
Jp ≥ (void∗) cKP#

(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {c}

)
∧ JO#

p ≥ 0KN
(O#

)
Jp ≥ malloc (exp)KP#

(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {&alloc #l}

)
∧ JO#

p ≥ 0KN
(O#

)
Jp ≥ calloc (c, exp)KP#

(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {&alloc #l}

)
∧ JO#

p ≥ 0KN
(O#

)
Jp ≥ realloc (q, exp)KP#

(
B#,O#, l

)
,

(
B′#p 7→ B#p ∩ {&alloc #l}

)
∧ JO#

p ≥ 0KN
(O#

)
Fig. 5. Test transfer function

offset1∪ ...∪offsetn, where ∪ denotes the join operation in
the numerical abstract domain. In other words, in the abstract
semantics, we can not distinguish the offset information of
different base addresses.

B. Points-to Abstract Domain

For the sake of convenience of combining pointer analysis
with numerical value analysis, we design a Points-to abstract
domain under the framework of abstract interpretation. To
deal with procedures, we inline function calls to get unique
program locations of each allocation. Therefore, our pointer
analysis is flow-sensitive and context-sensitive. As we consider
all possible paths of the fields of each structure, the pointer
analysis is also field-sensitive.

This Points-to abstract domain only considers the points-
to information of all pointers of a program. For each
pointer variable p, the domain records a set B#p =
{base1, base2, ..., basen} of base addresses that the pointer
variable p may point to. Thus B#p constitutes a complete lattice
(P (B) ,⊆,∩,∪,⊥,>), where B denotes the set of all possible
base addresses in the whole program, ⊆, ∩ and ∪ mean subset
inclusion, intersection and union operation of set, while ⊥
means pointer p does not point to any address (i.e., Bp = ∅),
and > is the set of all base address expressions in the program
(i.e., > = B).

Since there are always limited finite numbers of base ad-
dress expressions in a program, the complete lattice constituted
by the set of base address expressions has a finite height.
That is to say, we do not need to design widening and
narrowing operation for this abstract domain, to guarantee the
convergence of fixpoint iterations. Other domain operations

such as assignment and test transfer functions will be detailed
in Section IV-D.

C. Numerical Abstract Domain

Numerical abstract domains are used to infer automatically
the numerical relations among program variables of numerical
type in a program. E.g., the Polyhedra abstract domain is used

to infer numerical invariants of the form
n∑

i=0

aixi ≤ c, where

xi’s are program variables, and coefficients ai’s as well as c
are inferred automatically by the analysis. A numerical abstract
domain provides domain operations with efficient algorithms
to manipulate domain elements. Common domain operations
include inclusion testing v, meet u, join t, widening ∇,
narrowing4, assignment and test transfer functions. Widening
and narrowing operators are designed to accelerate and guar-
antee the convergence of iterations of fix-point computation.
We refer the details of the design of numerical abstract domain
to tutorial [19].

Particularly, in our resource bound analysis, the numerical
abstract environment consists of three kinds of numerical
variables: 1) program variables of numerical type in the
original program; 2) instrumented auxiliary integer variable for
modeling resource usage; 3) numerical variables O#

p capturing
the offset of pointer p. We use numerical abstract domains
to infer the numerical relations among these three kinds of
numerical variables.

D. Resource Bound Analysis by Combining Points-to and
Numerical abstract Domains

The key idea of this paper is to conduct resource bound
analysis by combining Points-to and numerical abstract do-

mains. Since statements containing only numerical variables
will be handled automatically by conventional numerical value
analysis using numerical abstract domains, in the following,
we only describe how to analyze statements involving pointer
variables.

1) Assignment Transfer Function: Assignment transfer
functions reveal transfer operations on abstract states once we
meet an assignment statement. For pointer assignments listed
in Fig. 2, we design their corresponding abstract assignment
transfer functions as shown in Fig. 4. JassignmentKP# is
the abstract transfer function in the combined domain for
assignment, and its input

(
B#,O#, l

)
consists of abstract

environment of base address B# before executing the assign-
ment, as well as the offset O# represented in the numerical
abstract domain, and the program location l of the assignment.
B#p and B′#p denote abstract base address of p before and after
the assignment respectively. JassignmentKN

#

is the transfer
function of numerical abstract domain N#. In a word, the
assignment transfer function to a pointer p not only updates
base address B#p that p points to, but also maps the operation
over its offset O#

p to assignment transfer function in the
numerical abstract domain.

