
Finding Related Events for Specification Mining
Ziying Dai∗, Xiaoguang Mao∗†‡, Liqian Chen∗, Yan Lei∗, Yi Zhang§

∗College of Computer, National University of Defense Technology, Changsha 410073, China
∗Laboratory of Science and Technology on Integrated Logistics Support,

National University of Defense Technology, Changsha 410073, China
§Naval Academy of Armament, Beijing 100036, China
‡Corresponding author, email: xgmao@nudt.edu.cn

Index Terms—Specification mining, Static analysis, Component
interfaces, Related events

I. INTRODUCTION

In contemporary software development practice, program-
mers reuse components by invoking their APIs to construct
large systems. These APIs often involve constraints on the
temporal order of method calls. For the example of the file
usage, a programmer should first open a file, then read and/or
write its content, and at last close it. Trying to read a closed
file will cause exceptions to be thrown. Such constraints are
often represented as a finite state machine (FSM) with a set
of related events (typically method calls) as its alphabet. A
set of events are related if interactions among them possibly
obey some meaningful temporal specifications. In recent years,
various specification mining techniques have been developed
to automatically mine API specifications from API client
programs [1]. A typical API specification miner conceptually
has three steps. First, it decide which events are related.
Second, different interactions among related events (which are
sub-traces and sample strings of the specification FSM) are
extracted either from source code of client programs or from
their execution traces. Third, extracted interactions are passed
to customized or off-the-shelf FSM learners which generalize
these sample sub-traces to recover the specification FSM.

Finding related events is very important for the API spec-
ification mining. On one hand, if not all related events are
considered together, the corresponding specification cannot be
mined. On the other hand, because specification miners are
limited to the set of behaviors (observed behaviors for dynamic
miners) of client programs, grouping unrelated events together
will cause more mining cost (the typical PFSA learner [2]
has the cubic time complexity to the length of the trace) and
produce specifications with poor recall (that is the percentage
of correct behaviors that have been mined). This problem is
more compelling when to mine API specifications of multiple
interacting objects. Multi-object specifications are important
and more expressive than single-object ones in that they can
capture constraints on methods from different objects. The
challenge of mining API specifications of multiple objects
lies in the fact that interactions among different objects are
common and often complex.

In this paper, we propose a static analysis approach to
find related methods of object-oriented components from their

source code. Then a set of events are related if they are calls
of related methods. We first search critical predicates which
a statement is control-dependent on to throw an exception.
These predicates are critical because their values can detect
errors that are typically signaled by throwing exceptions in
object-oriented programs. Then, for each critical predicate, we
find all methods that have this critical predicate or mutate a
variable defining it. These methods relate to each other on the
rationale that unless they access shared variables, their relative
ordering is independent of each other.

II. RELATED WORK

Our approach is semantic-based and can find related events
from multiple interacting objects. It does not directly reason
about critical predicates and they can be arbitrarily complex.
Many existing miners focus on single object specifications
[3][4], which typically consider all events of an object related
[3]. Whaley et al. [4] further divide events of an object into
small groups which consist of calls of methods that refer to the
same field of the object. Other multi-object API specification
miners utilize various heuristics to solve this problem. Various
syntactic scopes are employed such as that related events are
within the execution of a method of the client program [5],
within the execution of a unit test of the target API [2],
within the code of a method of the client program [6], and
within a package [2][5]. Lee et al. [2] further confine related
events to those that share at least one common argument
(parameters, receivers and returns). These approaches often
groups unrelated events together due to the coarse syntactic
scopes and can omit semantically related events due to the
poor quality of used syntactic artifacts (e.g. unit tests [2]).

III. APPROACH TO FIND RELATED EVENTS

We discuss our approach for Java components. It concep-
tually consists of four phases as illustrated in Figure 1. The
input is the source code of target components. The output
are sets of related events. Existing specification miners can
directly use the output to mine better specifications. First, we
perform a pointer and side effect analysis [8]. The pointer
analysis provides aliases information for downstream analysis.
For each method m, the side effect analysis computes the
set Wm of global variables that m mutates. Global variables
of m include m’s parameters (including the receiver this),
m’s return object if it is created by m, and fields reachable

Related Events
Computation

Critical Predicate
Analysis

Pointer and Side
Effect Analysis

Variable
Dependence Anaysis

Source Code Sets of Related
EventsTrace

Specification
Miner

Fig. 1. Overview of our approach (the highlighted part) and its integration
with existing specification miners.

from them. The analysis propagates mutation effects interpro-
cedurally by mapping parameters of the callee to objects in
the calling context. For the code in Figure 2, Witerator =
{return.expectedModCount} with return denoting the returned
object, and Wadd = WAbstractList.〈init〉 = {this.modCount}.

