
Under consideration for publication in Formal Aspects of Computing

Enhancing Robustness Verification for Deep
Neural Networks via Symbolic Propagation
Pengfei Yang1,2, Jianlin Li1,2, Jiangchao Liu3, Cheng-Chao Huang4,
Renjue Li1,2, Liqian Chen3, Xiaowei Huang5, and Lijun Zhang1,2,4

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 National University of Defense Technology, Changsha, China
4 Institute of Intelligent Software, Guangzhou, China
5 Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract. Deep neural networks (DNNs) have been shown lack of robustness, as they are vulnerable to small pertur-
bations on the inputs. This has led to safety concerns on applying DNNs to safety-critical domains. Several verification
approaches based on constraint solving have been developed to automatically prove or disprove safety properties for
DNNs. However, these approaches suffer from the scalability problem, i.e., only small DNNs can be handled. To deal
with this, abstraction based approaches have been proposed, but are unfortunately facing the precision problem, i.e., the
obtained bounds are often loose. In this paper, we focus on a variety of local robustness properties and a (δ, ε)-global
robustness property of DNNs, and investigate novel strategies to combine the constraint solving and abstraction-based
approaches to work with these properties:

• We propose a method to verify local robustness, which improves a recent proposal of analyzing DNNs through
the classic abstract interpretation technique, by a novel symbolic propagation technique. Specifically, the values
of neurons are represented symbolically and propagated from the input layer to the output layer, on top of the
underlying abstract domains. It achieves significantly higher precision and thus can prove more properties.

• We propose a Lipschitz constant based verification framework. By utilising Lipschitz constants solved by semidefi-
nite programming, we can prove global robustness of DNNs. We show how the Lipschitz constant can be tightened
if it is restricted to small regions. A tightened Lipschitz constant can be helpful in proving local robustness prop-
erties. Furthermore, a global Lipschitz constant can be used to accelerate batch local robustness verification, and
thus support the verification of global robustness.

• We show how the proposed abstract interpretation and Lipschitz constant based approaches can benefit from each
other to obtain more precise results. Moreover, they can be also exploited and combined to improve constraints
based approach.

We implement our methods in the tool PRODeep, and conduct detailed experimental results on several benchmarks.

Keywords: deep neural network; verification; robustness; abstract interpretation; symbolic propagation; Lipschitz
constant

Correspondence and offprint requests to: Lijun Zhang. E-mail: zhanglj@ios.ac.cn

2 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

1. Introduction

The past few years have witnessed significant progress of deep neural networks (DNNs) in solving long-standing
artificial intelligent tasks, such as nature language processing [HDY+12], image classification [KSH12], and game
playing [SHM+16]. The technical progress has led to broad applications of DNNs to many industrial sectors, including
automotive, health and social care, and digital finance. The performance of these DNNs, when measured with the
prediction precision over a test dataset, is comparable to, or even better than, that of manually crafted software. Not
surprisingly, especially for safety-critical applications, the DNNs should be certified with respect to safety properties.

The robustness property is one of the most important safety properties for DNNs. Intuitively, an input x, whose
classification is the target y, is said to be locally robust, if all neighboring inputs x′ are being classified as y as
well. The L∞-norm is most widely used in characterizing neighbourhood relations, due to its intuitive interpretation
of the constraints for the input. Unfortunately, DNNs have been found lack of robustness. Specifically, [SZS+14]
discovered that it is possible to add a small, or even imperceptible, perturbation to a correctly classified input and make
it misclassified. Such adversarial examples have raised serious concerns on the safety of DNNs. If we consider a self-
driving system controlled by a DNN, a failure on the recognization of a traffic light may lead to serious consequences
because human lives are at stake.

Algorithms used to find adversarial examples are based on gradient descent (see e.g., [SZS+14, CW17]), saliency
maps (see e.g., [PMJ+15]), evolutionary algorithm (see e.g., [NYC15]), etc. Roughly speaking, these are heuristic
search algorithms without the guarantees to find the optimal values, that is to say, the bound on the gap between
an obtained value and its ground truth is unknown. If an adversarial example is found, it demonstrates that the net-
work is not robust at some input x. However, the certification of a robust input x needs provable guarantees. Thus,
techniques based on formal verification have been developed. Up to now, DNN verification includes constraint-solving
[PT10, KBD+17b, LM18, Ehl17, NKR+17, WK18, DSG+18], layer-by-layer exhaustive search [HKWW17, WHK18,
WZC+18], global optimization [RHK18a], and abstract interpretation [GMDC+18, SGPV19b, SGM+18]. Abstract
interpretation is a theory in static analysis which verifies a program by using sound approximation of its semantics
[CC77]. Its basic idea is to use an abstract domain to over-approximate the computation on inputs. In [GMDC+18],
this idea using abstract interpretation was first employed for verifying DNNs. However, abstract interpretation can be
imprecise, due to the non-linearity in DNNs. The paper[SGM+18] implements a faster Zonotope domain for DNN
verification and it can deal with more activation functions like sigmoid. In a later work, [SGPV19b] puts forward a
new abstract domain specially for DNN verification and it is more efficient and precise than Zonotope.

Another useful way to characterize robustness is exploiting the Lipschitz continuity. From the perspective of func-
tions, the Lipschitz constant is a measure of the sensitivity of a function, which indicates the maximum ratio between
variations in the output space and variations in the input space. When viewing the DNN as a function characterizing
it, its Lipschitz constant can be extremely useful in a variety of applications. A technique based on semidefinite pro-
gramming can be used to compute guaranteed upper bounds on the Lipschitz constant of DNNs [FRH+19]. In this
paper, we discuss how it can be used to verify robustness of DNNs. We consider first local robustness based on general
Lp-norms. We discuss how L1 and L2-norms can be encoded as constraints for the inputs. Leveraging a property
of Lipschitz continuous function, we show how to handle robustness properties based on Lp-norms. Moreover, we
consider global robustness properties and establish their connections.

An overview of the contributions of the paper is given in Figure 1, which is detailed below.

• Firstly, this paper proposes a novel symbolic propagation technique to enhance the precision of abstract inter-
pretation based DNN verification. This part is based on our previous paper [LLY+19]. For every neuron, we
symbolically represent, with an expression, how its activation value can be determined by the activation values
of neurons in previous layers. By both illustrative examples and experimental results, we show that, comparing
with using only abstract domains, our new approach can find significantly tighter constraints over the neurons’
activation values.
In Fig. 1, the abstract interpretation is at the center. Because abstract interpretation is a sound approximation,
with tighter constraints, we may feed the constraints to SMT based frameworks, which allow us to handle larger
networks.

• Secondly, we consider global robustness properties, asserting that when two inputs are close (specified by δ), their
values in the output stay also close by (specified by ε). By employing upper bound of Lipschitz constant, we
give two methods for verifying the norm-based robustness properties of DNNs, both of which are proved to be
sound. For local Lp-norm robustness, we present a method to compute the maximum verifiable radius for a certain
input. For global robustness, we also present a method to verify the so-called (δ, ε)-global robustness. Comparing
with abstract interpretation, Lipschitz based methods have complementary advantages. Lipschitz based methods

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 3

Local Robustness

Global Robustness

SMT based

AI based

Lip based

Symb. Propagation

regional slope bounds
regional Lip const

precise

variables’ bounds

efficiency
neurons’ bounds

robustness radius
Local Robustness
for BATCH INPUTS efficiency

radius filter

sound

complete

sound

sound

robustness

Fig. 1. Cooperation among three methods for robustness verification, in which AI, SMT and Lip are abbreviations for
abstract interpretation, satisfiability modulo theories and Lipschtiz respectively.

can handle robustness related to general Lp-norm, where the regions cannot be directly abstracted by polyhedra
(for example the L2-norm). Also, they are more efficient, especially for a batch task with large number of inputs,
because the Lipschitz constant can be reused to compute the maximum verifiable radius through simple arithmetic
operations on the output values for different inputs. In other words, when the Lipschitz constant is obtained, the
methods verify the robustness in a black-box way, regardless of the inner structure of the DNN.

• Thirdly, we further show how to intertwine the three verification methodologies, namely abstract interpretation,
SMT and Lipschitz constant based approaches, to achieve better performance. In Fig. 1, the solid arrows demon-
strate the improvements of the other two methods by invoking DeepSymbol [LLY+19].

– For SMT based methods, DeepSymbol provides the bounds on hidden neurons, which indicate the ranges of the
variables of the SMT problem encoded from a verification problem of local robustness. That will significantly
accelerate the solving procedure (the SMT based DNN verifier Reluplex [KBD+17b]).

– For Lipschitz constant based methods, DeepSymbol provides the bounds of slope restrictions of each activation
functions in DNN, which can be used to compute a tighter upper approximation of the Lipschitz constant for
a given region. The regional Lipschitz constant will be further used to verify the (δ, ε)-global robustness and
leads to more precise results.

The dashed arrows reversely demonstrates the auxiliary role of Lipschitz constant based methods in verifying local
robustness properties.

– When the global Lipschitz constant is obtained, a robustness radius w.r.t. Lp-norm can be computed in an
efficient way for a certain input. So for the batch task of verifying local robustness, it can be used as a filter to
quickly recognize the robustness cases whose regions are covered by their radii. That will often speed up the
verification process.

We have implemented our approaches in the tool PRODeep [LLcH+20], and provided detailed experimental results
on benchmark datasets such as MNIST and DNNs trained for the ACAS Xu system.

Organization of the paper. We provide preliminaries in Section 2. Robustness properties for DNNs are presented in
Section 3. We present an overview of DNN verification methods in Section 4 and present our symbolic propagation
technique in Section 5. In Section 6, we introduce the algorithm which uses semidefinite programming to calculate the
Lipschitz constant of a given DNN and put forward a framework for verifying local and global robustness of DNNs
with the Lipschitz constant. Experimental evaluation is shown in Section 7. Soundness guarantees and related works
are further discussed in Section 8, and Section 9 concludes the paper.

2. Preliminaries

We recall some basic notions on deep neural networks and abstract interpretation. For a vector x̄ ∈ Rn, we use xi to
denote its i-th entry. For a matrix W ∈ Rm×n, Wi,j denotes the entry in its i-th row and j-th column.