2) Test Transfer Function: Test transfer functions Jexpr1 ./
expr2KP# reveal transfer operations on abstract states once we
meet a condition test statement that involves pointers. They
aim to filter abstract states that do not satisfy the condition
expr1 ./ expr2, where ./∈ {6=,=, <,≤, >,≥}. Note that the
test expr1 ./ expr2 is meaningful, only when exp1 and exp2
have common base address. In Fig. 5, we just consider test
condition in the form of p ≥ expr, since the other forms can
be transferred to this form. Like assignment transfer functions,
we also consider updating both abstract base address Bp and
numerical offset Op (maintained in the numerical abstract
domain) of a pointer p.

3) Extrapolations: To handle loops. we need extrapolation
operations (widening, narrowing) to accelerate and guarantee
the convergence of fixpoint iterations. As mentioned in Sec-
tion IV-B, the complete lattice constituted by the set of base
addresses is of finite height, and thus we do not need widening
and narrowing operations for the Points-to abstract domain.
However, for the numerical part, i.e., numerical abstract states
(over program variables of numerical type, instrumented in-
teger auxiliary variables modeling resource usage, numerical
variables O#

p capturing offsets of pointers), we still need to
the widening/narrowing operation from the numerical abstract
domain at loop heads.

4) Size Analysis of Released Resources: Now, we intro-
duce how to deal with the auxiliary function resc find size()
which aims to determine the resource size to be released.
Remind that for each allocation function at the program
location l, we have set &alloc #l as the base address of the
returned pointer variable in the Points-to domain (as shown
in Fig. 4), and have instrumented an assignment statement to
an auxiliary variable resc size alloc #l to capture the size
of the allocated resources. The numerical relations among
variable resc size alloc #l and other program variables

are maintained in the numerical abstract domain. Once we
meet the statement calling the auxiliary function p size =
resc find size(p), we first query Points-to domain for the base
address B#p of its argument pointer p. After that, from the
Points-to domain, we get the set of base addresses that p may
point to, i.e., B#p = {base1, base2, ..., basen}. Then from B#

p ,
we can derive a subset B#p alloc = {base1, base2, ..., basem},
where each basei (1 ≤ i ≤ m) is in the form &alloc #li. For
each &alloc #li, we can get resc size alloc #li denoting
the corresponding allocated resource size, which is a numerical
variable in the numerical abstract environment. Finally, the
returned value of resc find size() is the join of all those
resc size alloc #li’s, which is a sound upper approxima-
tion. In other words, p size = resc find size(p) can be inter-
preted as

m
t
i=1

N#

Jp size = resc size alloc #liKN
#

, where

tN#

denotes the join operation in the numerical abstract
domain. In this way, we can analyze the resource usage of
a release function.

Example 2. In Fig. 1(b), we instrument auxiliary variable
resc size alloc 14 to record the allocated resource size that
pointer t1 points to at Line 14, and it is straightforward to
obtain its value 19 from numerical abstract domain. When we
release pointer curr1 at Line 23, we first get the set of the
base addresses (i.e., B#curr1 = {&alloc 14}) curr1 points to
from the Points-to domain. From {&alloc 14}, we know that
curr1 points to the memory region allocated at Line 14, and
the resource size of this region is resc size alloc 14 (whose
value is 19). Then, we know the size of the resource to be
released at Line 23 is 19.

