
Understanding Merge Conflicts and Resolutions in
Git Rebases

Tao Ji Liqian Chen Xin Yi Xiaoguang Mao
College of Computer, National University of Defense Technology

Changsha 410073, China
{taoji, lqchen, yixin09, xgmao}@nudt.edu.cn

Abstract—Software merging is an important activity during
software development. Merge conflicts may arise and degrade
the software quality. Empirical studies on software merging are
helpful to understand developers’ needs and the challenges of
detecting and resolving conflicts. Existing studies collect merges
by identifying commits that have more than one parent commit.
Different from these explicit merges, rebasing branches is used
to merge other changes but rewrites the evolutionary history.
Hence, existing studies fail to identify implicit merges performed
by rebasing branches. Consequently, the results of these studies
may fail to provide comprehensive insights on software merging.
In our study, we leverage the recently updated APIs of GitHub
to study rebase activities in the pull requests. Our study shows
that rebasing is widely used in pull requests. And our results
indicate that, to resolve textual conflicts, developers adopt similar
strategies shown in existing studies on explicit merges. However,
in 34.2% of non-conflict rebase scenarios, developers add new
changes during the rebase process. And this indicates that there
are some new challenges of validating rebases. Our results pro-
vide useful insights for improving the state-of-the-art techniques
on resolving conflicts and validating rebases.

Index Terms—software evolution, software merging, merge
conflicts

I. INTRODUCTION

Different from centralized version control systems (VCSs),
distributed VCSs make it easier to create and merge branches
representing different development goals [1] [2]. The pull-
requests feature of GitHub makes it more convenient for other
developers to contribute their code to the project. The process
of incorporating other changes is well known as software
merging. Security issues may arise if merged changes are not
well examined [3]. And the parallel changes may lead to merge
conflicts. One study [4] shows that developers sometimes
avoid synchronization by merging, as merge conflicts may
interrupt the development process. Therefore, much effort has
been devoted to developing tools for detecting and resolving
conflicts automatically.

Existing studies [4]–[9] on real-world merge conflicts and
resolutions, provide insights on developing tools to assist
developers in performing merges. Note that in the context of
Git, besides “git merge”, “git rebase” is also used to include
other changes into the working branch. As shown in Fig. 1, we
present the workflow of “git merge” and “git rebase”. Conflicts
may arise and developers’ real intentions on changes may
be adversely affected after rebasing [10]. However, we are
not knowledgeable about the real-world processes of rebasing

a b c

1 2 topic

a b c

1

(a) merging the master branch into topic

(b) rebasing the topic branch onto the commit c

2

master

1’ 2’ topic

master

Fig. 1. Merging other changes by “git merge” and “git rebase”.

branches. Since rebasing branches rewrites the evolutionary
history and the previous commits are missing after rebas-
ing [11], existing studies only focus on the “git merge”
cases. We wonder whether there exist the same characteristics
between merging and rebasing branches. In our paper, we call
merges handled by “git merge” explicit merges, and call others
handled by “git rebase” implicit merges or rebases.

Only by examining the cloned Git repository from GitHub,
we fail to restore the process of rebasing branches1. For-
tunately, the recent changes2 of GitHub benefit us to re-
store rebases and relevant commits, by providing APIs on
the HeadRefForcePushedEvent3. After extracting this force-
pushed event that happened to the head branch of one pull
request, we can have the HEAD commits (e.g., commits 2
and 2′ in Fig. 1(b)) of the previous and rebased head branches.
Then, we can retrieve the missing commits from GitHub and
then study the rebase.

In this paper, we collect 82 Java repositories from GitHub
and identify a total of 51,183 rebase scenarios from the pull re-
quests of these repositories. To the best of our knowledge, this
is the first comprehensive and systematic study to investigate
how developers rebase their working branches. Our research
questions are summarized as follows:
• RQ1: How often do rebases occur in pull requests?
• RQ2: When do developers decide to rebase branches?
• RQ3: Do textual conflicts arise when rebasing branches?
• RQ4: How do developers resolve textual conflicts?

1https://help.github.com/en/github/committing-changes-to-your-
project/commit-exists-on-github-but-not-in-my-local-clone

2https://github.blog/changelog/2018-11-15-force-push-timeline-event/
3https://developer.github.com/v4/object/headrefforcepushedevent/

• RQ5: Do developers add other changes when no textual
conflicts arise during the rebase process?

The results show that rebases exist in the closed and
merged pull requests of each repository. To sync with the
updated base branch and keep the evolutionary history clean,
developers choose to rebase their working branch. Our results
show that textual conflicts arise in 24.3%-26.2% of rebases,
and developers tend to resolve conflicts without introducing
new tokens into textual files. Comparing to the results of
existing studies [5] [6] [9] on explicit merges, we find that the
likelihood of conflicts is not significantly different. One study
on real-world explicit merges shows that program elements
involved in merge conflicts have more code smells than other
elements [8]. Our results indicate that rebases may have
similar problems, as we find that developers deal with these
conflicts by the similar way for explicit merges. Also, we
find that developers often modify rebased branches when no
textual conflicts arise during rebasing. Based on the above
results, after comparing the workflow of “git merge” and “git
rebase”, we give some actionable implications for developers
and researchers to resolve conflicts and validate rebases.

Overall, we make the following contributions:
• To the best of our knowledge, we are the first to study

real-world rebases which also work as software merging.
• The collected rebases4 can facilitate further studies on

this topic.
• We provide evidence that developers deal with conflict

rebases similarly for explicit merges.
• We provide evidence that developers need to modify the

to-reapply commits during the rebase process.
• We discuss methods that should be improved to assist

developers in resolving conflicts and validating rebases.
The remainder of this paper is organized as follows. Section

II introduces the background and related works. Section III in-
troduces the study procedure for collecting rebases. Section IV
gives answers to each of the five research questions proposed.
Section V presents threats to validity. Section VI discusses
how to resolve conflicts and validate the final rebases, then
Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the Git utility “git rebase”
briefly and then present related works about software merging.

A. Git Rebase

After specifying the new base commit, the “git rebase”
utility individually reapplies the commits of the to-do list (e.g.,
the commit 1 and 2 of Fig. 1(b)). Once textual conflicts arise,
Git would ask developers to resolve the conflicts, and then
continue the rebasing process. Note that, Git also supports
developers to skip this commit, or abort the process.