4 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

x̄1

x̄2

· · ·

· · ·

x̄m

ȳ1

ȳ2

· · ·

· · ·

ȳn

Hidden
layers

Input
layer

Output
layer

Fig. 2. A fully connected network: Each layer performs the composition of an affine transformation Affine(x̄;W, b)
and the activation function, where the coefficients of the matrixW are recorded on edges between neurons accordingly.

2.1. Deep neural networks

We work with deep feedforward neural networks, or DNNs, which can be represented as a function f : Rm →
Rn, mapping an input x̄ ∈ Rm to its corresponding output ȳ = f(x̄) ∈ Rn. In this work we consider DNNs
for classification tasks. In this case, the output dimensions correspond to classification labels, and usually the label
given by a DNN f is the one with the maximum output, i.e., arg max1≤i≤n f(x̄)i. A DNN has in its structure a
sequence of layers, including an input layer at the beginning, followed by several hidden layers, and an output layer
in the end. Basically the output of a layer is the input of the next layer. To unify the representation, we denote the
activation values at each layer as a vector. Thus the transformation between layers can also be seen as a function in
Rm′ → Rn′ . The DNN f is the composition of the transformations between layers, which is typically composed of an
affine transformation followed by a non-linear activation function. In this paper we mainly consider one of the most
commonly used activation functions – the rectified linear unit (ReLU) activation function, defined as

ReLU(x) = max(x, 0)

for x ∈ R and ReLU(x̄) = (ReLU(x1), . . . ,ReLU(xn)) for x̄ ∈ Rn. Besides ReLU, there are other activation
functions like sigmoid and tanh, defined as

σ(x) =
1

1 + e−x
, tanh(x) =

ex − e−x

ex + e−x
.

Typically an affine transformation is of the form Affine(x̄;W, b) = Wx̄ + b : Rm → Rn, where W ∈ Rn×m and
b ∈ Rn. Mostly in DNNs we use a fully connected layer to describe the composition of an affine transformation
Affine(x̄;W, b) and the activation function, if the coefficient matrix W is not sparse and does not have shared parame-
ters. We call a DNN with only fully connected layers a fully connected neural network (FNN). Fig. 2 gives an intuitive
description of fully connected layers and fully connected networks. Apart from fully connected layers, we also have
affine transformations whose coefficient matrices are sparse and have many shared parameters, like convolutional
layers. Readers can refer to e.g. [GMDC+18] for its formal definition. In our paper, we do not specially deal with
convolutional layers, because they can be regarded as common affine transformations. In the architecture of DNNs, a
convolutional layer is often followed by a non-linear max pooling layer, which takes as an input a three dimensional
vector x̄ ∈ Rm×n×r with two parameters p and q which divide m and n respectively, defined as

MaxPoolp,q(x̄)i,j,k = max{xi′,j′,k | i′ ∈ (p · (i− 1), p · i] ∧ j′ ∈ (q · (j − 1), q · j]}.

We call a DNN with only fully connected, convolutional, and max pooling layers a convolutional neural network
(CNN).

In the rest of the paper, we let the DNN f have N layers, each of which has mk neurons, for 0 ≤ k < N .
Therefore, m0 = m and mN−1 = n.

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 5

x2

x 1

y2

y 1

Box

Zonotope

Polyhedra

f

0 1 2

1

2

0 1 5

1-

3

6

Fig. 3. An illustration of Example 2.1 and Example 4.2, where on the right the dashed lines give the abstraction region
before the ReLU operation and the full lines give the final abstraction f](X]).

2.2. Abstract interpretation

Abstract interpretation is a theory in static analysis which verifies a program by using sound approximation of its
semantics [CC77]. Its basic idea is to use an abstract domain to over-approximate the computation on inputs and
propagate it through the program. In the following, we describe its adaptation to work with DNNs.

Generally, on the input layer, we have a concrete domain C, which includes a set of inputsX as one of its elements.
To enable an efficient computation, we choose an abstract domain A to infer the relation of variables in C. We assume
that there is a partial orderv on C as well asA, which in our settings is the subset relation⊆. We have a concretization
function γ : A → C which assigns each abstract element a ∈ A to its concrete element γ(a) ∈ C, which is the
concrete semantics of the abstract element a. Note that, a ∈ A is a sound abstraction of c ∈ C if and only if c v γ(a).
Intuitively, here soundness guarantees that a sound abstraction is an over-approximation of the concrete element.

In abstract interpretation, it is important to choose a suitable abstract domain because it determines the efficiency
and precision of the abstract interpretation. In practice, we use specific types of constraints to represent the abstract
elements. Geometrically, a certain type of constraints corresponds to a special shape. E.g., the conjunction of a set
of arbitrary linear constraints corresponds to a polyhedron. Abstract domains that are suitable for for verifying DNN
include Box, Zonotope [GGP09, GGP10], and Polyhedra, etc. We briefly recall them and give an example showing
intuitively how these three abstract domains work in the following.

Box. A box B contains bound constraints of the form of a ≤ xi ≤ b. The conjunction of bound constraints expresses
a box in the Euclidean space. The form of the constraint for each dimension is an interval, and thus it is also named
the Interval abstract domain.

Zonotope. A zonotope Z consists of constraints of the form of zi = ai +
∑m
j=1 bijεj , where ai, bij are real constants

and εj is bounded by a constant interval [lj , uj]. The conjunction of these constraints express a center-symmetric
polyhedra in the Euclidean space.

Polyhedra. A Polyhedron P has constraints of the form of linear inequalities, i.e.,
∑n
i=1 aixi + b ≤ 0 and it gives a

closed convex polyhedron in the Euclidean space.

Example 2.1. Let x̄ ∈ R2, and the possible values of x̄ be X = {(1, 0), (0, 2), (1, 2), (2, 1)}. With Box, we can
abstract the inputs X as [0, 2]× [0, 2], and with Zonotope, X can be abstracted as{

x1 = 1− 1

2
ε1 −

1

2
ε3, x2 = 1 +

1

2
ε1 +

1

2
ε2

}
.

where ε1, ε2, ε3 ∈ [−1, 1]. With Polyhedra, X can be abstracted as

{x2 ≤ 2, x2 ≤ −x1 + 3, x2 ≥ x1 − 1, x2 ≥ −2x1 + 2}.

Fig. 3 (the left part) gives an intuitive description for the three abstractions.

6 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

3. Robustness Properties

The problem of verifying DNNs with respect to a robustness property can be stated formally as follows.

Definition 3.1. ([GMDC+18]) Given a function f : Rm → Rn which expresses a DNN, a set of inputs X0 ⊆ Rm,
and a property C ⊆ Rn, verifying the property is to determine whether Tf (X0) ⊆ C holds, where Tf (X0) := {f(x̄) |
x̄ ∈ X0}. We write such a property (f,X0, C).

Verification of robustness properties over DNNs is contained in this problem. In this section we formally introduce
robustness properties in different settings, which are standard in DNN verification.

3.1. Local robustness

For a DNN, local robustness mainly focuses on the consistency of output labels in a neighborhood of a certain input.
Following the Def. 3.1, we obtain the local robustness property by letting X0 be a neighborhood of an input x̄ with
the output label l, and defining C to be the set {ȳ ∈ Rn | arg max1≤i≤n yi = l}. Different ways to define the
neighborhood X0 lead to the following definitions of local robustness.

3.1.1. Box-Based Robustness

Using the intervals of each variables is a basic way to define a robustness region, which is a box (or hyperrectangle).
As its name suggests, we focus on the robustness in the region which is the Cartesian product of constant intervals
containing the given input. Formally, for ᾱ, β̄ ∈ Rm≥0,

NeighborhoodBox(x̄, ᾱ, β̄) = {x̄′ ∈ Rm | x̄i − ᾱi ≤ x̄′i ≤ x̄i + β̄i, 1 ≤ i ≤ m}.

In addition to giving the bounds of each variables in an explicit way, many other classes of neighborhoods of an input
can be reduced to a box.

L∞-norm By bounding the L∞-norm, the region named L∞ ball can be defined as B∞(x̄, r) = {x̄′ ∈ Rn | ‖x̄′ −
x̄‖∞ ≤ r}. The L∞ norm is most widely used to characterise norm-based robustness for the following reasons. First,
an L∞ ball is a box region intuitively, which can be precisely represented by the box domain, so all the tools mentioned
in this paper can deal with such input constraints. Also, the L∞ based robustness usually has an explicit meaning in
DNN models. For example, in image recognition, the L∞ based robustness gives a upper bound of the disturbance
on all the pixels, but other Lp-norms, like the L2-norm, are not so intuitive in this setting. Last but not least, the L∞
based robustness is stronger than Lp based robustness, since it is a standard result that ‖x̄‖∞ ≤ ‖x̄‖p for any x̄.

Brightness robustness In image recognition, brightness attack is a common way of attacking DNNs: It allows pixels
with brightness greater than 1− δ to become brighter. Formally, the robustness region of this brightness attack is

NeighborhoodBrightness(x̄, δ) = {x̄′ ∈ Rm | ∀i, 1− δ ≤ x̄i ≤ x̄′i ≤ 1 ∨ x̄i = x̄′i}.

Brightness attack also describes a box region of the input layer (but not an L∞ ball), so SMT based and abstract
interpretation based methods can both deal with it precisely.

3.1.2. Norm-Based Robustness

A typical way to define neighbourhood of an input is to use norm distance, especially the Lp-norm. Many attacking
approaches make perturbation based on some Lp-norm to generate adversarial examples [MMS+18, SRBB19, TB19],
and [NWL19] proposes a method to defend from attacks based on Lp-norms.

Formally the Lp-norm on Rn is a function ‖ · ‖p : Rn → [0,∞) which assigns a point x̄ ∈ Rn to a non-negative
value, and we can use ‖x̄ − x̄′‖p to characterize the Lp distance between x̄ and x̄′. For 1 ≤ p < ∞, the Lp-norm is
defined as

‖x̄‖p =

(
n∑
i=1

|xi|p
) 1
p

,

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 7

x2

x 10 1

L

L

L

1

2

∞

Fig. 4. The boundaries of unit L1, L2 and L∞ balls in R2.

and the L∞ norm as mentioned above can be regarded as the Lp-norm with p tending to infinity, and it can be explicitly
expressed as

‖x̄‖∞ = max
1≤i≤n

|xi|.