E. Supporting pointer arithmetics inside a structure

In the above subsection, we only consider core pointer
operations of C. In fact, pointer operations in real-world
programs are often much more complex. Programmers may
use pointer arithmetics inside a structure to reference different
fields. The program shown in Fig. 6 reveals a common way of
using pointers. The program uses data structure sdshdr, which
is an efficient and safe implementation form of string to store
data. The construction of struct sdshdr through the function
sdsnewlen() just returns the address of the buf field which
is used to store data (as shown at Line 12), rather than the
starting address of the whole struct sdshdr. The base address
of the returned pointer is &alloc 8.buf (note that Line 8 is
exactly the program location calling the malloc() function).
As shown at Line 21, the use mode of struct sdshdr often
takes this returned pointer of sdsnewlen() as input, but needs
to derive the base address of its structure memory block (i.e.,
&alloc 8), in order to operate the other fields of the structure
(Line 16). However, using transfer functions listed in Fig. 4,
we can just get &alloc 8.buf rather than &alloc 8, as the
base address of parameter of free function.

To solve this problem, we first record statically the size
of all kinds of struct, and the offset ofield of each field
it contains from the beginning of the struct in a table T.
In this way, when analyzing pointer operations Jp = q −

1typedef char* sds
2struct sdshdr {
3 unsigned int len;
4 unsigned int free;
5 char buf[];};
6sds sdsnewlen(void *init, size_t initlen) {
7 struct sdshdr *sh
8 sh = malloc(sizeof(struct sdshdr)+initlen+1);
9

10 sh->len = initlen;
11 sh->free = 0;
12 return (char *) sh->buf;
13}
14void sdsfree(sds s) {
15 if (s == NULL) return;
16 free(s - sizeof(struct sdshdr));
17}
18void foo(char *in, size_t len){
19 sds s = sdsnewlen(in, len);
20 ...
21 sdsfree(s);
22}

Fig. 6. An example extracted from C-Producer/src/sds.c

expKP#
(
B#,O#, l

)
, we first query the value of exp from the

numerical abstract domain. If exp is a nonnegative integer,
and the address of q in the Points-to domain is B#q =
{base1.field1, base1.field2, ..., basen.fieldm}, then for each
basei.fieldj , (1 ≤ i ≤ n, 1 ≤ j ≤ m), we query T for the
ofield of fieldj . If numerical abstract domain determines that
ofield==exp, we know that the base address of p is indeed
basei. Note that this method is consistent to the layout of
struct memory.

Example 3. In Fig. 6, the size of sdshdr is 8, the offset
of the field buf with respect to the beginning of sdshdr
is also 8. Since the base address of s is &alloc 8.buf ,
at Line 16 the base address of the released pointer s −
sizeof(struct sdshdr), i.e., &alloc8.buf − 8, which is de-
termined as &alloc 8 finally.

V. EXPERIMENTS AND EVALUATION

We have implemented our approach in a prototype named
DARB to automatically analyze the bounds of dynamically
allocated resources. For each input C program, DARB first
instruments the resource-usage modeling auxiliary variables
and corresponding statements (as described in Sect. III) into
the original program using Coccinelle [17], which is a pro-
gram matching and transformation tool. Then DARB uses the
approach described in Sect. IV to analyze the instrumented
programs. The analyzer is implemented based on the frontend
CIL [20], numerical abstract domain library Apron [21], and
the Fixpoint Solver Library [22]. Here we use a CIL supported
inline tool to inline procedures and use the Polyhedra abstract
domain to conduct numerical value analysis.

A. Experimental Setup
We conduct experiments to study the following two research

questions (RQs).
• RQ1. How DARB performs when analyzing bounds of

dynamically allocated resources for realistic programs
from open-source projects?

• RQ2. How DARB performs with and without the help of
existing resource bound analysis tool for purely numerical
programs?

To address RQ1, we extract a set of programs as shown in
Table IV from four open-source projects, i.e., FastDFS [14],
Redis [13], C Producer [12] and Sod [15]. FastDFS is a high
performance distributed file system, which contains a lot of file
handler resource operations. Redis is a well-known database
that contains many socket communications between the clients
and servers. C Producer is an embedded log producer de-
veloped by Aliyun and has been widely used in millions of
intelligent devices. Sod is an embedded computer vision and
machine learning library. All the programs extracted from C
Producer and Sod involve a lot of heap memory operations.
Mot Ex in Table IV includes our motivating example list mf
shown in Fig. 1(a) and several variants through changing the
ordering of while-loops. The cyclomatic complexity of these
functions are from 1 to 22, and 6.6 on average, and more than
85% of them involve invocations to other functions.