To facilitate developers to deal with this process, Git pro-
vides the interactive mode “git rebase -i” to help them review
commits in the to-do list before starting the rebase process.

4https://github.com/tao-ji/Rebases.

Working in this mode, developers can add, delete, modify,
and reorder these commits. And they also can squash and
fixup commits of the to-do list. By squashing, developers can
meld this commit into the previous commit. And if we fixup,
changes will also be melded, but this commit’s message will
be discarded. The interactive mode of “git rebase” brings
challenges on understanding rebases, as we fail to precisely
restore the details of rebasing when we cannot match commits
of the previous branch with those of the rebased branch.

Some other default settings should be noticed. For example,
if one commit is a merge commit that has more than one parent
commit, Git would drop it from the to-do list by default. If
developers specify the option on reserving merge commits,
Git would recreate the merges, while developers may need to
resolve conflicts manually during the interactive process.

As introduced above, rich functions provided by “git rebase”
and the missing information on relationships between com-
mits, bring challenges on restoring the actual rebase processes.

B. Software Merging

Mens [12] introduces and concludes the early work about
software merging in detail. In this section, we introduce some
emerging works on software merging.

To reduce conflicts, existing works focus on task divi-
sions [13] and conflict prediction [14]. Brun et al. [14]
design and implement Crystal, which uses speculative analysis
to help developers identify, manage and prevent conflicts.
Guimarães and Silva [15] propose early detection that contin-
uously merges uncommitted and committed changes to detect
conflicts.

Resolving conflicts annoys developers and some works aim
to relieve developers’ burden on resolving conflicts. Apel et
al. [16] propose the semi-structured merge to assist unstruc-
tured VCSs in automatically resolving ordering conflicts. Niu
et al. [17] develop a tool scoreRec that recommends the con-
flict resolutions ordered by estimating the cost and benefit of
resolving conflicts. Nishimura et al. [18] develop MergeHelper
that exploits the fine-grained change history of Java source
code to help programmers understand conflicts between class
methods or fields. Zhu and He [19] propose an interactive
approach for resolving conflicts of structured merges, by using
version space algebra to represent the large set of candidate
programs and ranking the candidate resolutions. Xing and
Maruyama [20] propose to leverage the automated program
repair to resolve behavioral merge conflicts.

Besides assisting developers in resolving conflicts, re-
searchers pay attention to guaranteeing the quality of merges.
Recently, inspired by the earlier work [21], Sousa et al. [22]
propose the notion of semantic conflict freedom for 3-way
program merges, and develop SafeMerge to verify whether
one 3-way program merge violates the contract. Ji et al. [23]
propose test oracles for different merges including 2-way, 3-
way, and octopus merges, and develop TOM to generate tests
revealing semantic conflicts.

Researchers conduct empirical studies to investigate real-
world conflicts and resolutions. Zimmermann [6] studies the

More correct Autocrypt encrypted replies #3299
 Merged cketti merged 3 commits into from on 6 Apr 2018

master autocrypt-reply-encrypted

 Conversation 2 Commits 3 Checks 0 Files changed 6

Valodim commented on 3 Apr 2018

This changes the logic on replying to encrypted messages. It no longer abuses the

CHOICE_ENABLED state for stuff that wasn't an actual choice.

Contributor

Use correct logic for encryption button when replying to encrypted mail 00cd357

 Valodim force-pushed the branch from 4be89e5 to 2ebf339

on 3 Apr 2018

autocrypt-reply-encrypted

Valodim added 2 commits on 3 Apr 2018

Simplify CryptoStatusDisplayType 495798b

Further simplify logic, and fix menu behavior b5f2935

 Valodim force-pushed the branch from 2ebf339 to b5f2935

on 4 Apr 2018

autocrypt-reply-encrypted

Fig. 2. The merged pull request #3299 of the repository “k9mail/k-9”.

CVS history of four large projects and finds that between
22.75% and 46.62% of all integrations resulted in a conflict.
Mckee et al. [24] conduct interviews of 10 software prac-
titioners to understand their perspectives on merge conflicts
and resolutions. And according to the unmet needs of soft-
ware practitioners, they suggest researchers and tool builders
focus on program comprehension, history exploration, etc.
Accioly et al. [7] derive nine conflict patterns from semi-
structured merge conflicts and find that most conflicts happen
when developers edit the same lines of the same method.
After conducting a survey, Leßenich et al. [4] propose seven
indicators to predict whether conflicts may arise. However,
all of these seven indicators are rejected by the real merge
scenarios in their following empirical study. Nguyen et al. [25]
analyze the collaboration process of four Git repositories at
specific periods revealing that a higher integration rate of a
project does not generate a higher unresolved conflict rate.
And they suggest that Git should merge concurrent changes
on two adjacent lines and throw a warning message instead of
considering them as conflicting.

Yuzuki et al. [9] study the conflict resolutions at method-
level on 779 conflict commits from 10 Java projects. Their
results show that 99% (771/779) of conflicts are resolved
by adopting one method directly. Menezes et al. [5] conduct
a large-scale empirical study on the resolutions of 175,805
conflict chunks from more than 2,700 Java projects. They
classify resolutions into different types and study the reasons
why these corresponding decisions are made.

Since rebasing branches rewrites the evolutionary history,
existing studies fail to study these implicit merges. Different
from existing studies that focus on explicit merges, we study
rebase cases. In our study, we try to find the difference between

explicit merges and rebases. And our results are able to provide
more insights on software merging.

III. STUDY PROCEDURE

In this section, we introduce the dataset, pull requests,
identifying rebases and restoring the commit history.

A. Dataset

In this study, we aim to investigate rebases among the open-
source projects. GitHub provides APIs to track the force-
push event in the pull requests. Hence, to study rebases, we
need repositories that have a certain number of non-open
pull requests. Considering the rate limits of invoking GitHub
APIs, we try to collect a medium and reasonable number of
popular repositories that have a large number of non-open pull
requests. Hence, leveraging the advanced search5 provided by
GitHub, we search for Java repositories that have more than
three thousand stars and one thousand forks. After filtering out
those repositories that have less than one thousand closed and
merged pull requests, we collect a total of 82 Java repositories
and these repositories are popular among the open-source
community.