As the case of the L∞ ball, the neighbourhood of an input x̄ bounded by the Lp-norm can be described as an Lp ball:
The Lp (closed) ball with the center x̄ ∈ Rn and the radius r > 0 is defined as

Bp(x̄, r) = {x̄′ ∈ Rn | ‖x̄′ − x̄‖p ≤ r}.

Fig. 4 gives the boundaries of the unit L1, L2 and L∞ balls in R2. As is shown in Fig. 4, except for L∞ norm, the
robustness region defined by Lp-norm cannot be abstracted to a box precisely in general.

General Lp-norm For 1 < p < ∞, the constraints of an Lp ball is no longer linear, and they can not be encoded
precisely by the tools mentioned in this paper, like SMT-based tools (Reluplex, Planet, etc.), and abstract interpretation
based tools (ERAN, DeepSymbol, etc.). Although the L∞ based robustness implies Lp based robustness, it may result
in a big loss of precision: For instance, the Lebesgue measure of B∞(0, 1) is n! times that of B1(0, 1) in Rn, so
B∞(0, 1) may not be a good abstraction of B1(0, 1).

Up to now, there have been a few approaches to dealing with general Lp based robustness, and they are based on
the Lipschitz continuity of the network. A function f : Rm → Rn is Lipschitz continuous, if there exists L > 0, s.t.
for any x̄, x̄′ ∈ Rm,

‖f(x̄)− f(x̄′)‖2 ≤ L · ‖x̄− x̄′‖2.

Here we can get an over-approximation of the output range of a Lipschitz continuous function on an L2 ball if we
know its Lipschitz constant L. Also, by using the inequality ‖x̄‖p ≤ n

1
p−

1
q ‖x̄‖q , where x̄ ∈ Rn, we can obtain the

output range with any Lp-norm on the input and the output layers as

m−(1
p−

1
2)‖f(y)− f(x)‖p ≤ ‖f(y)− f(x)‖2 ≤ L‖y − x‖2 ≤ n

1
2−

1
qL‖y − x‖q, (1)

where n and m are the dimension of the input layer and the output layer, respectively. In [RHK18b], it is proved that
deep neural networks are Lipschitz continuous, and the authors provide an algorithm to calculate a Lipschitz constant
of a given DNN. A more efficient and accurate algorithm for calculating a Lipschitz constant of a DNN is proposed
in [FRH+19], where the authors pose the Lipschitz estimation problem as semidefinite programming (SDP). Finally,
Fast-Lip [WZC+18] is an algorithm to over-approximate the output range of a given DNN on an Lp ball using its
Lipschitz constant. These Lipschitz continuity based methods can help verify general Lp based robustness, and they

8 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

δ

x2

x 1

f
ε

ε

F (N, x, l)2

 F (N, x, l)1

Fig. 5. (δ, ε)-global robustness: the absolute differences of outputs are bounded by ε when the distances between the
inputs are bounded by δ through the L2-norm. Here F (N, x̄, l) is the value of the output node indicating the label
l ∈ L for a given DNN N with an input x̄.

can work on DNNs with most activation functions including ReLU. The disadvantage of such methods is the low
precision since the use of the Lipschitz constant is even further from the precise reachability; it characterises the
behaviour of a DNN by an upper bound of the local change rate.

3.2. Global robustness

For a DNN, global robustness focuses on the global behavior of all inputs in a certain region. Specifically, the (δ, ε)-
global robustness constrains the absolute differences between each coordinates of outputs by the norm distances of
pairs inputs (see Fig. 5). In [KBD+17a], the (δ, ε)-global robustness was defined as below.

Definition 3.2 (Def. 2 of [KBD+17a]). A DNN f is (δ, ε)-globally robust in the input region D if

∀x̄, x̄′ ∈ D, ||x̄− x̄′||2 ≤ δ ⇒ ‖f(x)− f(x′)‖∞ < ε.

Fig. 5 gives an intuitive explanation of global robustness.
Although global robustness does not necessarily imply a corresponding local robustness property, yet they still

have a close relationship in that global robustness actually gives a valid Lipschitz constant, which is helpful in local
robustness verification. Compared with local robustness, a global robustness property is generally more difficult to
verify, because it is often difficult to consider the whole high dimensional input space.

4. Methods for Verifying Local Robustness

In this section, we review two main classes of techniques for verifying local robustness properties. First, we recall con-
straint based DNN verification algorithms based on SMT solvers. Then, we describe how to use abstract interpretation
to verify DNNs.

4.1. SMT based methods

In [KBD+17b, Ehl17], two SMT solvers Reluplex and Planet were presented to verify DNNs. Typically an SMT
solver is the combination of a SAT solver with the specialized decision procedures for other theories. The verification
of DNNs uses linear arithmetic over real numbers, in which an atom may have the form of

∑n
i=1 wixi ≤ b, where wi

and b are real numbers. Both Reluplex and Planet use the DPLL algorithm to split cases and rule out conflict clauses.
They are different in dealing with the intersection. For Reluplex, it inherits rules from the Simplex algorithm and adds
a few rules dedicated to ReLU operation. Through the classical pivot operation, it searches for a solution to the linear
constraints, and then applies the rules for ReLU to ensure the ReLU relation for every node. Differently, Planet uses
linear approximation to over-approximate the DNN, and manages the conditions of ReLU and max pooling nodes
with logical formulas.

The following example shows that how we encode a DNN verification problem into an SMT problem.

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 9

Example 4.1. Consider the toy network f(x̄) = ReLU

((
1 2
1 −1

)
x̄+

(
0
1

))
. Basically we write all the transfor-

mations in the networks, namely y1 = x1 + 2x2, y2 = x1 − x2 + 1, z1 = ReLU(y1), and z2 = ReLU(y2). In order
to verify a property (f,X,C), we only need to put the constraints above, along with the constraints of X and the
negation of C as the input to the SMT solver. If the SMT solver returns SAT, then we have found a counterexample to
violate the property, or otherwise the property is successfully verified.

Up to now, the state-of-art SMT based tools include Reluplex, Planet, and Marabou, and they support only piece-
wise linear activation functions, and linear constraints for input and output. SMT-based methods are theoretically
sound and complete, but their time complexity is proved to be NP-complete, so they do not scale on large networks.

4.2. Abstract interpretation based methods

Under the framework of abstract interpretation, to conduct verification of DNNs, we first need to choose an abstract
domain A. Then we represent the set of inputs of a DNN as an abstract element (value) X]

0 in A. After that, we pass
it through the DNN layers by applying abstract transformers of the abstract domain. Recall that N is the number of
layers in a DNN and mk is the number of nodes in the k-th layer. Let fk (where 1 ≤ k < N) be the layer function
mapping from Rmk−1 to Rmk . We can lift fk to Tfk : P(Rmk−1)→ P(Rmk) such that Tfk(X) = {fk(x̄) | x̄ ∈ X}.

Definition 4.1. An abstract transformer T]fk is a function mapping an abstract element X]
k−1 in the abstract domain

A to another abstract element X]
k. Moreover, T]fk is sound if Tfk ◦ γ ⊆ γ ◦ T

]
fk

.

Intuitively, a sound abstract transformer T]fk maintains a sound relation between the abstract post-state and the
abstract pre-state of a transformer in DNN (such as linear transformation, ReLU operation, etc.).

Let Xk = fk(...(f1(X0))) be the exact set of resulting vectors in Rmk (i.e., the k-th layer) computed over the
concrete inputsX0, andX]

k = Tfk
](...(Tf1

](X]
0))) be the corresponding abstract value of the k-th layer when using

an abstract domain A. Note that X0 ⊆ γ(X]
0). We have the following conclusion.

Proposition 4.1. If Xk−1 ⊆ γ(X]
k−1), then we have Xk ⊆ γ(X]

k) = γ ◦ T]fk(X]
k−1).

Proof. Because T]fk is a sound abstract transformer, we have

Xk = Tf (Xk−1) ⊆ Tf (γ(X]
k−1)) ⊆ γ ◦ T]fk(γ(X]

k−1)) = γ(X]
k).

Therefore, when performing abstract interpretation over the transformations in a DNN, the abstract pre-state
X]

k−1 is transformed into abstract post-state X]
k by applying the abstract transformer T]fk which is built on top

of an abstract domain. This procedure starts from k = 1 and continues until reaching the output layer (and getting
X]

N−1). Finally, we use X]
N−1 to check the property C as follows:

γ(X]
N−1) ⊆ C. (2)

The following theorem states that this verification procedure based on abstract interpretation is sound for the DNN
verification problem.

Theorem 4.1. If Equation (2) holds, then Tf (X0) ⊆ C.

Proof. By induction on N , it is easy to see that Tf (X0) ⊆ γ(X]
N−1), so Equation (2) implies Tf (X0) ⊆ C.

It’s not hard to see that the other direction does not necessarily hold due to the potential incompleteness caused by
the over-approximation made in both the abstract elements and the abstract transformers T]fk in an abstract domain.

Example 4.2. Suppose that x̄ takes the value in X given in Example 2.1, and we consider the transformation f(x̄) =

ReLU

((
1 2
1 −1

)
x̄+

(
0
1

))
. Now we use the three abstract domains to calculate the resulting abstraction.

• Box. The abstraction after the affine transformation is [0, 6]× [−1, 3], and thus the final result is [0, 6]× [0, 3].

10 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

• Zonotope. After the affine transformation, the zonotope abstraction can be obtained straightforward:{
y1 = 3 +

1

2
ε1 + ε2 −

1

2
ε3, y2 = 1− ε1 −

1

2
ε2 −

1

2
ε3 | ε1, ε2, ε3 ∈ [−1, 1]

}
.