To address RQ2, we use 20 programs from benchmark
C4B [5], which has complex loop patterns and are challenging
to infer the bound of iterations of a loop, especially when only
using numerical abstract domains. However, existing state-
of-the-art resource bound analysis tools such as Loopus can
compute meaningful upper bound numbers of loop iterations
for these programs, which can be used to improve the precision
of DARB. We use Loopus to conduct experiments to address
RQ2, since it is the only open-source tool that can do analysis
directly on C programs as far as we know1. The version of
Loopus we use is [23]. And we use the set of programs from
benchmark of C4B [5] that can be successfully analyzed by
Loopus, i.e., 20 program in Table V, to conduct experiments.
In order to support the analysis of DARB, the tick(1) statement
(which means applying one unit size of resource) in these
experimented programs is replaced with void *ptr= malloc(1).

All the experiments are carried out on a virtual machine
(using VirtualBox), with a guest OS of Ubuntu 14.04 (8GB
RAM), host OS of Windows 10, with 16GB RAM and a 3.0
GHz eight-core Intel(R) Core(TM) i7-9700 host CPU.

B. Answers to RQ1

Table IV shows the results of analyzing programs from
FastDFS, Redis, C Producer, Sod and Mot Ex (listed in
column “Project”) by DARB. The column “Function” shows
the functions that we extracted from above datasets as input
programs to be analyzed. The column “Line” shows the
number of lines of code in each program after inlining.
The column “Time(s)” is the time consumption of analyzing
each program in seconds, and does not include the time
consumption of code instrumentation since Coccinelle takes
almost negligible time (1ms to 10ms, 4ms on average). The
column “Peak” and “Cur” reveal the size of the peak resource

1C4B [5] can also conduct resource bound analysis on C programs. How-
ever, its publicly available version at http://www.cs.yale.edu/homes/qcar/aaa/
encounters “Error: analysis failure” even for example programs provided in
the website, during the preparation of this paper.

TABLE IV
EXPERIMENT RESULTS ON DYNAMICALLY ALLOCATED RESOURCES

Project Function Line Time(s) Peak Cur

Fast-
DFS

gen files main 334 0.97 1 0
do dispatch binlog

for threads 1021 10.98 n [0, n]

load file contents 219 1.94 [0,7] [0,7]
fdfs binlog

compress func 581 11.34 1 0

tracker mem
get sys files 372 2.08 [1,4] [0,1]

test delete main 1017 5.42 2 0
test upload main 1409 8.36 [7,9] [4,6]

Redis

anetListen 176 1.24 0 [-1,0]
anetGenericAccept 139 0.60 1 1

anetTcpServer 446 3.62 [0,1] [0,1]

C Pro-
ducer

sdsnewlen 156 1.13 n+9 0
sdsnewEmpty 138 0.86 n+9 0

sdsdup 276 2.53 n+9 0
sdsfree 226 1.76 0 -n-9

sdsMakeRoomFor 280 3.02 2m+n 0
sdsRemoveFreeSpace 284 2.08 0 -n-9

sdsgrowzero 345 3.21 2m-n 0
sdscatchar 342 4.24 2+n 0
sdscatlen 1171 10.29 2m+n 0

log queue create 110 0.98 8n+48 8n+48

Sod BlobPrepareGrow 549 2.07 2n+16 2n+16
make network 907 20.98 808n+8 808n+8

Mot Ex

list mf 109 0.78 29n2 0
list mf 1 111 0.79 19n1+29n2 0
list mf 2 111 0.78 19n1+29n2 0
list mf 3 109 0.74 29n2 0

usages during the whole execution and the current resource
usages when reaching the end of each program respectively.
We derive the lower and upper bounds for “Peak” and “Cur”
from the generated numerical invariants by the analysis, which
constitute a (symbolic) interval. For the derived interval, when
the lower bound equals to the upper bound, we simply use an
expression to denote the interval.