B. Pull Requests

After forking the upstream repository and making new
changes, developers can create one pull request to contribute
their changes. Two basic branches (i.e., the base branch and
the head branch) are involved in each pull request. The base
branch is where developers consider changes that should be
applied, and the head branch is what developers would like to
be applied. For example, as shown in Fig. 2, we present the

5The GitHub API v3 URL: https://api.github.com/search/repositories?q=
stars:>3000+fork:>1000+language:java+is:public+archived:false+fork:false

a b

1 2 1’

2’

master

ae360d1

3

c8a5a5b 4be89e5

a14d0b0 23d7697

3’

2ebf3392edc936

00cd357

2’’ 3’’

m

fd07e1a740d67a

b5f2935495798b

autocrypt-reply-encrypted

force-push

force-push

Fig. 3. The commit history of the pull request #3299 of “k9mail/k-9”.

pull request #32996 of “k9mail/k-9” by taking a screenshot of
this pull request’s webpage. As we can see, the head branch
“autocrypt-reply-encrypted” has been merged into the base
branch “master”.

During the review process, developers may need to revise
their changes by resetting or rebasing the head branch. As
shown in Fig. 2, GitHub tracks the changes of the head branch
by showing the message “committer force-pushed the head
branch from commit to commit”, which is defined as the
HeadRefForcePushedEvent. Similarly, GitHub also tracks the
force-pushed events on the base branch, by providing the APIs
to extract the BaseRefForcePushedEvent7.

In our study, we first utilize the GitHub APIs to collect
all of the closed and merged pull requests. Then, we extract
BaseRefForcePushedEvents and HeadRefForcePushedEvents
that happened in each pull request. We finish collecting the
pull requests of 82 repositories before April 15th, 2020.

C. Identifying Rebases

For each pull request, we are able to extract the information
of its base and head branches, its commits, and the relevant
events. Then, we can restore the reviewing process to identify
rebases that happened before this pull request is closed or
merged.

For example, for the pull request #3299 of “k9mail/k-9”
shown in Fig. 2, we restore the changes of the head branch, as
shown in Fig. 3. And we can see that, this author force-pushed
this branch twice. After the second force-push, the HEAD
commit of this branch becomes the commit “b5f2935”8, which
is the latest commit of these three commits merged into the
“master” branch. After cloning the repository locally, we fail
to find those two commits “4be89e5” and “2ebf339” by using
the Git command “git rev-list”. However, fortunately, we can
retrieve the information about these two commits by leveraging
the GitHub APIs. For each commit, we are able to collect the
information of the author, parent commits, and the patch.

Examining the first force-push, we find that the fork
point between two branches changes from “a14d0b0” to

6https://github.com/k9mail/k-9/pull/3299. The pull request can be found via
the URL: https://github.com/:owner/:repo/pull/:number. We would not present
the links for pull requests in the following papers.

7https://developer.github.com/v4/object/baserefforcepushedevent/
8https://github.com/k9mail/k-9/commit/b5f2935. The commit can be found

via the url: https://github.com/:owner/:repo/commit/:sha. We would not
present the links for commits in the following paper.

“23d7697”. However, as for the second force-push, two com-
mits “2edc936” and “2ebf339” are reset and then commits
“495798b” and “b5f2935” appear in the branch. Working
with Git, “git reset” is used to reset the evolutionary history
by canceling existing commits. The first force-push brings
changes of the commit “23d7697” into the branch “autocrypt-
reply-encrypted”, while the second force-push does not bring
any changes from the “master” branch. In our study, we need
to distinguish these rebases from extracted HeadRefForce-
PushedEvents.

As introduced above, we identify the rebase by comparing
commits of the base branch from which the head branch
originates. In other words, we need to precisely identify the
fork point of the head branch from the base branch. In our
experiments, we recursively identify the parents of one commit
in the head branch, until we find one ancestor appearing in the
base branch but the appearance is not due to merging this pull
request. We consider this ancestor as the fork point of the head
branch. And to find the fork point of one branch, we just need
to focus on the first parent of the commit recursively, since the
other parent commits are brought by merging other branches.
The remaining problem is to determine one ancestor commit
from the base branch. Different from extracting the first-parent
commits of the head branch, we need to examine all commits
appearing in the base branch. After extracting all commits of
the base branch, we are able to identify the fork point of the
head branch.

Note that developers are also able to reset the evolutionary
history of the base branch of one pull request, and GitHub
provides APIs to track this event as the BaseRefForcePushedE-
vent. By examining this kind of event, we are able to determine
the previous base branch. For example, the developer of the
pull request #1323 of “k9mail/k-9” force-pushed the base
branch. And there is one HeadRefForcePushedEvent before
this BaseRefForcePushedEvent. If we miss the BaseRefForce-
PushedEvent and have the wrong fork point, we would fail
to identify this rebase case. Looking at the BaseRefForce-
PushedEvent, we can tell that the base branch is force-pushed
by those developers who have privileges to directly change
the base branch. As a result, we need to identify the rebase
by examining the head branch with the previous base branch,
since the author force-pushed the head branch before knowing
the changes of the base branch.

Besides force-pushing the base branch, developers are able
to change the base branch to another branch. However, GitHub

0

1 2 3

head

base1

base2

force-push

Fig. 4. A case that developers change the base branch from base1 to base2
after force-pushing the head branch.

does not provide APIs9 to show the HEAD commits of the old
and new base branches. As shown in Fig. 4, we present one
case that the head branch is force-pushed. In this case, we can
tell that developers rebase the head branch if we examine the
head branch with the base1 branch. However, if we consider
the head branch with the base2 branch, we fail to tell that
rebasing happens to incorporate the changes from the base2
branch. Different from the BaseRefForcePushedEvent, if the
author decides to switch the base branch from base1 to base2,
the commits already appeared in the base1 branch would also
be merged. In other words, the author of this pull request wants
to merge the commits 1, 2, and 3 into the base2. In this case,
it makes sense that the author resets the head branch rather
than rebases this branch since this author wants to contribute
the commit 3 instead of simply updating the head branch.
Hence, to reduce the false positives on rebases, we consider the
changed base branch to identify rebases. Recall that, we fail
to extract the base branches from the BaseRefChangedEvent.
If there is some BaseRefForcePushedEvent after the BaseRe-
fChangedEvent, we just need to determine the changed base
branch by examining the previous HEAD commit shown in
this BaseRefForcePushedEvent. Otherwise, we can determine
the changed base branch by examining the pull request.

Finally, we collect a total of 51,183 rebases from 82 Java
repositories, and each rebase has two ordered lists of commits
that start from different fork points.