The first dimension y1 is definitely positive, so it remains the same after the ReLU operation. The second di-
mension y2 can be either negative or non-negative, so its abstraction after ReLU will become a box which only
preserves the range in the non-negative part, i.e. [0, 3], so the final abstraction is{

y1 = 3 +
1

2
ε1 + ε2 −

1

2
ε3, y2 =

3

2
+

3

2
η1 | ε1, ε2, ε3, η1 ∈ [−1, 1]

}
,

whose concretization is [1, 5]× [0, 3].
• Polyhedra. It is easy to obtain the polyhedron before ReLU: P1 = {y2 ≤ 2, y2 ≥ −y1 + 3, y2 ≥ y1 − 5, y2 ≤
−2y1 + 10}. Similarly, the first dimension is definitely positive, and the second dimension can be either negative
or non-negative, so the resulting abstraction is (P1∧(y2 ≥ 0))∨(P1∧(y2 = 0)), i.e. {y2 ≤ 2, y2 ≥ −y1 +3, y2 ≥
0, y2 ≤ −2y1 + 10}.

Fig. 3 (the right part) gives an illustration for the abstract interpretation with the three abstract domains in this example.

The abstract value computed via abstract interpretation can be directly used to verify properties. Take the local
robustness property, which expresses an invariance on the classification of f over a regionB(x̄0, δ), as an example. Let
li(x̄) be the confidence of x̄ being labeled as i, and l(x̄) = argmaxili(x̄) be the label. It has been shown in [SZS+14,
RHK18a] that DNNs are Lipschitz continuous. Therefore, when δ is small, we have that |li(x̄)−li(x̄0)| is also small for
all labels i. That is, if li(x̄0) is significantly greater than lj(x̄0) for j 6= i, it is highly likely that li(x̄) is also significantly
greater than lj(x̄). It is not hard to see that the more precise the relations among li(x̄0), li(x̄), lj(x̄0), lj(x̄) computed
via abstract interpretation, the more likely we can prove the robustness. Based on this rational, this paper aims to derive
techniques to enhance the precision of abstract interpretation such that it can prove properties that cannot be proven
by the original abstract interpretation approach.

5. Optimisations by Symbolic Propagation

To improve the effectiveness and the efficiency of robustness verification by abstract interpretation, we introduce
symbolic propagation to take advantage of the linearity in most part of the DNNs. Comparing with traditional abstract
interpretation based methods, this method will significantly improve in terms of the precision and memory usage.
Futhermore, by providing neurons’ bounds computed by our method, it is possible to accelerate the verification of
SMT-based methods.

5.1. DeepSymbol: Symbolic propagation for DNN abstract interpretation

Symbolic propagation can ensure soundness while providing more precise results. In [WPW+18], a technique called
symbolic interval propagation is present and we extend it to our abstract interpretation framework so that it works
on all abstract domains. First, we use the following example to show that using only abstract transformations in an
abstract domain may lead to precision loss, while using symbolic propagation could enhance the precision.

Example 5.1. Assume that we have a two-dimensional input (x1, x2) ∈ [0, 1] × [0, 1] and a few transformations
y1 := x1+x2, y2 := x1−x2, and z := y1+y2. Suppose we use the Box abstract domain to analyze the transformations.

• When using only the Box abstract domain, we have y1 ∈ [0, 2], y2 ∈ [−1, 1], and thus z ∈ [−1, 3] (i.e., [0, 2] +
[−1, 1]).

• By symbolic propagation, we record y1 = x1 + x2 and y2 = x1 − x2 on the neurons y1 and y2 respectively, and
then get z = 2x1 ∈ [0, 2]. This result is more precise than that given by using only the Box abstract domain.

Non-relational (e.g., intervals) and weakly-relational abstract domains (e.g., zones, octagons, zonotopes, etc.)[Min17]
may lose precision on the application of the transformations from DNNs. The transformations include affine transfor-
mations, ReLU, and max pooling operations. Moreover, it is often the case for weakly-relational abstract domains
that the composition of the optimal abstract transformers of individual statements in a sequence does not result in the

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 11

optimal abstract transformer for the whole sequence, which has been shown in Example 3 when using only the Box
abstract domain. An option to precisely handle general linear transformations is to use the Polyhedra abstract domain
which uses a conjunction of linear constraints as domain representation. However, the Polyhedra domain has worst-
case exponential space and time complexity when handling the ReLU operation (via the join operation in the abstract
domain). As a consequence, DNN verification with the Polyhedra domain is impractical for large scale DNNs, which
has been also confirmed in [GMDC+18].

In this paper, we leverage symbolic propagation technique to enhance the precision for abstract interpretation based
DNN verification. The insight behind is that affine transformations account for a large portion of the transformations
in a DNN. Furthermore, when we verify properties such as robustness, the activation of a neuron can often be deter-
ministic for inputs around an input with small perturbation. Hence, there should be a large number of linear equality
relations that can be derived from the composition of a sequence of linear transformations via symbolic propagation.
And we can use such linear equality relations to improve the precision of the results given by the abstract domains.
In Section 7, our experimental results confirm that, when the perturbation tolerance δ is small, there is a significant
proportion of neurons whose ReLU activations are consistent, i.e., they are always activated or deactivated.

First, given X0, a ReLU neuron y := ReLU(
∑n
i=1 wixi +b) can be classified into one of the following 3 cate-

gories (according to its range information): (1) definitely-activated, if the range of
∑n
i=1 wixi+b is a subset of [0,∞),

(2) definitely-deactivated, if the range of
∑n
i=1 wixi + b is a subset of (−∞, 0], and (3) uncertain, otherwise.

Now we detail our symbolic propagation technique. We first introduce a symbolic variable si for each node i in
the input layer, to denote the initial value of that node. For a ReLU neuron d := ReLU(

∑n
i=1 wici + b) where ci is a

symbolic variable, we make use of the resulting abstract value of abstract domain at this node to determine whether the
value of this node is definitely greater than 0 or definitely less than 0. If it is a definitely-activated neuron, we record
for this neuron the linear combination

∑n
i=1 wici + b as its symbolic representation (i.e., the value of symbolic prop-

agation). If it is a definitely-deactivated neuron, we record for this neuron the value 0 as its symbolic representation.
Otherwise, we cannot have a linear combination as the symbolic representation and thus a fresh symbolic variable sd is
introduced to denote the output of this ReLU neuron. We also record the bounds for sd, such that the lower bound for
sd is set to 0 (since the output of a ReLU neuron is always non-negative) and the upper bound keeps the one obtained
by abstract interpretation.

To formalize the algorithm for ReLU node, we first define the abstract states in the analysis and three transfer
functions for linear assignments, condition tests and joins respectively. An abstract state in our analysis is composed
of:

• an abstract element for a numeric domain (e.g., Box) n] ∈ N],

• a set of free symbolic variables C (those not equal to any linear expressions),

• a set of constrained symbolic variables S (those equal to a certain linear expression), and

• a map from constrained symbolic variables to linear expressions ξ ::= S→ {
∑n
i=1 aixi + b | xi ∈ C}. Note that

we only allow free variables in the linear expressions in ξ.

In Algorithm 1, we show how to compute the transfer functions for linear assignments [[y :=
∑n
i=1 wixi + b]]]

which over-approximates the behaviors of y :=
∑n
i=1 wixi + b. In the beginning, all input variables are taken as free

symbolic variables. If n > 0 (i.e., the right value expression is not a constant), the variable y is added to the constrained
variable set S. All constrained variables in

∑n
i=1 wixi + b are replaced by their corresponding expressions in ξ, with

the resulting expression denoted by expr. Then, the map from y to the new expr is recorded in ξ. Abstract numeric
element n] is updated by the transfer function for assignments in the numeric domain [[y := expr]]]

N] (note that we
use [[·]]]

N] to denote the transfer function in the numeric domain N]). If n ≤ 0, the right-value expression is a constant,
then y is added to C, and is removed from S and ξ.

The abstract transfer function for conditional test is defined as

[[expr ≤ 0]]](n],C,S, ξ) ::= [[expr ≤ 0]]]
N](n

],C,S, ξ),

which only updates the abstract element n] by the transfer function in the numeric domain N].
The join algorithm in our analysis is defined in Algorithm 2. Only the constrained variables arising in both input

S0 and S1 with the same corresponding linear expressions are taken as constrained variables. The abstract element in
the result is obtained by applying the join operator in the numeric domain tN] .

12 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

Algorithm 1: Transfer function for linear assignments [[y :=
∑n
i=1 wixi + b]]]

Input: abstract numeric element n] ∈ N], free variables C, constrained variables S, symbolic map ξ
1 expr←

∑n
i=1 wixi + b

2 When the right value expression is not a constant
3 if n > 0 then
4 for i ∈ [1, n] do
5 if xi ∈ S then
6 expr = expr|xi←ξ(xi)
7 end
8 end
9 ξ = ξ ∪ {y 7→ expr} S = S ∪ {y} C = C \ {y} n] = [[y := expr]]]

N]

10 else
11 ξ = ξ \ (y 7→ ∗) C = C ∪ {y} S = S \ {y} n] = [[y := expr]]]

N]

12 end
13 return (n],C,S, ξ)

The transfer function for a ReLU node is defined as

[[y := ReLU(

n∑
i=1

wixi + b)]]](n],C,S, ξ) ::= join([[y ≥ 0]]](ψ), [[y := 0]]]([[y < 0]]])(ψ)),

where ψ = [[y :=
∑n
i=1 wixi + b]]](n],C,S, ξ). For y ≥ 0, the output of a ReLU node is the same as the input, and

for y < 0, it outputs 0, so the transformer outputs the join of these two cases.

Algorithm 2: Join algorithm join

Input: (n]0,C0,S0, ξ0) and (n]1,C1,S1, ξ1)

1 n] = n]0 tN] n]1
2 ξ = ξ0 ∩ ξ1
3 S = {x | ∃expr, x→ expr ∈ ξ}
4 C = C0 ∪ (S0 \ S)

5 return (n],C,S, ξ)

For a max pooling node d := max1≤i≤k ci, if there exists some cj whose lower bound is larger than the upper
bound of ci for all i 6= j, we set cj as the symbolic representation for d. Otherwise, we introduce a fresh symbolic
variable sd for d and record its bounds wherein its lower (upper) bound is the maximum of the lower (upper) bounds
of ci’s. Note that the lower (upper) bound of each ci can be derived from the abstract value for this neuron given by
the abstract domain.