FastDFS and Redis are used to evaluate DARB’s ability
of dealing with resource usage of file handlers and sockets
respectively, each API of which has constant-size resource
usage. Table IV shows that the peak resource usages (column
“Peak”) of these programs are mostly constant numbers. We
have manually checked the source code of these programs,
and found that both allocations and deallocations of the same
resource usually happen in the same loop body, thus the peak
resource usage of the loop is only 1 unit, even when the loop
iteration number is parameterized. Actually, DARB has found
the exact (i.e., most precise) upper bound of peak resource
usage for all of these programs.

Normally, for a correct program (without memory bugs),
the resource usage (i.e., column “Cur”) should be 0 (or belong
to [0,n], where n represents the peak resource usage) at the
end of the program. From column “Cur” in Table IV, we
found that, 1) for 5 programs (whose “Cur” are 0), DARB has
computed the exact current resource usage; 2) for 3 programs
(whose column “Cur” belong to [0,n], where n represents the
peak resource usage), DARB has returned over-approximate
current resource usage due to precision loss of our analysis
or abnormal exit statements contained in the program; 3) for
programs test upload main and anetListen, which violate the
above principle. We have manually checked their source codes,

and observed that program test upload main (“Cur” is [4,6])
forgets to release 6 already allocated file handlers and program
anetListen (“Cur” is [-1,0]) only has one resource release
operation in one branch of an if-else statement, but has no
allocating operation before that.

C producer, Sod and Mot Ex are used to evaluate DARB’s
ability of dealing with resource usage of heap memory, each
API of which has variant-size resource usage. All the extracted
programs from them have complex pointer operations. The
columns “Peak” and “Cur” for these programs are all numer-
ical or symbolic values rather than intervals, which indicates
that our DARB has computed the exact resource usage bounds
for them. And we have confirmed the correctness of the
resource bounds by manually checking. We observed that
programs sdsfree, sdsRemoveFreeSpace (log queue create,
BlobPrepareGrow, make network) only have memory free
(malloc) operations, but no memory malloc (free) oper-
ations. Finally, the column “Time” indicates that the time
overhead (within 30s) of DARB is acceptable.

C. Answers to RQ2

Table V shows the results of using DARB only (col-
umn “DARB”), and the results of using DARB together
with Loopus (column “DARB+Loopus”). We get the result
of “DARB+Loopus” by first instrumenting the loop bounds
computed by Loopus to the corresponding loop conditions of
the target programs. Since the loop bounds given by Loopus
contain max expressions which cannot be precisely captured
by the Polyhedra abstract domain, we decomposed the max
expressions into several if-else branches. E.g., instrumenting
the upper bound max(x−y, 0) provided by Loopus to original
program {while(b) s;}, will result in

unsigned int i=0;
if(x-y>=0) { while(b and i<=x-y) {s;i++;}}
else { while(b and i<=0) {s;i++;}}

And then we use our tool DARB to compute the resource
bounds of the instrumented programs. The final resulting
bounds of “DARB+Loopus” may contain max (min) for upper
(lower) bound, which is derived (more precisely collected)
from the invariants at ends of different instrumented if-else
branches (due to the instrumenting of the max bounds given
by Loopus). The symbol +∞ means we can not derive finite
resource bound. Column “Cmp” denotes the comparison of
analysis precision of with and without using Loopus. “=”
means using “DARB+Loopus” can not derive more precise
resource bound. “>” means “DARB+Loopus” together with
Loopus gets more precise results than that of using only
DARB. In particular, we use ∞ >f to denote that using
“DARB+Loopus” can derive finite upper bound while using
only DARB can derive only infinite upper bound. Similarly,
f >f means both “DARB+Loopus” and “DARB” can infer
finite upper bounds, but “DARB+Loopus” infers a tighter one.
Symbol ∗ denotes that the analysis result is an exact value
(precise), rather than an over-approximated interval (sound).