D. Restoring Commit History

The locally restored commit history facilitates us to study
the rebase processes, by investigating the conflicts and rel-
evant resolutions. For each missing commit in the local
repository, we can extract its patch from GitHub via the
query “https://github.com/:owner/:repo/commit/:sha.diff”. In
our study, we focus on the changes in textual files and do not
analyze binary files. Then, we can reapply these commits to the
local repository to restore the missing commit history. In this
procedure, due to GitHub’s limitations such as returning big
patches, we finally restore the commit history successfully for
50,431 out of 51,183 (98.5%) rebases. Considering the costs
and benefits of fetching the entire working trees of commits,
we do not restore the remaining rebases.

IV. RESEARCH RESULTS

In each research question, we introduce the method used
and then present the results.

9https://developer.github.com/v4/object/BaseRefChangedEvent

merged closed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 5. The proportions of rebased pull requests among merged and closed
pull requests respectively for each repository.

A. RQ1: How often do rebases occur in pull requests?

1) Method: By presenting the detailed statistics on col-
lected rebases, we give a clear overview of rebases that
happened in the pull requests of GitHub.

2) Results: As shown in Table I, we present the numbers
of identified rebases for each repository. In our dataset, there
are a total of 51,183 rebase scenarios identified from 82
repositories. And among these rebases, 35,676 rebases exist in
the merged pull requests and 15,507 rebases exist in the closed
pull requests. By examining each repository, we find that the
numbers of rebases vary significantly. Note that projects that
have few rebases identified from pull requests, may have other
rebases performed in other development activities.

In our dataset, we have 24,778 out of 326,894 (7.6%) pull
requests that have rebases. And in one pull request, developers
may rebase the head branch multiple times. We find that
10,071 out of 24,778 (40.6%) rebase-involved pull requests
have more than one rebase. For example, the merged pull
request #15555 of “hazelcast/hazelcast” has a total of 52
rebases. This pull request survived for more than one month
and its 13 commits changed 35 files. It is reasonable that
developers need to rebase the head branch frequently to reduce
the difference between the base branch and the head branch
when they complete a complex development goal.

Naturally, we may wonder whether rebasing the head
branch affects developers’ decision on accepting one pull
request. Examining the final status of those pull requests,
we find that 7,156 out of 99,887 (7.2%) closed pull requests
and 17,622 out of 227,007 (7.8%) merged pull requests have
rebases. These percentages are so close that we fail to tell
that rebasing branches affects the final decisions on accepting
pull requests. To further investigate whether rebases happen
differently in closed and merged pull requests, we calculate the
percents respectively for each repository. As shown in Fig. 5,
we present the proportions of rebase-involved pull requests
among different types of pull requests for each repository.
There are some projects in which rebasing branches has
been used for a great proportion. For example, we find

TABLE I
A TOTAL OF 82 REPOSITORIES STUDIED IN THIS PAPER. THE COLUMN “#REBASE” REPRESENTS THE NUMBERS OF IDENTIFIED REBASES. THE COLUMN
“CLOSED” REPRESENTS THE NUMBERS OF REBASE-INVOLVED PULL REQUESTS WITH ALL OF THE CLOSED PULL REQUESTS. THE COLUMN “MERGED”

REPRESENTS THE NUMBERS OF REBASE-INVOLVED MERGED PULL REQUESTS.

Repo #Rebase #RebasePR Repo #Rebase #RebasePR
#merged #closed #merged #closed

MyCATApache/Mycat-Server 1 1/933 0/200 apache/incubator-shardingsphere 3 3/1,989 0/318
libgdx/libgdx 3 3/2,008 0/778 Anuken/Mindustry 6 5/777 0/352

apache/incubator-dolphinscheduler 8 3/1,289 3/180 bigbluebutton/bigbluebutton 10 7/3,980 1/334
seata/seata 10 8/909 0/227 apache/skywalking 15 8/2,056 0/338

azkaban/azkaban 16 12/1,216 1/233 vavr-io/vavr 17 14/1,375 2/99
ionic-team/capacitor 27 13/1,045 8/136 wix/react-native-navigation 31 20/1,311 5/492

swagger-api/swagger-core 37 29/896 3/294 ctripcorp/apollo 46 36/882 2/165
javaparser/javaparser 47 29/915 4/109 GoogleContainerTools/jib 52 26/1,297 1/70

SeleniumHQ/selenium 53 13/471 12/1,211 apache/dubbo 59 27/1,548 7/991
apache/pulsar 63 35/4,242 4/358 antlr/antlr4 74 41/951 4/245

apache/incubator-heron 75 45/2198 5/245 micronaut-projects/micronaut-core 80 53/969 12/300
openhab/openhab1-addons 82 48/2,643 1/466 rstudio/rstudio 83 67/2,861 3/181

arduino/Arduino 89 39/666 12/630 ReactiveX/RxJava 89 57/2,849 11/567
eclipse-vertx/vert.x 106 56/925 10/582 bisq-network/bisq 108 59/1,464 10/406

TechEmpower/FrameworkBenchmarks 108 59/3,856 12/669 dropwizard/dropwizard 115 71/1,644 9/323
Activiti/Activiti 136 79/1,142 16/421 spring-projects/spring-framework 142 30/530 47/2,069
square/okhttp 144 104/2,323 9/482 k9mail/k-9 153 72/1,223 19/643

vespa-engine/vespa 155 116/12,006 7/515 eugenp/tutorials 159 92/6,135 11/2,487
facebook/buck 168 0/8 81/1,007 apache/lucene-solr 172 58/467 42/672
apache/camel 179 58/1,389 62/2,297 jenkinsci/jenkins 183 98/3,269 27/1,268

realm/realm-java 192 138/2,298 8/431 zaproxy/zaproxy 193 132/2,177 2/90
spring-projects/spring-security 200 68/618 44/691 signalapp/Signal-Android 205 24/236 88/1,785

apache/groovy 245 127/351 63/851 keycloak/keycloak 258 125/6,023 23/864
MinecraftForge/MinecraftForge 259 90/1,511 51/1,826 eclipse/deeplearning4j 295 117/3,331 8/315

openzipkin/zipkin 325 177/1,459 9/437 naver/pinpoint 334 114/3,671 17/332
OpenAPITools/openapi-generator 347 181/2,864 21/349 apache/kafka 356 171/2,715 24/4,997

spring-projects/spring-boot 372 2/41 184/4,048 apache/zookeeper 399 0/1 191/1,188
Alluxio/alluxio 401 187/8,937 35/1,578 hibernate/hibernate-orm 423 179/674 112/2,470
bazelbuild/bazel 447 6/23 271/2,948 pentaho/pentaho-kettle 466 292/6,591 22/775
apache/hadoop 474 120/675 116/960 apache/storm 508 250/2,457 24/737
apache/hbase 519 199/974 46/380 confluentinc/ksql 565 298/2,808 12/283

apereo/cas 647 150/2,966 14/528 apache/ignite 676 13/368 289/6,591
netty/netty 787 117/1,359 314/3,724 robolectric/robolectric 996 453/2,314 126/879

