Automated Repair of High Inaccuracies in Numerical Programs

Xin Yi, Liqian Chen, Xiaoguang Mao, Tao Ji
National University of Defense Technology, China

09/22/2017 ICSME 2017
Introduction

- High-inaccuracy bug
 - An input x
 - Real arithmetic output $O_r(x)$ (i.e., mathematical output)
 - Floating-point arithmetic output $O_f(x)$
 - Threshold ε

\[
\left| \frac{O_r(x) - O_f(x)}{O_r(x)} \right| > \varepsilon
\]
Introduction

Rounding error
Introduction

• Hard to debug and fix high-inaccuracy bugs manually
 • Huge search space (input domain)
 • More than $9.0e+15$ floating-point (64 bits) numbers in [1,2]
 • Hard to localize the buggy code
 • Propagation and accumulation of round errors
 • Need of special knowledge on floating-point arithmetic to modify the buggy code
Introduction

Automated repair of numerical program:

Detecting + Localizing + Repairing
High-inaccuracy bugs
Our Approach

Four phases for automated repair

Detecting High-inaccuracy Bugs

Localizing Buggy Code

Generating and Validating Patches

Patch Application and Simplification
Example

double F(double x){
 //assert(-10<x<100);
 double y,d,z;
 z = 0.0;
 if (x > 0.0){
 x = pow(x,5);
 y = x-1.0;
 }
 else{
 d = x*x;
 y = d-1.0;
 }
 while(z < 1e10){
 z = x*x-y*y;
 x = x*2.0+1.0;
 }
 y = y*z;
 return y;
}

Input intervals
• I_1: $[-10.0, 0.0)$
• I_2: $[0.0, 100.0]$
Our Approach

Phase 1: Detecting High-inaccuracy Bugs

• Obtaining (approximate) mathematical output
 • Shadow value execution in higher precision (64bits to 128 bits) (FPDebug) [Benz ’12]

• Detecting algorithm to find negative test cases
 • Locality-Sensitive Genetic Algorithm (LSGA) [Zou ’15]
 • Binary Guided Random Testing (BGRT) [Chiang ’14]
Our Approach

Phase 1: Detecting High-inaccuracy Bugs

• Using FPDebug to approximate the real arithmetic results and Binary Guided Random Testing to search inputs.

Input intervals triggering bugs
• $I_1: x \in [-1.0042, -0.9982]$
• $I_2: x \in [39.5303, 100.0000]$
Our Approach

Phase 2: Localizing buggy code

control flow graph \rightarrow Slices and Blocks

Input intervals triggering bugs
- $I_1: x \in [-1.0042, -0.9982]$
- $I_2: x \in [39.5303, 100.0000]$
Our Approach

Phase 2: Localizing buggy code

• Ranking blocks according to the relative error that each block introduces

Slices and Blocks

Ranking list of Blocks

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b-1</td>
<td>b-2</td>
<td></td>
</tr>
<tr>
<td>b-2</td>
<td>b-3</td>
<td></td>
</tr>
<tr>
<td>b-3</td>
<td>b-1</td>
<td></td>
</tr>
</tbody>
</table>

Our Approach

Phase 2: Localizing buggy code

- Ranking blocks according to the relative error that each block introduces.
Our Approach

Phase 3: Generating and Validating Patches

- Generating patches
 - symbolical calculation
 - mathematically equivalent transformation

\[d = x \times x \]
\[y = d - 1.0 \]

\[d = x \times x \]
\[y = x \times x - 1 \]

\[d = x \times x \]
\[y = (x - 1) \times (x + 1) \]
Our Approach

Phase 3: Generating and Validating Patches

- Validating Patches
- Regression testing

\[\text{Input intervals trigger bugs} \]
- \(I_1: x \in [-1.0042, -0.9982] \)
- \(I_2: x \in [39.5303, 100.0000] \)

\begin{verbatim}
Our Approach
if ((x>= -1.0042) && (x<=-0.9982)){
d = x*x;
y = d-1.0;
}
else{
d = x*x;
y = d-1.0;
}

while(z < 1e10){
z = x*x-y*y;
x = x*2.0+1.0;
}
while(z < 1e10){
z = (x-y)*(x+y);
x = x*2.0+1.0;
}
\end{verbatim}
Our Approach

Phase 4: Patch Application

double F(double x){
 //assert(-10<x<100);
 double y,d,z;
 z = 0.0;
 if (x > 0.0){
 x = pow(x,5);
 y = x-1.0;
 }
 else{
 d = x*x;
 y = d-1.0;
 }
 while(z < 1e10){
 z = x*x-y*y;
 x = x*2.0+1.0;
 }
 y = y*z;
 return y;
}

double F(double x){
 //assert(-10<x<100);
 double y,d,z;
 z = 0.0;
 if (x > 0.0){
 x = pow(x,5);
 y = x-1.0;
 }
 else{
 if ((x>= -1.0042) &&(x<-0.9982)){
 d = x*x;
 y = (x-1.0)*(x+1.0);
 }else{
 d = x*x;
 y = d-1.0;
 }
 }
 if ((x>=35.5303) &&(x<=100)){
 while(z<1e10){
 z = (x-y)*(x+y);
 x = x*2.0+1.0;
 }
 while(z < 1e10){
 z = x*x-y*y;
 x = x*2.0+1.0;
 }
 y = y*z;
 return y;
 }
Our Approach

Phase 4: Patch Simplification

def F(x):
 """
 //assert(-10<x<100);
 double y,d,z;
 z = 0.0;
 if (x > 0.0){
 x = pow(x,5);
 y = x-1.0;
 }
 else{
 d = x*x;
 y = (x-1.0)*(x+1.0);
 }
 while(z < 1e10){
 z = (x-y)*(x+y);
 x = x*2.0+1.0;
 }
 y = y*z;
 return y;
 """
Our Approach

Before repair

Max error > 1e-13

Max error > 8e-7

After repair

Max error < 1e-15

Max error < 1e-15
Experiments

<table>
<thead>
<tr>
<th>Program</th>
<th>Input Domain</th>
<th>Time(s)</th>
<th>Max. Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time for Detecting</td>
<td>Time for Patches</td>
</tr>
<tr>
<td>frac2</td>
<td>(0,1e5]</td>
<td>120.22</td>
<td>5.06</td>
</tr>
<tr>
<td>frac3</td>
<td>(1,200]</td>
<td>75.54</td>
<td>14.87</td>
</tr>
<tr>
<td>sqrt2</td>
<td>(0,1e7]</td>
<td>123.71</td>
<td>5.04</td>
</tr>
<tr>
<td>sqrt2</td>
<td>(0,1e10]</td>
<td>217.94</td>
<td>3.11</td>
</tr>
<tr>
<td>rsqrt</td>
<td>(0,700]</td>
<td>93.76</td>
<td>9.58</td>
</tr>
</tbody>
</table>

Benchmark: 5 programs from FPBench (a benchmark for floating point analysis [Damouche '16])
Conclusion

• Propose a novel approach for automatically detecting, localizing, and repairing high-inaccuracy bugs in numerical programs

• Develop an automated repair prototype tool, evaluate it on several benchmark programs and achieve promising results
Future Work

- Design more efficient detecting algorithm to find negative test cases
- Improve our tool and evaluate it on real-world scientific numerical programs, e.g., the GNU Scientific Library (GSL)
Thank you!