From Table V, we can see that DARB can only derive finite
upper bounds for 7/20 programs, and only 4/7 of the derived

results are exact values (precise). This is because widening
operation of the Polyhedra domain used in numerical value
analysis may cause precision loss when handling loops in these
benchmark programs. Using “DARB+Loopus”, the number of
each kind of ∞ >f , =, f >f is 9, 10, 1 respectively. With
the help of Loopus, we can derive finite upper bounds for
17/20 programs, more than two times of the results without
using Loopus. Moreover, 10/17 of the derived bounds are
more precise, among which “DARB+Loopus” successfully
infer finite upper bounds for 9 programs for which “DARB”
only infer infinite upper bounds. Experimental results show
that combining with state-of-the-art resource bound analysis
tools for purely numerical programs can improve the precision
of our approach. Hence, it is worthy to combine our approach
with the existing work on resource bound analysis only for
purely numerical programs.

D. Threats to Validity

The main threats to the validity of our results come from
the following threat categories. The internal threat to validity
mainly lies in whether our implementation of DARB cor-
rectly captures our approach. We have manually checked the
generated invariants at each program location to ensure the
correctness of our analysis. The external threat to validity lies
in the dataset. Although the scales of our selected programs
are not very large, most of them are extracted from real-world
software or classic benchmarks, which are representative and
can reflect the applicability of our method. The construct threat
to validity comes from the assumptions of our approach. We
assume that all calls to allocations/deallocations will succeed.

VI. RELATED WORK

Resource bound analysis of imperative programs. There are
many tools that can automatically derive loop and recursion
bounds for imperative programs, such as SPEED [8] [9],
C4B [5], KoAT [1] [4], PUBS [2] [3], Rank [16], Loopus
[11] [6] [10], CoFloCo [7], etc. KoAT, Rank, CoFloCo and
Loopus mainly use term-rewriting, cost equation or difference
constraints techniques. SPEED also combines instrumentation
and abstract interpretation techniques, which instruments an
auxiliary counter variable to record the iteration number of
a loop, and uses abstract interpretation to generate invariants
for instrumented program, including the value bound of the
loop counter variable. However, all these work consider purely
numerical programs, and focus on deriving the upper-bound
number of visits to a given control location, while our work
focus on deriving bounds of dynamically allocated resources
for C programs which often involve pointer operations.

The most relevant work to our technology is C4B [5], which
derives worst-case resource bounds for C programs by com-
bining amortize resource analysis and abstract interpretation.
It has considered using auxiliary function tick(n) to specify
the size change of resource usage, and n can be negative to
represent resource releases. However, n needs to be determined
manually by users. And C4B does not handle pointer opera-
tions. Different from C4B, our work aims to infer bounds of

TABLE V
EXPERIMENT RESULTS ON COMBINING DARB AND LOOPUS

Program DARB DARB+Loopus Cmp
Peak Time

(s) Peak Time
(s)