In the second phase, we perform the variable dependence
analysis that determines which global variables are dependent
on by the value of each variable at every program point of
a method m. Our analysis forwardly propagates information
along the control flow edges. At control flow join points,
we merge the incoming sets of global variables for each
variable. For an assignment statement “v = E”, the set of
global variables dependent on by v is updated to the set of
all global variables dependent on by a variable appearing
in E. We say that this set of global variables, denoted as
Dep(E), is dependent on by E. Other statements do not change
the analysis result. We compute a summary Summ of m
by unionizing each set at each exit point of m for every
variable. If m has return values, we also compute a set of
global variables RDm dependent on by the return values. For
each statement “return E”, we determine the predicate P on
which this statement is control-dependent by constructing the
program dependence graph [7] of m. Then RDm includes
all global variables dependent on by E and P . If m has
multiple return statements, the result is the union of the
sets for each return statement. The analysis processes each
method only once and starts from the leaves of the call graph.
To propagate information interprocedurally and use return
values of a called method m, we use Summ and RDm by
mapping parameters of the callee to objects in the calling
context. For example, Dep(modCount != expectedModCount)
= {this.this$0.modCount, this.expectedModCount} with the
field this$0 denoting the outer object of the Itr object (at
the line 12 in Figure 2).

In the third phase, we find critical predicates Pm for each
method m. A critical predicate controls whether an escaped
exception can be thrown. An exception escapes if it is not
caught within the body of m. We first construct the program
dependence graph Gm [7] for m. Then, Pm includes every
predicate in Gm that a statement is control-dependent on to
throw an escaped exception. For the example in Figure 2,
Pnext = Premove = PcheckForComodification = {modCount !=
expectedModCount}. For a method call inside m, we add all
of the critical predicates of the called method to Pm except
for those whose guarded exception cannot escape from m.
Critical predicates here are not path conditions based on the
observations that (1) path conditions are often method-specific;
and (2) a critical state is often detected through a specific

 1 public abstract class AbstractList<E> {
 2 protected transient int modCount = 0;
 3 public Iterator<E> iterator() { return new Itr(); }
 4 public boolean add(E e) { ...; modCount ++; ... }
 5 private class Itr implements Iterator<E> {
 6 int expectedModCount = modCount;
 7 public boolean hasNext() { return cursor != size(); }
 8 public E next() { checkForComodification(); ... }
 9 public void remove() { if (lastRet == ‐1) throw new IllegalStateException();
10 checkForComodification(); ... }
11 final void checkForComodification() {
12 if (modCount != expectedModCount)
13 throw new ConcurrentModificationException(); } ... } ... }

Fig. 2. Code of the java.util.AbstractList and its inner class Itr.

predicate that can be reused among different methods.
The last phase is to compute related events. For each critical

predicate p, the set of related methods Rp includes every
method m with p as its critical predicate, that is, p ∈ Pm;
In addition, Rp includes every method m that mutates one
of the global variables control-dependent on by p, that is,
Wm∩ Dep(p) 6= ∅. In object-oriented programs, it is typical to
signal a state error of a component by throwing an exception.
The predicate control-dependent on by an escaped exception is
critical in that its value is used to detect errors including those
caused by illegal sequences of method invocations. Methods
mutating a global variable v that is control-dependent on by
p are related because they can mutate v’s value so that the
exception guarded by p can be thrown.

We convert a set of related methods corresponding to the
critical predicate p to an event specification [2] by denoting
the same root object of the global variables in Dep(p) with a
unique symbol and keeping the signatures of related methods
attached with parameters and/or return symbols. For the exam-
ple in Figure 2, the event specification for the critical predicate
“modCount != expectedModCount” is {〈init〉(l), add(l),
iterator(l,i), next(i), remove(i)} with l denoting a List
and i denoting its Iterator. The first parameter of a method
denotes its receiver and the second if any denotes its return.
None of existing approaches [2][5][6] can get this result. They
mistakenly group the unrelated event hasNext(i)1 into this
set and omit the related event remove(i).

REFERENCES

[1] M. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. IEEE Transactions on
Software Engineering, (99):1, 2012.

[2] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In ICSE,
2011, pp. 591–600.

[3] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and A. Zeller.
Automatically generating test cases for specification mining. IEEE Trans-
actions on Software Engineering, 38(2):243–257, 2012.

[4] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-
oriented component interfaces. In ISSTA, 2002, pp. 218–228.

[5] M. Pradel and T. R. Gross. Automatic generation of object usage
specifications from large method traces. In ASE, 2009, pp. 371–382.

[6] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi and T.
N. Nguyen. Graph-based mining of multiple object usage patterns. In
ESEC/FSE, 2009, pp. 383–392.

[7] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence
graph and its uses in optimization. ACM Transaction on Programming
Languages and Systems, 9(3):319–349, 1987.

[8] A. Sălcianu and M. Rinard. Purity and Side Effect Analysis for Java
Programs. In VMCAI, 2005, pp. 199–215.

1hasNext(i) is related to next(i) in a sense and they can be grouped
together for another critical predicate “this.cursor >= this.this$0.size”.