The algorithm for max-pooling layers can be defined with the three aforementioned transfer functions as follows:

join(φ1, join(φ2, . . . , join(φk−1, φk))),
where φi = [[d := ci]]

][[ci ≥ c1]]] . . . [[ci ≥ ck]]](n],C,S, ξ).

Here φi represents the case that the variable ci is the maximum, and the abstract transformer outputs the join of all
possible cases φi.

Example 5.2. For the DNN shown in Figure 6 (a), there are two input nodes denoted by symbolic variables x and
y, two hidden nodes, and one output node. The initial ranges of the input symbolic variables x and y are given, i.e.,
[4, 6] and [3, 4] respectively. The weights are labeled on the edges. It is not hard to see that, when using the Interval
abstract domain, (the inputs of) the two hidden nodes have bounds [17, 24] and [0, 3] respectively. For the hidden node
with [17, 24], we know that this ReLU node is definitely activated, and thus we use symbolic propagation to get a
symbolic expression 2x + 3y to symbolically represent the output value of this node. Similarly, for the hidden node
with [0, 3], we get a symbolic expression x − y. Then for the output node, symbolic propagation results in x + 4y,

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 13

Input #1

Input #2

Output

2

1

3

-1

1

-1

x

[4,6] 2x + 3y

[17,24]

[17,24]

x + 4y

[16,22]

y

[3,4]
x − y
[0,3]

[0,3]

Hidden
layer

Input
layer

Output
layer

Input #1

Input #2

Output

2

1

3

-1

1

-1

x

[4,6] 2x + 3y

[21.5,27]

[21.5,27]

2x + 3y − s
[20,27]

y

[4.5,5]
s

[0,1.5]

[-1,1.5]

Hidden
layer

Input
layer

Output
layer

(a) (b)

Fig. 6. An illustrative example of symbolic propagation

which implies that the output range of the whole DNN is [16, 22]. If we use only the Interval abstract domain without
symbolic propagation, we will get the output range [14, 24], which is less precise than [16, 22].

For the DNN shown in Figure 6 (b), we change the initial range of the input variable y to be [4.5, 5]. For the
hidden ReLU node with [−1, 1.5], it is neither definitely activated nor definitely deactivated, and thus we introduce a
fresh symbolic variable s to denote the output of this node, and set its bound to [0, 1.5]. For the output node, symbolic
propagation results in 2x+ 3y − s, which implies that the output range of the whole DNN is [20, 27].

For a definitely-activated neuron, we utilize its symbolic representation to enhance the precision of abstract do-
mains. We add the linear constraint d ==

∑n
i=1 wici+b into the abstract value at (the input of) this node, via the meet

operation (which is used to deal with conditional test in a program) in the abstract domain [CC77]. If the precision of
the abstract value for the current neuron is improved, we may find more definitely-activated neurons in the subsequent
layers. In other words, the analysis based on abstract domain and our symbolic propagation mutually improves the
precision of each other on-the-fly.

After obtaining symbolic representation for all the neurons in a layer k, the computation proceeds to layer k + 1.
The computation terminates after completing the computation for the output layer. All symbolic representations in the
output layer are evaluated to obtain value bounds.

The following theorem shows some results on precision of our symbolic propagation technique.

Theorem 5.1. In the following, Zonotope all refers to [GGP09, GGP10], whose implementation is included in Apron.
(1) For an FNN f : Rm → Rn and a box region X ⊆ Rm, the Box abstract domain with symbolic propagation

gives a more precise abstraction for f(X) than the Zonotope abstract domain without symbolic propagation.
(2) For an FNN f : Rm → Rn and a box region X ⊆ Rm, the Box abstract domain with symbolic propagation

and the Zonotope abstract domain with symbolic propagation give the same abstraction for f(X).
(3) There exists a CNN g : Rm → Rn and a box region X ⊆ Rm s.t. the Zonotope abstract domain with symbolic

propagation give a more precise abstraction for g(X) than the Box abstract domain with symbolic propagation.

Proof. (1) Since an FNN only contains fully connected layers, we just need to prove that, Box with symbolic prop-
agation (i.e., BoxSymb) is always more precise than Zonotope in the transformations on each ReLU neuron y :=
ReLU(

∑n
i=1 wixi +b). Assume that before the transformation, BoxSymb is more precise or as precise as Zonotope.

Since the input is a Box region, the assumption is valid in the beginning. Then we consider three cases: (a) in BoxSymb,
the sign of

∑n
i=1 wixi+b is uncertain, then it must also be uncertain in Zonotope. In both domains, a constant interval

with upper bound computed by
∑n
i=1 wixi + b and lower bound as 0 is assigned to y (this can be inferred from our

aforementioned algorithms and [GGP09]). With our assumption, the upper bound computed by BoxSymb is more
precise than that in Zonotope; (b) in BoxSymb, the sign of

∑n
i=1 wixi + b is always positive, then it must be always

positive or uncertain in Zonotope. In the former condition, BoxSymb is more precise because it loses no precision,
while Zonotope can lose precision because of its limited expressiveness. In the latter condition, BoxSymb is more

14 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

precise obviously; (c) in BoxSymb, the sign of
∑n
i=1 wixi + b is always negative, then it must be always negative or

uncertain in Zonotope. Similar to case (b), BoxSymb is also more precise in this case.
(2) Assume that before each transformation on a ReLU neuron y := ReLU(

∑n
i=1 wixi +b), BoxSymb and

ZonoSymb (Zonotope with symbolic propagation) have the same precision. This assumption is valid when the input
is a Box region. Then the evaluation of

∑n
i=1 wixi + b is the same in BoxSymb and ZonoSymb, thus in the three

cases:(a) the sign of
∑n
i=1 wixi + b is uncertain, and they both compute the same constant interval for y; (b) and (c)∑n

i=1 wixi + b is always positive or negative, and they both lose no precision.
(3) It is easy to know that ZonoSymb is more precise or as precise as BoxSymb in all transformations. In CNN,

with Max-Pooling layer, we just need to give an example that ZonoSymb can be more precise. Let the Zonotope
X ′ = {x1 = 2+ε1 +ε2, x2 = 2+ε1−ε2 | ε1, ε2 ∈ [−1, 1]} and the max pooling node y = max{x1, x2}. Obviously
X ′ can be obtained through a linear transformation on some box region X . With Box with symbolic propagation, the
abstraction of y is [0, 4], while Zonotope with symbolic propagation gives the abstraction is [1, 4].

Thm 5.1 gives us some insights: The symbolic propagation technique is strong (even stronger than Zonotope) in
dealing with ReLU nodes, while Zonotope gives a more precise abstraction on max pooling nodes. It also provides
useful advice: When we work with FNNs with the input range being a box, we should use Box with symbolic prop-
agation rather than Zonotope with symbolic propagation since it does not improve the precision but takes more time.
Results related to Thm 5.1 are also illustrated in our experiments.

5.2. Accelerating SMT-based verification

Now we describe how to utilize the results of abstract interpretation with our symbolic propagation to improve the
performance of SMT-based DNN verification approaches.

Generally speaking, there is a huge bottleneck in efficiency of SMT-based DNN verification approaches, e.g., rely-
ing on case splitting for ReLU operation. In the worst case, case splitting is needed for each ReLU operation in a DNN,
which leads to an exponential blow-up. In particular, when analyzing large-scale DNNs, SMT-based DNN verification
approaches may suffer from the scalability problem and account time out, which is also confirmed experimentally in
[GMDC+18].

In this paper, we utilize the results of abstract interpretation (with symbolic propagation) to accelerate SMT-based
DNN verification approaches. More specifically, we use the bound information of each ReLU node (obtained by
abstract interpretation) to reduce the number of case-splitting, and thus accelerate SMT-based DNN verification. For
example, on a neuron d := ReLU(

∑n
i=1 wici + b), if we know that this node is a definitely-activated node according

to the bounds given by abstract interpretation, we only consider the case d :=
∑n
i=1 wici + b and thus no split is

applied. We remark that this does not compromise the precision of SMT-based DNN verification while improving
their efficiency.

6. Lipschitz Constant Based Method

The Lipschitz constant of a DNN measures the maximum ratio between variations in the output space and variations
in the input space, which can be useful in DNN verification, especially when the properties are related to general
Lp-norms with 1 < p <∞, whose regions cannot be expressed by linear constraints.

In this section we give a Lipschitz constant based method (Lip. method for short) for robustness verification. We
first need to obtain the Lipschitz constant of the DNN. The problem of computing an upper approximation of the
Lipschitz constant can be encoded into an SDP problem, which can be solved effectively by optimization.

For verifying the local robustness properties related to Lp-norm, we present a method to compute a lower approxi-
mation of the maximum robustness radius. In what follows, we also call it maximum verifiable radius. We also present
a method to verify the (δ, ε)-global robustness of a DNN in a given region.

6.1. Approximating from above the Lipschitz constant by SDP

In this section we briefly review an algorithm to compute the Lipschitz constant of a given DNN proposed by Fazlyab
et al. [FRH+19]. Basically, this algorithm encodes the condition of Lipschitz continuity as semi-positive definiteness of
a matrix, and the calculation of the tight Lipschitz constant is reduced to a semidefinite programming (SDP) problem.

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 15

The difficulty of calculating the Lipschitz constant of a DNN is the non-linear activation functions, where we
usually have the form φ(x̄) = (ϕ(x1), . . . , ϕ(xn))> of repeated non-linearity, where ϕ : R → R is the activation
function like ReLU, sigmoid, tanh, etc. Here we require that the function ϕ should be increasing. The Lipschitz
continuity of a DNN relies on the slope restriction of the activation function involved, defined as:

Definition 6.1. A function ϕ : R→ R is slope-restricted on the interval [α, β], if for any x, y ∈ R satisfying x 6= y,

α ≤ ϕ(y)− ϕ(x)

y − x
≤ β.