Graylog2/graylog2-server 1,036 468/2,779 90/408 apache/druid 1,049 370/5,417 70/753
grpc/grpc-java 1,076 781/3,875 67/700 apache/zeppelin 1,183 3/23 514/3,618

elastic/elasticsearch 1,242 632/25,163 51/5,959 testcontainers/testcontainers-java 1,435 237/1,084 83/374
checkstyle/checkstyle 1,729 617/2,744 176/2,196 quarkusio/quarkus 1,810 675/4,090 85/518

eclipse/che 1,937 1,039/6,117 51/536 neo4j/neo4j 2,853 1,175/7,935 143/1,740
gocd/gocd 2,870 1,004/4,426 105/504 hazelcast/hazelcast 3,064 1,073/9,428 132/1,274

SonarSource/sonarqube 3,217 1,285/2,187 234/1,048 prestodb/presto 3,361 1,117/6,659 220/3,487
apache/beam 4,194 1,206/6,812 746/4,384 apache/flink 5,134 616/2,169 1,812/8,971

that “SonarSource/sonarqube” has the greatest percentage
(i.e., 58.8%) of rebase-involved pull requests among merged
pull requests. However, examining the distributions and
considering the number of pull requests in each repository,
we still do not have strong evidence that rebasing branches
affect developers’ decisions on accepting pull requests.

Result 1: Developers need to rebase branches often, as we
find on average 7.6% of pull requests have rebases and
40.6% of them have more than one rebase.

B. RQ2: When do developers decide to rebase branches?

1) Method: It is difficult to tell when and why developers
decide to rebase branches, without consulting those developers
involved in identified rebases. However, we are able to infer
them by examining the consequences brought by rebasing.

If the head branch of one pull request is created on one
much early version of the base branch, the possibility of merge
conflicts would increase. Hence, reviewers need to carefully
review the difference between the head branch and the base
branch. To relieve reviewers’ burden on reviewing changes,
the author of one pull request may rebase the head branch
to reduce the difference between these two branches. Hence,
we measure the size of differences between two fork points to
investigate review efforts changed by rebasing. Git and GitHub
present the changes in textual files at the line-level. And the
numbers of changed files are explicitly shown to developers.
Developers can have an intuitive understanding of the size of
changes by looking at these indicators. Hence, we measure the
difference between two fork points, by counting the number
of changed files and the number of changed textual lines.

Different from the explicit merging, rebasing has the advan-

tage that keeping the commit history clean. Before accepting
pull requests, authors may explicitly merge new changes in the
base branch into the head branch and then the evolutionary
history would be redundant. For example, the author of the
pull request #4465 of “k9mail/k-9” commits his changes first,
and then merges new changes in the base branch “master” into
the head branch by using “git merge”. The reviewer asks the
author to rebase the head branch instead of merging commits
from the base branch. After rebasing the head branch, only one
commit including the author’s changes is merged into the base
branch. Hence, in this research question, we check explicit
merge commits in head branches.

2) Results: Reducing Difference. As shown in Fig. 6, we
present the numbers of rebase scenarios that have different
numbers of changed files and changed lines. As we can see,
more than half (61.7%) of rebase scenarios have more than
25 changed files between two fork points. Although there is
no strict standard on considering the size of changes as large,
we still can tell that developers may rebase the head branch
when many changes are made to the base branch.

Cleaning History. In a total of 1,156 rebase scenarios,
explicit merge commits appear in the previous head branch
or the rebased branch. And there are 1,090 rebase scenarios
in which the previous head branch includes explicit merge
commits while the rebased branch does not. There are 57
rebase scenarios in which the previous head branch does
not include any merge commit while the rebased branch
includes. In these 57 cases, the merge commit in the
rebased branch does not appear due to the rebase process of
reapplying commits from the previous head branch. There
are only 9 rebases from 8 pull requests whose previous and
rebased head branches both include merge commits. We
manually examine these 9 rebases to investigate whether
developers recreate the merge commits during the rebasing
process. We find that the merge commits from 7 rebased
branches are missing after the following rebases occurring
in pull requests. As for the merge commits of the remaining
2 rebased branches are also reset since we fail to find
these merge commits in their final commits. As we can
see, developers utilize “git rebase” to remove explicit merge
commits in the head branches for most cases (i.e., 1090/1099).

Result 2: When the base branch evolves with many changes
or the head branch involves explicit merge commits, devel-
opers perform rebases to relieve the burden on reviewing
changes in pull requests and keep the commit history clean.

C. RQ3: Do textual conflicts arise when rebasing branches?

1) Method: For each identified rebase, we use “git rebase”
locally with default settings to investigate whether conflicts
arise. And once conflicts arise, we abort the rebase process.

Given one previous head branch, developers may reset the
latest commit and rebase this branch later. As a result, not all
of the commits in the head branch are reapplied onto the new
base. And as introduced in Section 2.1, developers may use the
interactive mode “git rebase -i” to remove some commits from

0 25 50 75 100 125 150 175 200

0

5000

10000

15000

20000

25000

30000

35000

40000
files
lines

Fig. 6. The numbers of rebase scenarios (Y-axis) that have different sizes of
changes (X-axis) between the fork points.

the to-do list. Hence, we need to make sure what commits in
the previous head branch have been reapplied.

Each commit records the author date and the committer
date. And during the rebase process, the author date would
be reserved if developers do not specify the option “--ignore-
date”. In other words, if one commit ci of the previous head
branch has the same author date with one commit c′j of
the rebased branch, then we are sure that c′j appears due to
reapplying ci. Considering this default setting on recording
author dates and developers’ involvement on other commit
properties (e.g., messages and changes) during rebasing, we
match commits by comparing the author dates in our study.
This strict standard ensures matched results.