kmp [0,+∞) 0.31 [0,+∞) 0.53 =
speed pldi10

ex1 [0,n-1] 0.04 [0,n-1] 0.17 =

speed pldi10
ex3 [0,n-1] 0.04 [0,n-1] 0.19 =

speed pldi10
ex4 [0,+∞) 0.01 [0,+∞) 0.21 =

speed popl10
fg2 1 [0,+∞) 0.06 [0,max(m+n-x-y,

n-x,1)] 1.92 ∞>f

speed popl10
fg2 2 [0,+∞) 0.06 [0,max(2n-x-z,

2n-2x-1,1)] 1.91 ∞>f

speed popl10
nested multiple [0,+∞) 0.09 [0,max(m+

n-x-y,0)] 2.46 ∞>f

speed popl10
simple single n 0.03 n 4.12 =

speed popl10
simple single 2 [0,+∞) 0.05 [min(m,n),m+n] 0.16 ∞>f

speed popl10
sequential single n 0.07 n 0.52 =

t07 3x+y 0.13 3x+y 0.48 =

t08 [0,+∞) 0.09 [0,max((4z-3y)/3,
(2z-y-z)/3,0)] 0.62 ∞>f

t10 [0,+∞) 0.03 x-y∗ 0.38 ∞>f

t11 [0,+∞) 0.04 [0,max(m+n-x-y,1)] 1.58 ∞>f

t13 [0,+∞) 0.12 [0,+∞) 2.91 =
t19 i+k+51 0.03 i+k+51 0.82 =

t20 [0,x+y-2] 0.05 [0,max(y-x,
x-y)] 2.18 f >f

t27 [0,+∞) 0.10 [0,+∞) 1.92 =

t28 [0,+∞) 0.07 [0,max(1001x
-1000y,0)] 1.01 ∞>f

t47 [0,+∞) 0.03 [0,n+1] 0.13 ∞>f

dynamically allocated resources, and capture the size change
of resource usages for each resource-manipulating operation
automatically, especially when the operation is related to
pointers. Besides, we also derive not only worst-case bounds,
but also best-case resource bounds (that are the lower bounds
of variables, such as resc heap cur and resc heap peak).
Resource bound analysis of functional programs. The
resource bound analysis techniques of functional programs are
mainly based on sized types [24], inductive types [25], term
rewriting [26] or amortize analysis [27]–[29] [30]. The RAML
system proposed in [29] can derive worst-case polynomial re-
source bounds for higher-order polymorphic programs, and has
ability to deal with large-scale real-world OCaml programs.
Resource bound analysis of probabilistic programs. Re-
cently, researchers have also drawn attention to resource
bound analysis of probabilistic programs. Based on amortized
resource analysis, Ngo et al. propose a technique of resource
bound analysis for probabilistic programs [31]. Wang et al.
present a resource bound analysis technique based on semi-
algebraic, and can deal with resource release [32].

VII. CONCLUSION

We have presented a novel approach to automatically in-
ferring worst-case bounds of dynamically allocated resources
for C programs. It can derive bounds of both historical peak
resource usage and current resource usage of each program
location. We first introduce auxiliary variables and correspond-

ing operations to model resource usages of each resource-
manipulating API in programs. Then, we transfer resource
bound problem into value bound problem of these auxil-
iary variables. Since operations over dynamically allocated
resources often involve pointers, we have designed a Points-to
abstract domain specifically for resource bound analysis, and
combined it with numerical abstract domain to handle pointer
arithmetics, dynamical allocations/deallocations, and to infer
the size information of a dynamically allocated resource that
a pointer points to. We have developed a tool named DARB,
and the experimental results have shown its promising ability
to infer the bounds of dynamically allocated resources of real-
world programs with complex resource manipulations.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2017YFB1001802), and the National Natural
Science Foundation of China (Nos. 61872445, 62032024,
62102432).

REFERENCES

[1] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl, “Alter-
nating runtime and size complexity analysis of integer programs,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2014, pp. 140–155.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla, “Closed-form upper
bounds in static cost analysis,” Journal of automated reasoning, vol. 46,
no. 2, pp. 161–203, 2011.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Cost
analysis of object-oriented bytecode programs,” Theoretical Computer
Science, vol. 413, no. 1, pp. 142–159, 2012.

[4] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl, “Analyzing
runtime and size complexity of integer programs,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 38, no. 4, pp.
1–50, 2016.

[5] Q. Carbonneaux, J. Hoffmann, and Z. Shao, “Compositional certified
resource bounds,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2015, pp. 467–
478.

[6] M. Sinn, F. Zuleger, and H. Veith, “A simple and scalable static analysis
for bound analysis and amortized complexity analysis,” in International
Conference on Computer Aided Verification. Springer, 2014, pp. 745–
761.

[7] A. Flores-Montoya and R. Hähnle, “Resource analysis of complex
programs with cost equations,” in Asian Symposium on Programming
Languages and Systems. Springer, 2014, pp. 275–295.

[8] S. Gulwani, K. K. Mehra, and T. Chilimbi, “Speed: precise and efficient
static estimation of program computational complexity,” ACM Sigplan
Notices, vol. 44, no. 1, pp. 127–139, 2009.

[9] S. Gulwani and F. Zuleger, “The reachability-bound problem,” in
Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2010, pp. 292–304.

[10] M. Sinn, F. Zuleger, and H. Veith, “Difference constraints: An adequate
abstraction for complexity analysis of imperative programs,” in 2015
Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2015,
pp. 144–151.