The activation functions mentioned above are all slope-restricted: Especially, ReLU, tanh, and max pooling are all
slope-restricted on [0, 1], and sigmoid is slope-restricted on [0, 0.25]. When we have an activation function ϕ which is
slope-restricted on [α, β], then the function φ(x̄) = (ϕ(x1), . . . , ϕ(xn))> satisfies the following incremental quadratic
constraint:

Lemma 6.1. ([FRH+19]) Suppose ϕ : R→ R is slope-restricted on [α, β]. Define

Tn = {T ∈ Sn | T =

n∑
i=1

λiieie
>
i +

∑
1≤i<j≤n

λij(ei − ej)(ei − ej)>, λij ≥ 0},

where Sn is the set of symmetric matrices in Rn×n, and ei ∈ Rn is the vector in which the i-th entry is 1 and the
others 0. Then for any T ∈ Tn, the function φ(x̄) = (ϕ(x1) · · · ϕ(xn))> : Rn → Rn satisfies(

x̄− ȳ
φ(x̄)− φ(ȳ)

)>(−2αβT (α+ β)T
(α+ β)T −2T

)(
x̄− ȳ

φ(x̄)− φ(ȳ)

)
≥ 0.

Lemma 6.1 provides a connection between Lipschitz continuity and semidefiniteness of a matrix. Now we consider
a single-layer DNN f(x̄) = W 1φ(W 0x̄+ b̄0) + b̄1, where φ(x̄) = (ϕ(x1) · · · ϕ(xn))> and ϕ is slope-restricted on
[α, β]. The following theorem shows how the Lipschitz continuity is connected with an SDP problem.

Theorem 6.1. ([FRH+19]) If there exists ρ > 0 and T ∈ Tn, s.t.

M(ρ, T) :=

(
−2αβW 0>TW 0 − ρIn0 (α+ β)W 0>T

(α+ β)TW 0 −2T +W 1>W 1

)
≤ 0,

where Tn is what we define in Lemma 6.1, n0 is the dimension of the input, and ≤ 0 refers to the semi-negative
definiteness of a symmetric matrix, then

√
ρ is a Lipschitz constant for f .

To calculate a tighter Lipschitz constant, we only need to solve the optimisation problem

min ρ s.t. M(ρ, T) ≤ 0 ∧ T ∈ Tn.

For a multi-layer DNN, we can also extend Thm. 6.1 to tackle multiple layers and transform the problem into an SDP.
Readers can refer to [FRH+19] for details. In this SDP problem, we have O(n2) variables λij to determine, where n
is the number of neurons in the DNN. To make the problem scalable, [FRH+19] proposed the following modes.

• LipSDP-Network: it preserves all possible constraints between pairs and has O(n2) decision variables.
• LipSDP-Neuron: it ignores constraints between different neurons so that the matrix T is diagonal, which has O(n)

decision variables.
• LipSDP-Layer: it ignores the difference of variables in the same layer, i.e., on the same layer the matrix T shares

the same parameter, so the matrix T = diag(λ1In1
, . . . , λlInl) has O(l) decision variables, where l is the number

of layers in the DNN.

The above approach works on DNNs with only one kind of activation function ϕ. For those containing more than
one kind of activation function, we can make split to the layers of the DNN and consider each sub-network which
only has one kind of activation function. After adapting the algorithm for these sub-network, the multiplication of the
Lipschitz constants of the sub-networks is a valid Lipschitz constant for the DNN.

16 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

6.2. Regionalization of Lipschitz constant by local slope bounds

An observation is that, when we adapt this algorithm to some robustness verification settings, like (δ, ε)-global robust-
ness in a certain region, we do not require the Lipschitz constant over the whole input space Rn. For a fixed region D
we are focusing on, we discuss how to obtain a more precise Lipschitz constant, by exploiting the local slope bounds
used in SDP solving. By invoking the abstract interpretation techniques (DeepSymbol we proposed), we can obtain
the range of all the input variables of the activation function ϕ, and further calculate the range of the derivative of ϕ.
For many popular activation function ϕ like ReLU, sigmoid, and tanh, which are monotonic increasing, convex on
(−∞, 0], and concave on [0,∞), the range of its derivative can be obtained straightforward by the function values
at the endpoints of the interval of the input. The following example shows how we compute the local slope bounds
and obtain the regional Lipschitz constant. In what follows, we denote by LD the lower approximation of the regional
Lipschitz constant for an input region D.

Example 6.1. Consider a DNN defined by f(x) = tanh

((
1 2
1 −1

)
x+

(
−2
0

))
. We can obtain the Lipschitz

constant L = 2.303 by solving the corresponding SDP problem.
Now we further consider the neighbourhood D = B∞((1, 0)>, 0.1), then by using Box as the abstract domain, we

obtain the ranges of two tanh inputs are [−1.1,−0.9] and [0.9, 1.1], and the bounds of the slope of tanh in this region
are

α = ϕ′(1.1) = 1− tanh2(1.1) = 0.3592 and β = ϕ′(0.9) = 1− tanh2(0.9) = 0.4869.

Finally, by using the local slope bounds of the region, we can compute the regional Lipschitz constant LD = 1.122.

We can see from the example that the bounds of the slope of the activation function involved depend on the region.
This regionalization works well when we consider a very small region, and the range of slope is reduced prominently
such that we can obtain a more precise Lipschitz constant for a certain region. Furthermore, to maintain the high
efficiency, we tend to keep the lower bound α being 0 instead of a more precise but insignificant improvement, which
will preserve the sparsity of M(ρ, T) .

6.3. Computing the maximum verifiable radius

Focusing on local robustness, once the lower approximation of the Lipschitz constant L is obtained, we can use it
to efficiently compute the maximum verifiable radius for a certain input. A sound method directly follows from the
following lemma, whose proof can be obtained by classical technique.

Lemma 6.2. Consider a DNN defined by f(x) : Rn → Rm, whose Lipschitz constant is bounded from above by L.
Then for an input x̄, the DNN is robust in Bp(x̄, rp) with

rp =
2

1
p−1m

1
2−

1
p

n
1
2−

1
pL

(fτ1(x̄)− fτ2(x̄)),

where fτ1(x̄) and fτ2(x̄) denote the largest and the second largest elements in {fτ (x̄)}, respectively.

Proof. Generally, for Lp-norm robustness, we consider the neighbourhood Bp(x̄, r) of an input x̄. According to In-
equality (1) on Page 7, we have the Lipschitz condition m−(1

p−
1
2)||f(x̄′)−f(x̄)||p ≤ n

1
2−

1
pLr for any x̄′ in Bp(x̄, r).

Note that n and m here are the dimensions of x̄ and f(x̄), viz. the dimensions of the input layer and the output layer.
We denote by τi the index of the element which is i-th largest in {fτ (x̄)}. Then the DNN is robust over Bp(x̄, r)

if and only if
∧
τ 6=τ1 fτ1(x̄′) > fτ (x̄′) for any x̄′ ∈ Bp(x̄, r). With ∆i = fi(x̄

′) − fi(x̄), the Lipschitz condition is
equivalent to

(|∆1|p + |∆2|p + · · ·+ |∆m|p)
1
p ≤ n

1
2−

1
p

m
1
2−

1
p

Lr, (3)

and the robustness condition can be further rewritten as∧
τ 6=τ1

fτ1(x̄)− fτ (x̄) > ∆τ −∆τ1 . (4)

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 17

f () - f () x x

 x

f =1

f 2

f 2

f ()

f 1

r

 12

Fig. 7. The L2-norm radius at the output layer, where the yellow line represents the difference between f2(x̄) and
f1(x̄), and the dashed green line shows the distance between f(x̄) and the classification boundary, whose upper bound
is given by both L · r and Corollary 6.1.

From (3), we have

∆τ −∆τ1 ≤ |∆τ |+ |∆τ1 | ≤
2(|∆τ |p + |∆τ1 |p)

1
p

2
1
p

≤ 2n
1
2−

1
p

2
1
pm

1
2−

1
p

Lr,

which follows from Jensen’s inequality and the fact that xp is convex on R≥0. Finally, we can immediately obtain

rp =
2

1
p−1m

1
2−

1
p

n
1
2−

1
pL

(fτ1(x̄)− fτ2(x̄))

as the maximum verifiable radius to ensure the inequality (4) holds.

Specifically, we have the maximum verifiable radius r2 =
fτ1−fτ2√

2L for the L2-norm. Intuitively, it demonstrates

that for any f(x̄′), the decrement from fτ1(x̄) and the increment from fτ2(x̄) should be bounded by L·r√
2

, otherwise

the L2-norm robustness may be destroyed. Similarly, we also have the maximum verifiable radius r∞ =
fτ1−fτ2

2L′ for
L∞ norm, in which L′ =

√
n
mL.

Corollary 6.1. Consider a DNN defined by f(x) : Rn → Rm. Let LD be the upper bound of the regional Lipschitz
constant of the neighbourhood D = Bq(x̄, r). Then the DNN is robust in Bp(x̄, rp) (for p ≤ q) with

rp = min

(
r,

2
1
p−1m

1
2−

1
p

n
1
2−

1
pLD

(fτ1(x̄)− fτ2(x̄))

)
,

where fτ1(x̄) and fτ2(x̄) denote the largest and the second largest elements in {fτ (x̄)}, respectively.

This corollary directly follows from the fact that LD only holds in the region D and the fact that Bp(x̄, r) ⊆ Bq(x̄, r)
for p ≤ q.

Example 6.2. Consider the L2-norm local robustness of the DNN in Example 6.1. To compute the maximum ver-
ifiable radius, we first compute the output f(x̄) = (−1.238, 0.761)>. Then by the formula in Lemma 6.2, we im-
mediately have r2 = 0.761−(−1.238)√

2·2.303
= 0.613, which implies that the DNN is robust in B∞((1, 0)>, 0.613). Fig. 7

illustrates the geometric significance of the formula, in which f1 = f2 is the robustness boundary at the output layer.
Furthermore, by using the regional Lipschitz constant LD of D = B∞((1, 0)>, 0.1), we can also compute another

robustness radius as r2 = max
(

0.1, 0.761−(−1.238)√
2·1.122

)
= 0.1. Note that it is not as large as the robustness radius

18 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

computed by the global Lipschitz constant. This case shows that regional Lipschitz constant will not always benefit to
obtain a better robustness radius, since the choice of the region may become a limitation.

Since the global Lipschitz constant holds for the whole domain of the DNN, Lemma 6.2 can be used to efficiently
compute sound robustness radii w.r.t. Lp-norm local robustness for any inputs. If we want to verify local robustness
for a large set of inputs, this technique can be used as a filter to quickly recognize the robustness cases and speed up
the verification process.