According to the matched results, we first classify the results
into two main types: (1) missing and (2) non-missing. If some
commit in the previous head branch cannot be matched with
any commit in the rebased head branch, we consider this
rebase missing. Otherwise, we consider it non-missing. As for
those rebases that are non-missing, we classify them into more
detailed types.

(1) inserted. Looking at the rebased branch, if there are other
commits appearing between the matched commits, we consider
that new commits are inserted. For example, in the pull request
#2007 of “apache/beam”, two adjacent commits “0fafd2e”
and “e8405e3” are matched with “b7c28e7” and “6bc464e”
respectively, while the commit “fe110a1” is inserted between
“b7c28e7” and “6bc464e” in the rebased branch.

(2) appended. If there are some commits appearing af-
ter the matched commits, we consider that new commits
are appended. For example, in the pull request #123 of
“MyCatApache/Mycat-Server”, the HEAD commit of the head
branch changes from “98f13e7” to “a089b23”. The rebased
head branch has four commits among which the first three
commits are matched with those three commits in the previous
head branch. The HEAD commit “a089b23” of the rebased
branch fails to be found in the previous branch, thus we
consider it as appended.

(3) reordered. If the order of matched commits is changed,

we consider that developers reorder the commits. For example,
in the pull request #2147 of “apache/beam”, there are three
commits in the previous head branch and three commits
in the rebased branch. The first commit of the previous
branch appears “2cfcac2” is matched with the head commit
“0234b92” of the rebased branch.

Combining these three basic cases, we have eight different
types. As shown in Table II, we show the numbers of rebases
that have different matched types. There are 29,325 out of
51,183 (57.3%) rebase scenarios in each of which all of the
commits in the previous head branch are matched with those
commits of the rebased branch in the same order. Given the
classification, we study real-world rebases with different levels
of confidence.

TABLE II
THE NUMBERS OF REBASES THAT HAVE DIFFERENT TYPES.

Type Num
matched 29,325
appended 6,625
inserted 569

reordered 55
inserted & appended 146
inserted & reordered 16

appended & reordered 9
inserted & appended & reordered 2

2) Results: Among 49,325 restored rebases, we find that
12,915 (26.2%) rebases have textual conflicts arose. For those
“matched” and “appended” rebases, we are sure that all
commits in the previous head branch have been reapplied in
the same order. Then, we calculate the percentage of conflict
rebases among those “matched” and “appended” rebases, and
we find that 8,740 rebases out of 35,950 (24.3%) have textual
conflicts. As shown in Fig. 7, for each repository, we calculate
the percentages of those conflict rebases among “all” rebases
and “matched+appended” rebases. Examining those few cases
that the percentages vary between different types, we find
that the total numbers of rebases are small. For example, the
conflict percentages (i.e., 66.7% and 100.0%) of “seata/seata”
vary significantly, since there is only one rebase classified as
“matched” and conflicts arise in this rebase.

Case Study. Examining repositories that have more than one
thousand rebases, we find that “testcontainers/testcontainers-
java” has the smallest percentage (i.e., 4.0%) of conflict
rebases among its all rebases. We manually examine pull
requests of this repository, and we find that 1,314 out of
1,363 rebases come from those pull requests created by
“Dependabot Preview”10, which is a tool developed by
GitHub to automatically keep the dependencies up to date.
There are only 34 out of 1,314 rebases in which conflicts
arise. Obviously, it is necessary to rebase the branches to
check the effects of updating dependencies on new changes
in the base branch. And it is also reasonable that conflicts
do not happen often, considered that changes are made to
update dependencies only. Since we fail to match author

10https://github.com/marketplace/dependabot-preview

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0
all
matched+appended

Fig. 7. The proportions of conflict rebases (Y-axis) with different types for
82 repositories (X-axis).

dates between commits involved in the rebases created by this
tool, we find the percentage of conflict “matched+appended”
rebases increases to 24.6%.

Result 3: Our experimental results show that textual con-
flicts arise in 24.3%-26.2% of rebases. And there is no
significant difference between the possibilities of textual
conflicts arising in rebases and explicit merges.

D. RQ4: How do developers resolve textual conflicts?

1) Method: To investigate how developers resolve textual
conflicts, we need to identify what conflicts arise and what
changes in the rebased branch are made to resolve conflicts.

In this question, we do not consider those rebases classified
as missing, since we do not have strong evidence that the
commits in the rebased branch contain changes resolving
conflicts arose by reapplying the commits in the previous
branch. Hence, in this research question, we focus on non-
missing rebases and respectively examine these rebases that
have different types.

To investigate the efforts made to resolve conflicts, we study
the content of the final merge version. If all lines of the merge
version can be found in the relevant versions of the rebase
scenario (i.e., the merge base, our version, and their version),
we consider this file as “line-comb”. Looking into the content
at the fine-grained level, if all tokens of the merge version
can be found in relevant versions, we consider this file as
“token-comb”. Otherwise, we consider it as “new-token”. If
there is one file considered as “new-token”, we determine
the resolution type of one conflict rebase as “new-token”.
Otherwise, if there is one file considered as “token-comb”,
we determine it as “token-comb”. Otherwise, we determine it
as “line-comb”.

2) Results: As shown in Table III, we present the numbers
of rebases that have conflicts resolved by different levels of
effort. As for those “inserted” rebases, most of them introduce
new tokens. It makes sense that changes by introducing new
tokens are committed when developers add new commits

TABLE III
THE NUMBERS OF REBASES WHOSE CONFLICTS ARE RESOLVED BY

DIFFERENT METHODS.

Type line-comb token-comb new-token
matched 3,705 1,372 2,118
appended 803 287 431
inserted 10 6 87

reordered 2 1 5
inserted & appended 4 2 32
inserted & reordered 0 0 2

appended & reordered 0 0 1

during the rebasing process. However, it is difficult to de-
termine whether these new commits introduce resolutions, as
developers may try to add more changes representing different
intentions according to the comments in pull requests.

As for those “matched” and “appended” rebases, we are
sure that all commits in the previous head branch have been
reapplied, and the matched commits in the rebased branch
resolve conflicts. There are 2,118 out of 7,195 (29.4%)
“matched” rebases and 431 out of 1,521 (28.3%) “appended”
rebases have conflicts resolved by “new-token”. As we
can see, the difference between these percentages is not
significant. Looking at those Java files that have new tokens
introduced, then we have 1,644 “matched” rebases and 299
“appended” rebases. Existing studies [9] [5] on explicit
merges show that developers resolve conflicts by choosing
parent versions in most cases, and developers may introduce
new code to resolve conflicts in a few cases. Comparing
to these studies, we also do not have strong evidence that
developers have devoted more efforts to resolving conflicts
when rebasing branches.