[11] F. Zuleger, S. Gulwani, M. Sinn, and H. Veith, “Bound analysis of
imperative programs with the size-change abstraction,” in International
Static Analysis Symposium. Springer, 2011, pp. 280–297.

[12] https://github.com/aliyun/aliyun-log-c-sdk.
[13] https://github.com/redis/redis.
[14] https://github.com/happyfish100/fastdfs.
[15] https://github.com/symisc/sod.
[16] C. Alias, A. Darte, P. Feautrier, and L. Gonnord, “Multi-dimensional

rankings, program termination, and complexity bounds of flowchart
programs,” in International Static Analysis Symposium. Springer, 2010,
pp. 117–133.

[17] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in linux device drivers,” Acm sigops
operating systems review, vol. 42, no. 4, pp. 247–260, 2008.

[18] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, 1978,
pp. 84–96.

[19] A. Miné, “Tutorial on static inference of numeric invariants by abstract
interpretation,” Foundations and Trends in Programming Languages,
vol. 4, no. 3-4, pp. 120–372, 2017.

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “Cil: Intermediate
language and tools for analysis and transformation of c programs,” in
International Conference on Compiler Construction. Springer, 2002,
pp. 213–228.

[21] B. Jeannet and A. Miné, “Apron: A library of numerical abstract domains
for static analysis,” in International Conference on Computer Aided
Verification, 2009.

[22] http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/index.
html.

[23] https://forsyte.at/software/loopus/.
[24] P. B. Vasconcelos, “Space cost analysis using sized types,” Ph.D.

dissertation, University of St Andrews, 2008.
[25] N. Danner, D. R. Licata, and R. Ramyaa, “Denotational cost semantics

for functional languages with inductive types,” in Proceedings of the
20th ACM SIGPLAN International Conference on Functional Program-
ming, 2015, pp. 140–151.

[26] M. Avanzini, U. Dal Lago, and G. Moser, “Analysing the complexity
of functional programs: higher-order meets first-order,” in Proceedings
of the 20th ACM SIGPLAN International Conference on Functional
Programming, 2015, pp. 152–164.

[27] J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate amortized
resource analysis,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 34, no. 3, pp. 1–62, 2012.

[28] M. Hofmann and S. Jost, “Static prediction of heap space usage for
first-order functional programs,” ACM SIGPLAN Notices, vol. 38, no. 1,
pp. 185–197, 2003.

[29] J. Hoffmann, A. Das, and S.-C. Weng, “Towards automatic resource
bound analysis for ocaml,” in Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, 2017, pp. 359–
373.

[30] H. Simoes, P. Vasconcelos, M. Florido, S. Jost, and K. Hammond,
“Automatic amortised analysis of dynamic memory allocation for lazy
functional programs,” in Proceedings of the 17th ACM SIGPLAN inter-
national conference on Functional programming, 2012, pp. 165–176.

[31] V. C. Ngo, Q. Carbonneaux, and J. Hoffmann, “Bounded expectations:
resource analysis for probabilistic programs,” ACM SIGPLAN Notices,
vol. 53, no. 4, pp. 496–512, 2018.

[32] P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi,
“Cost analysis of nondeterministic probabilistic programs,” in Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2019, pp. 204–220.

https://github.com/aliyun/aliyun-log-c-sdk
https://github.com/redis/redis
https://github.com/happyfish100/fastdfs
https://github.com/symisc/sod
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/index.html
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/index.html
https://forsyte.at/software/loopus/

	Introduction
	Overview
	Tracking Resource Usage
	Modeling Resource Usage
	Instrumentation of Auxiliary Variables and Statements

	Analysis of instrumented programs
	Memory Model of Pointers
	Points-to Abstract Domain
	Numerical Abstract Domain
	Resource Bound Analysis by Combining Points-to and Numerical abstract Domains
	Assignment Transfer Function
	Test Transfer Function
	Extrapolations
	Size Analysis of Released Resources

	Supporting pointer arithmetics inside a structure

	Experiments and Evaluation
	Experimental Setup
	Answers to RQ1
	Answers to RQ2
	Threats to Validity

	Related Work
	Conclusion
	References