6.4. Verifying (δ, ε)-global robustness in a region

Now, we turn to the (δ, ε)- robustness properties for regions of inputs. The following lemma shows a sufficient condi-
tion such that a DNN is globally-robust in an input region. It implies a sound method to verify global robustness.

Lemma 6.3. Let N be a DNN expressing f : Rm → Rn, and D be a region of its input with the upper approximation
of the regional Lipschitz constant LD. Then N is (δ, ε)-globally robust in the region D, if ε > m−

1
2LDδ.

Proof. We have C(N, x̄, `) = f`(x̄). By Inequality (1), we have

m
1
2 ||f(x̄1)− f(x̄2)||∞ ≤ LD||x̄1 − x̄2||2.

Furthermore, the post-condition ∀` ∈ L, |C(N, x̄1, `)−C(N, x̄2, `)| < ε is exactly equivalent to an L∞-norm bound
on the difference of two outputs, viz. ||f(x̄1) − f(x̄2)||∞ < ε. Then combining the pre-condition in the definition of
(δ, ε)-global robustness, we immediately have the lemma.

Example 6.3. Here, we verify the global robustness of the DNN of Example 6.1 in the box region D = [0.9, 1.1] ×
[−0.1, 0.1]. Consider the global robustness with parameters δ = 0.06, ε = 0.04, and L2-norm in the pre-condition.
With the upper approximation of the regional Lipschitz constant LD = 1.122 for the region D, it is easy to verify that
the DNN is (0.04, 0.06)-globally robust in D, since 0.06 > 1√

2
· 1.122 · 0.04 holds. Note that in this example, we fail

to verify global robustness using the global Lipschitz constant. Compared with global Lipschitz constant, a regional
Lipschitz constant will always show greater advantages for verifying (δ, ε)-global robustness, since the region in which
we expect to verify is known.

7. Experimental Evaluation

In this section, we present the design and results of our experiments.

7.1. Experimental setup

Implementation AI2[GMDC+18] is the first to utilize abstract interpretation to verify DNNs, and has implemented
all the transformers mentioned in Section 4. We have re-implemented these transformers and refer to them as AI2-r.
We then implement our symbolic propagation technique based on AI2-r and use AI2-r as the baseline comparison
in the experiments. Both implementations use general frameworks and thus can run on various abstract domains. In
this paper, we choose Box (from Apron 1), T-Zonotope (Zonotope from Apron 1) and E-Zonotope (Elina Zonotope
with the join operator 2) as the underlying domains. Our DNN verification tool PRODeep [LLcH+20] integrates these
methods. We use the code 3 from [FRH+19] to calculate the Lipschitz constant.

Datasets We use MNIST [LBBH98] and ACAS Xu [JGK+15, vEG14] as the datasets in our experiments. MNIST
contains 60, 000 28× 28 grayscale handwritten digits. We can train DNNs to classify the pictures by the written digits
on them. The ACAS Xu system is aimed to avoid airborne collisions and it uses an observation table to make decisions
for the aircraft. In [JKO18], the observation tables are realized by training a DNN instead of storing it.

1 https://github.com/ljlin/Apron_Elina_fork
2 https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f
3 https://github.com/arobey1/LipSDP

https://github.com/ljlin/Apron_Elina_fork
https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f
https://github.com/arobey1/LipSDP

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 19

AI2-r Symb Planet
TZono EZono Box TZono EZono

FNN1 28.23348% 28.02098% 9.69327% 9.69327% 9.69327% 7.05553%
FNN2 24.16382% 22.13319% 1.76704% 1.76704% 1.76704% 0.89089%
FNN3 26.66453% 26.30852% 6.88656% 6.88656% 6.88656% 4.51223%
FNN4 28.47243% 28.33535% 5.13645% 5.13645% 5.13645% 2.71537%
FNN5 35.61163% 35.27187% 3.34578% 3.34578% 3.34578% 0.14836%
FNN6 38.71020% 38.57376% 7.12480% 7.12480% 7.12480% 1.94230%
FNN7 41.76517% 41.59382% 5.52267% 5.52267% 5.52267% 1h TIMEOUT
CNN1 24.19607% 24.13725% 21.78279% 7.58917% 7.56223% 8h TIMEOUT
CNN2 OOM OOM 1.09146% OOM OOM 8h TIMEOUT

(a) Bound proportions (smaller is better) of different abstract interpretation approaches with the robustness bound δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6},
and the fixed input pictures 767, 1955, and 2090;

AI2-r Symb Planet
Box TZono EZono Box TZono EZono

FNN1 11.168 0.2 13.482 0.5 44.05 0.5 12.935 0.6 17.144 0.6 45.88 0.6 20.179 0.6
FNN2 12.559 0 16.636 0.2 50.59 0.2 15.075 0.5 22.333 0.5 49.92 0.5 35.84 0.6
FNN3 12.699 0.2 18.748 0.3 49.812 0.3 19.042 0.6 28.128 0.6 54.77 0.6 76.106 0.6
FNN4 15.583 0.1 29.495 0.3 58.892 0.3 37.716 0.6 56.47 0.6 76.00 0.6 351.139 0.6
FNN5 28.963 0 81.49 0.2 149.791 0.2 90.268 0.4 154.222 0.4 173.263 0.4 1297.485 0.6
FNN6 62.766 0 398.565 0.1 538.076 0.1 323.328 0.3 650.629 0.3 745.454 0.3 15823.208 0.3
FNN7 111.955 0 1674.465 0 1627.72 0 642.978 0.3 1524.975 0.3 1489.604 0.3 1h TIMEOUT
CNN1 2340.828 0 6717.57 0.2 94504.195 0.2 5124.681 0.2 8584.555 0.3 45452.102 0.3 8h TIMEOUT
CNN2 41292.291 0 OOM 0 OOM 0 105850.271 0.3 OOM 0 OOM 0 8h TIMEOUT

(b) The time (in second) and the maximum robustness bound δ which can be verified through the abstract interpretation technique and the planet
bound, with optional δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and the fixed input picture 2090;

AI2-r Symb Planet
Box TZono EZono Box TZono EZono

FNN1(60) 57 44 34 59 52 38 59 52 38 59 53 44 59 53 44 59 53 44 59 56 55
FNN2(120) 103 59 38 118 109 66 118 111 66 118 113 107 118 113 107 118 113 107 119 114 110
FNN3(150) 136 93 66 141 127 85 141 127 85 143 133 110 143 133 110 143 133 110 146 142 135
FNN4(300) 250 144 105 294 209 130 294 209 130 295 254 182 295 254 182 295 254 182 296 276 254
FNN5(600) 289 160 106 513 200 125 513 200 125 589 510 236 589 510 236 589 510 236 593 558 493
FNN6(1200) 472 247 181 782 339 195 782 339 195 1176 790 250 1176 790 250 1176 790 250 1189 1089 772
FNN7(1800) 469 271 177 770 350 200 775 350 200 1773 741 263 1773 741 263 1773 741 263 1h TIMEOUT

CNN1(12412) 12226 11788 11280 12371 12119 11786 12371 12122 11786 12373 12094 11659 12376 12193 11877 12376 12196 11877 8h TIMEOUT
CNN2(89572) 85793 77241 70212 OOM OOM 89190 86910 81442 OOM OOM 8h TIMEOUT

(c) The number of hidden ReLU neurons whose behavior can be decided with the bounds our abstract interpretation technique and Planet provide,
with optional robustness bound δ ∈ {0.1, 0.4, 0.6} and the fixed input picture 767.

Table 1. Experimental results of abstract interpretation for MNIST DNNs with different approaches

7.2. Symbolic propagation versus other abstract interpretation based methods

We compare seven approaches: AI2-r with Box, T-Zonotope and E-zonotope as underlying domains and Symb (i.e.,
our enhanced abstract interpretation with symbolic propagation) with Box, T-Zonotope and E-zonotope as underlying
domains, and Planet [Ehl17], which serves as the benchmark verification approach (for its ability to compute bounds).
All the experiments are conducted on an openSUSE Leap 15.0 machine with Intel i7-4790 CPU@3.60GHz and 16GB
memory.

On MNIST, we train seven FNNs and two CNNs. The seven FNNs are of sizes 3 × 20, 6 × 20, 3 × 50, 3 × 100,
6 × 100, 6 × 200, and 9 × 200, where m × n refers to m hidden layers with n neurons in each hidden layer. CNN1
consists of 2 convolutional, 1 max-pooling, 2 convolutional, 1 max-pooling, and 3 fully connected layers in sequence,
for a total of 12,412 neurons. CNN2 has 4 convolutional and 3 fully connected layers (89572 neurons). On ACAS Xu,
we use the same networks as those in [KBD+17b].

We consider the local robustness property with respect to the input region defined as follows:

Xx̄,δ = {x̄′ ∈ Rm | ∀i.1− δ ≤ xi ≤ x′i ≤ 1 ∨ xi = x′i}.

In the experiments, the optional robustness bounds are 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6.

Improvement on Bounds To see the improvement on bounds, we compare the output ranges of the above seven
approaches on different inputs x̄ and different tolerances δ. Table 1 (a) reports the results on three inputs x̄ (No.767,
No.1955 and No.2090 in the MNIST training dataset) and six tolerances δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In all our

20 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

δ
AI2-r Symb Planet

TZono EZono Box TZono EZono

0.1 7.13046% 7.08137% 6.15622% 6.15622% 6.15622% 5.84974%
0.2 11.09230% 10.88775% 6.92011% 6.92011% 6.92011% 6.11095%
0.3 18.75853% 18.32059% 8.21241% 8.21241% 8.21241% 6.50692%
0.4 30.11872% 29.27580% 10.31225% 10.31225% 10.31225% 7.04413%
0.5 45.13963% 44.25026% 14.49276% 14.49276% 14.49276% 7.96402%
0.6 55.67772% 54.88288% 20.03251% 20.03251% 20.03251% 9.02688%

Table 2. Bound proportions (smaller is better) for 1000 randomly sampled pictures from MNIST testing set on FNN1
with δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

experiments, we set TIMEOUT as one hour for each FNN and eight hours for each CNN for a single run with an input,
and a tolerance δ. In the table, TZono and EZono are abbreviations for T-Zonotope and E-Zonotope.