Result 4: Experimental results show that new tokens are
introduced for 28.3%-29.4% of conflict rebases. And re-
sults indicate that developers adopt similar strategies used
in explicit merge scenarios.

E. RQ5: Do developers add other changes when no textual
conflicts arise during the rebase process?

1) Method: In this research question, we compare the
branch rebased by ourselves with the collected rebased branch.
As for those changed Java files, we use ChangeDistiller [26]
to extract fine-grained changes. ChangeDistiller returns the
change actions with the changed entities as fine-grained
changes, and we combine the change action with the changed
entity as the change type to study the differences.

2) Results: To our surprise, we find 7,555 out of 22,111
(34.2%) non-conflict “matched” rebases in which the commits
of the to-do list have been modified after being reapplied. For
example, the author of the pull request #6208 of “Minecraft-
Forge/MinecraftForge” deleted one method by the commit
“0eeb4ed”. Then he rebased this branch whose head commit
changes to “0f82f7e”, but this commit does not delete the
method, even we can delete it without any textual conflicts.

As for those “appended” rebases, we compare the con-
structed rebased branch with the last matched commit in the

rebased branch. Then, we find that differences exist in 414 out
of 5,098 (8.1%) non-conflict “appended” rebases. Looking at
these two significantly different percentages (i.e., 34.2% and
8.1%), we can give reasonable explanations on the decrease.
Using the interactive mode, developers are able to modify
the reapplied commit. However, without the interactive mode,
developers can add new commits after rebasing successfully.
Hence, it is reasonable that the percentage decreases.

TABLE IV
THE PERCENTS OF FINE-GRAINED CHANGES.

Type Percent
statement update:method invocation 13.18%

additional functionality:method 11.38%
statement update:variable declaration statement 10.84%

statement insert:method invocation 9.54%
statement delete:method invocation 7.76%
statement update:return statement 7.31%

removed functionality:method 7.05%
statement insert:variable declaration statement 6.91%

additional object state:field 6.14%
statement delete:variable declaration statement 5.69%

In this question, we wonder what change types are
prevalent among those non-conflict rebase scenarios in which
the rebased branch has been modified. As shown in Table IV,
we present the top-10 change types with the percentages of
rebases in which the change type appears. Comparing to the
statistics in the study on bug fixes [27], we find that changes
made during rebasing are obviously different from bug fixes.
In other words, we can tell that developers may make changes
during rebasing branches to complete other different goals.
For example, the change “additional functionality:method”,
which intuitively requires a certain number of efforts,
accounts for 11.38%. Consequently, it is difficult to automate
the process of rebasing branches, as we fail to extract the
exact oracles on these changes.

Result 5: Developers tend to introduce other changes when
rebasing branches without textual conflicts, as we find that
new changes are introduced in 34.2% of those non-conflict
“matched” rebases.

V. THREATS TO VALIDITY

The main threats to the validity of our results correspond
to the rebases collected. Note that, we collect rebases from
pull requests only and other rebases that occur in other devel-
opment activities still cannot be identified currently. Hence,
although we take an important step in studying real-world
rebases, our study may fail to provide the comprehensive
view of rebases. Besides, projects written in other program-
ming languages, hosted on other platforms, or developed
with different methods, may have different requirements and
needs when rebasing branches. The thresholds used to select
popular projects are arbitrary and may have an impact on our
conclusions. As we have collected a number of rebases from
popular projects, we consider that our results still reflect the
real situations of rebasing branches.

topic

(a) merging the master branch into topic

(b) rebasing the topic branch

master

topic

master

ours

base

merge’

theirs

merge

ours

base

theirs

merge’ merge

Fig. 8. Other changes are introduced when merging and rebasing branches.

VI. DISCUSSION

A. Conflict Resolution

Similar to existing studies [9] [5] on explicit merges pro-
duced by “git merge”, our results also indicate that developers
tend to make use of existing sources to have the final version
during rebasing. Hence, our results suggest that developers can
leverage existing techniques on resolving conflicts automati-
cally to deal with the majority of rebases.

However, please note that the processes of resolving con-
flicts in “git merge” and “git rebase” are different. When devel-
opers use “git merge”, all conflicts would be listed once textual
conflicts arise. However, when developers use “git rebase”,
Git individually reapplies the commits of the to-do list. Once
conflicts arise during the rebase process, developers need to
resolve conflicts first, and then Git continues to reapply the
remaining commits. There is a chance that these resolutions
would conflict with these remaining commits in the to-do list.
Hence, it is also necessary to assist developers in resolving
conflicts by showing the impacts of committed resolutions on
the following commits. For tool-builders and researchers, we
suggest that we devote more efforts to examining the impacts
of resolutions and providing usable tools to present these
impacts to developers, especially when developers have many
to-reapply commits.

The study [8] on real-world explicit merges shows that
program elements involved in conflicts have more code smells.
Our results indicate that similar problems may exist in rebases,
as developers resolve conflicts with similar strategies. We
suggest that developers pay more attention to code smells
produced during the process of resolving rebase conflicts.

B. Validating Rebase

Based on the intuition that the merge should preserve
the changed behaviors introduced in two branches, Sousa et
al. [22] propose the contract of semantic conflict freedom to
verify 3-way program merges. As shown in Fig. 8, there are
four versions merge, ours, theirs and base involved in explicit
and implicit merges. Note that, once developers introduce
other changes ∆(merge′,merge) (where merge′ is created
by Git) during merging, the contract may fail to work.

When developers use “git merge” with default settings to
perform the merge without conflicts, the merge result will be
committed into the repository. At the same time, there is no
other intention involved in this merge. Hence, the contract
can work well in most of the non-conflict explicit merges.
Different from the workflow of “git merge”, developers often
add more changes during the rebase process, as is shown
in the results of RQ5. As a result, although no textual
conflicts arise, developers’ other intentions (e.g., intentions on
∆(merge′,merge) in the Fig. 8(b)) are introduced into the
rebased branch. Consequently, it is not proper to use the notion
of semantic conflict freedom to verify this implicit merge.

As shown in Fig. 8, if new introduced changes
∆(merge′,merge) do not interfere with ∆(base, ours) or
∆(base, theirs), we can recreate the relevant branch, and
then use the contract to investigate whether semantic con-
flicts arise. For example, if ∆(merge′,merge) do not in-
terfere with ∆(base, theirs), we can intuitively consider
that ∆(base, ours) and ∆(merge′,merge) represent the
same intentions together. And then, after recreating the
new version ours′ by applying ∆(merge′,merge) on ours,
we can detect the semantic merge conflicts on four ver-
sion (base, ours′, theirs,merge). Otherwise, if these new
changes ∆(merge′,merge) do interfere with ∆(base, ours)
and ∆(base, theirs), we may tell that ∆(merge′,merge)
are introduced to resolve conflicts during merging. Hence,
we need to identify all the conflicts in the merge scenario
(base, ours, theirs,merge′) and determine whether the un-
desired behavior of merge′ has been changed in merge.

As introduced above, formally describing and determining
the relationship between changes, is important in the process
of validating rebases. We suggest that researchers investigate
these relationships by mining more information on dependen-
cies, documents, conversations in pull requests, etc.

VII. CONCLUSION

In this study, we collect a total of 51,183 rebase scenarios
from 82 Java repositories hosted on GitHub. Our results show
that developers often rebase head branches of pull requests,
and rebasing is able to relieve the burden on reviewing changes
and keep the evolutionary history clean. We find that textual
conflicts arise in 24.3%-26.2% of rebases, and developers
resolve conflicts by introducing new tokens only for 28.3%-
29.4% of conflict rebases. We find that in 34.2% of non-
conflict rebases, developers add new changes during the rebase
process. Based on these results, for developers and researchers,
we provide actionable implications on conflict resolutions
and validating rebases. In future work, we plan to explore
whether potential needs can be integrated into tools that assist
developers’ work on software merging.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China (No. 2017YFB1001802) and the National Natural
Science Foundation of China (Nos. 61672529, 61502015, and
61872445).

REFERENCES

[1] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 322–333.

[2] W. Zou, W. Zhang, X. Xia, R. Holmes, and Z. Chen, “Branch use in
practice: A large-scale empirical study of 2,923 projects on github,”
in 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security (QRS), 2019, pp. 306–317.

[3] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos, “On
omitting commits and committing omissions: Preventing git metadata
tampering that (re)introduces software vulnerabilities,” in 25th USENIX
Security Symposium (USENIX Security 16). Austin, TX: USENIX
Association, Aug. 2016, pp. 379–395.

[4] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, “In-
dicators for merge conflicts in the wild: survey and empirical study,”
Automated Software Engineering, Sep 2017.

[5] G. G. L. Menezes, L. G. P. Murta, M. O. Barros, and A. Van Der Hoek,
“On the nature of merge conflicts: a study of 2,731 open source java
projects hosted by github,” IEEE Transactions on Software Engineering,
pp. 1–1, 2018.

[6] T. Zimmermann, “Mining workspace updates in cvs,” in Fourth In-
ternational Workshop on Mining Software Repositories (MSR’07:ICSE
Workshops 2007), May 2007, pp. 11–11.

[7] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical
Software Engineering, Dec 2017.

[8] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma,
“An empirical examination of the relationship between code smells and
merge conflicts,” in Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 58–67.

[9] R. Yuzuki, H. Hata, and K. Matsumoto, “How we resolve conflict: an
empirical study of method-level conflict resolution,” in Proceedings of
IEEE the 1st International Workshop on Software Analytics, ser. SWAN
’15, vol. 00, March 2015, pp. 21–24.

[10] S. Just, K. Herzig, J. Czerwonka, and B. Murphy, “Switching to
git: The good, the bad, and the ugly,” in Proceedings of the 27th
IEEE International Symposium on Software Reliability Engineering, ser.
ISSRE ’16, Oct 2016, pp. 400–411.

[11] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in Proceedings
of the 6th IEEE International Working Conference on Mining Software
Repositories, ser. MSR ’09, May 2009, pp. 1–10.

[12] T. Mens, “A state-of-the-art survey on software merging,” IEEE trans-
actions on software engineering, vol. 28, no. 5, pp. 449–462, 2002.

[13] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in Proceedings of the 2013 Interna-
tional Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 732–741.

[14] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM,
2011, pp. 168–178.

[15] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the 34th International Conference
on Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE
Press, 2012, pp. 342–352.

[16] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistruc-
tured merge: Rethinking merge in revision control systems,” in Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser. ESEC/FSE
’11. New York, NY, USA: ACM, 2011, pp. 190–200.

[17] N. Niu, F. Yang, J.-R. C. Cheng, and S. Reddivari, “Conflict resolution
support for parallel software development,” IET Software, vol. 7, pp.
1–11(10), February 2013.

[18] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolution
by using fine-grained code change history,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, March 2016, pp. 661–664.

[19] F. Zhu and F. He, “Conflict resolution for structured merge via version
space algebra,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp.
166:1–166:25, Oct. 2018.

[20] X. Xing and K. Maruyama, “Automatic software merging using auto-
mated program repair,” in 2019 IEEE 1st International Workshop on
Intelligent Bug Fixing (IBF), Feb 2019, pp. 11–16.

[21] S. Horwitz, J. Prins, and T. Reps, “Integrating noninterfering versions of
programs,” ACM Transactions on Programming Languages and Systems,
vol. 11, no. 3, pp. 345–387, Jul. 1989.

[22] M. Sousa, I. Dillig, and S. K. Lahiri, “Verified three-way program
merge,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, pp. 165:1–165:29, Oct. 2018.

[23] T. Ji, L. Chen, X. Mao, X. Yi, and J. Jiang, “Automated regression unit
test generation for program merges,” arXiv preprint arXiv:2003.00154,
2020.

[24] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner
perspectives on merge conflicts and resolutions,” in Proceedings of IEEE
International Conference on Software Maintenance and Evolution, ser.
ICSME ’17, Sept 2017, pp. 467–478.

[25] H. L. Nguyen and C.-L. Ignat, “An analysis of merge conflicts and
resolutions in git-based open source projects,” Computer Supported
Cooperative Work (CSCW), May 2018.

[26] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” IEEE
Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743,
Nov 2007.

[27] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in Pro-
ceedings of the 37th International Conference on Software Engineering,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 913–923.