For each running we get a gap with an upper and lower bound for each neuron. Here we define the bound proportion
to statistically describe how precise a range an approach gives. Basically given an approach (like Symb with Box
domain), the bound proportion of this approach is the average of the ratio of the gap length of the neurons on the
output layer and that obtained using AI2-r with Box. Naturally AI2-r with Box always has the bound proportion 1, and
the smaller the bound proportion is, the more precise the ranges the approach gives are.

In Table 1 (a), every entry is the average bound proportion over three different inputs and six different tolerances.
OOM stands for out-of-memory, 1h TIMEOUT for the one-hour timeout, and 8h TIMEOUT for the eight-hour timeout.
We can see that, in general, Symb with Box, T-Zonotope and E-zonotope can achieve much better bounds than AI2-r
with Box, T-Zonotope and E-zonotope do. These bounds are closer to what Planet gives, except for FNN5 and FNN6.
E-zonotope is slightly more precise than T-Zonotope. On the other hand, while Symb can return in a reasonable time
in most cases, Planet cannot terminate in one hour (resp. eight hours) for FNN7 (resp. CNN1 and CNN2), which have
1, 800, 12, 412 and 89, 572 hidden neurons, respectively. Also we can see that results related to Thm. 5.1 are illustrated
here. More specifically, (1) Symb with Box domain is more precise than AI2-r with T-Zonotope and E-Zonotope on
FNNs; (2) Symb with Box, T-Zonotope and E-Zonotope have the same precision on FNNs; (3) Symb with T-Zonotope
and E-Zonotope are more precise than Symb with Box on CNNs.

According to the memory footprint, both AI2-r and Symb with T-Zonotope or E-Zonotope need more memory
than the same approaches with Box do, and will crash on large networks, such as CNN2, because they run out of
memory. Figure 8 shows how CPU and resident memory usage change over time. The horizontal axis in the figure is
the time, in seconds, the vertical axis corresponding to the red line is the CPU usage percentage, and the vertical axis
corresponding to the blue line is the memory usage, in MB.

Greater Verifiable Robustness Bounds Table 1 (b) shows the results of using the obtained bounds to help verify the
robustness property. We consider a few thresholds for robustness tolerance, i.e., {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and find
that Symb can verify many more cases than AI2-r can with comparable time consumption (less than 2x in most cases,
and sometimes even faster).

Proportion of Activated/Deactivated ReLU Nodes Table 1 (c) reports the number of hidden neurons whose ReLU
behaviour (i.e., activated or deactivated) has been consistent within the tolerance δ. Compared to AI2-r, our Symb can
decide the ReLU behaviour with a much higher percentage.

We remark that, although the experimental results presented above are based on 3 fixed inputs, more extensive ex-
periments have already been conducted to confirm that the conclusions are general. We randomly sample 1000 pictures
(100 pictures per label) from the MNIST dataset, and compute the bound proportion for each of the pair (m, δ) where
m refers to the seven approaches in Table 1 and δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} on FNN1. Each entry corresponding
to (m, δ) in Table 2 is the average of bound proportions of approach m over 1000 pictures and fixed tolerance δ. Then
we get the average of the bound proportion of AI2-r with TZono/EZono, Symb with Box/TZono/EZono, and Planet
over six different tolerances, 27.98623%, 27.44977%, 11.02104%, 11.02104%, 11.02104%, 7.08377%, respectively,
which are very close to the first row of Table 1 (a).

Comparison with the bounded powerset domain In AI2 [GMDC+18], the bounded powerset domains are used
to improve the precision. In AI2-r, we also implemented such bounded powerset domains instantiated by Box, T-

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 21

(a) Box (b) SymBox

(c) TZono (d) SymTZono

(e) EZono (f) SymEZono

Fig. 8. CPU and memory usage

Zonotope and E-Zonotope domains, with 32 as the bound of the number of abstract elements in a disjunction. The
comparison of the performance on the powerset domains with our symbolic propagation technique (with the underlying
domains rather than powerset domains) is shown in Table 3. We can see that our technique is much more precise than
the powerset domains. The time and memory consumptions of the powerset domains are both around 32 times greater
than for the underlying domains, which are more than those of our technique.

Faster Verification In this part we use the networks of ACAS Xu. In order to evaluate the benefits of tighter bounds for
SMT-based tools, we give the bounds obtained by abstract interpretation (on Box domain with symbolic propagation)

22 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

AI2-r Symb Planet
Box32 TZono32 EZono32 Box TZono EZono

FNN1 89.65790% 20.68675% 15.87726% 9.69327% 9.69327% 9.69327% 7.05553%
FNN2 89.42070% 16.27651% 8.18317% 1.76704% 1.76704% 1.76704% 0.89089%
FNN3 89.43396% 21.98109% 12.42840% 6.88656% 6.88656% 6.88656% 4.51223%
FNN4 89.44806% 25.97855% 13.05969% 5.13645% 5.13645% 5.13645% 2.71537%
FNN5 89.16034% 29.61022% 17.88676% 3.34578% 3.34578% 3.34578% 0.14836%
FNN6 89.30790% OOM 22.60030% 7.12480% 7.12480% 7.12480% 1.94230%
FNN7 88.62267% OOM 1h TIMEOUT 5.52267% 5.52267% 5.52267% 1h TIMEOUT

Table 3. Bound proportions (smaller is better) of different abstract interpretation approaches with the robustness bound
δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and the fixed input pictures 767, 1955, and 2090. Note that each entry gives the
average bound proportion over six different tolerance and three pictures.

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01 Total
Result Time Result Time Result Time Result Time Result Time Time

Point 1 Reluplex SAT 39 SAT 123 SAT 14 UNSAT 638 UNSAT 64 879
Reluplex + ABS SAT 45 SAT 36 SAT 14 UNSAT 237 UNSAT 36 368

Point 2 Reluplex UNSAT 6513 UNSAT 1559 UNSAT 319 UNSAT 49 UNSAT 11 8451
Reluplex + ABS UNSAT 141 UNSAT 156 UNSAT 75 UNSAT 40 UNSAT 0 412

Point 3 Reluplex UNSAT 1013 UNSAT 422 UNSAT 95 UNSAT 79 UNSAT 6 1615
Reluplex + ABS UNSAT 44 UNSAT 71 UNSAT 0 UNSAT 0 UNSAT 0 115

Point 4 Reluplex SAT 3 SAT 5 SAT 1236 UNSAT 579 UNSAT 8 1831
Reluplex + ABS SAT 3 SAT 7 UNSAT 442 UNSAT 31 UNSAT 0 483

Point 5 Reluplex UNSAT 14301 UNSAT 4248 UNSAT 1392 UNSAT 269 UNSAT 6 20216
Reluplex + ABS UNSAT 2002 UNSAT 1402 UNSAT 231 UNSAT 63 UNSAT 0 3698

Table 4. The satisfiability on given δ, and the time (in second) with and without bounds generated by abstract inter-
pretation with symbolic propagation on the Box domain.

to Reluplex [KBD+17b] and observe the performance difference. The results are shown in Table 4. Each cell shows
the satisfiability (i.e., SAT if an adversarial example is found) and the running time without or with given bounds.
The experiments are conducted on different δ values (as in [KBD+17b]) and a fixed network (nnet1 1 [KBD+17b])
and 5 fixed points (Point 1 to 5 in [KBD+17b]). The time our technique spends on deriving the bounds is all
less than 1 second. Table 4 shows that tighter initial bounds bring significant benefits to Reluplex with an overall
(1

5076 −
1

32992)/ 1
32992 = 549.43% speedup (9.16 hours compared to 1.41 hours). However, it should be noted that, on

one specific case (i.e., δ = 0.1 at Point 1 and δ = 0.075 at point 4), the tighter initial bounds slow Reluplex, which
means that the speedup is not guaranteed on all cases. 4

7.3. Lipschitz constant based method

In order to demonstrate the performance of the Lipschitz constant based method, we trained more MNIST networks
including three FNNs with the sigmoid activation function (sigmoid-FNN1∼3), three FNNs with the tanh activation
function (tanh-FNN1∼3), and two FNNs with the ReLU activation function (FNN8 and FNN9), of sizes 1×20, 1×50,
1 × 30 + 1 × 20, 1 × 20, 1 × 50, 1 × 30 + 1 × 20, 7 × 1000, and 14 × 500, respectively, where m × n refers to m
hidden layers with n neurons in each hidden layer as mentioned before.

The experimental results are shown in Table 5, in which (a) and (b) show the Lipschitz constants computed by SDP
and (c) shows the comparisons between Lip. methods and Symb. approach for computing the maximum verifiable
radius.

Effect of regionalization via slope bounds. In Table 5 (a), we show the global Lipschitz constants, the regional
Lipschitz constants for three randomly chosen inputs, and the computation times. The global Lipschitz constants are
computed via the global slope bounds ([0, 1] for tanh and [0, 0.25] for sigmoid). The regional Lipschitz constants are
computed via the local slope bounds in the region of Lp-norm ball with the radius 0.001. By applying local bounds,

4 For the case δ = 0.05 at point 4, Reluplex gives SAT and Reluplex+ABS gives UNSAT. This may be the result of a floating point arithmetic
error.

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 23

Global Local 1 Local 2 Local 3

L. const Time L. const Time L. const Time L. const Time

tanh-FNN1 37.428 23.673 37.404 124.85 37.321 113.34 37.407 111.26
tanh-FNN2 39.723 44.717 39.611 258.42 39.704 234.2 39.716 245.32
tanh-FNN3 89.664 30.705 89.440 167.55 89.471 154.29 89.472 158.65

sigmoid-FNN1 26.039 22.013 26.029 105.93 26.032 107.3 25.809 103.01
sigmoid-FNN2 24.636 43.511 24.625 237.07 24.629 238.82 24.572 223.32
sigmoid-FNN3 63.695 30.716 63.364 152.48 63.573 155.08 63.578 157.57

(a) Comparison of precision and time (in seconds) of computing a global Lipschitz constant and regional Lipschitz constants on small networks.

L. const Time (s) Split Mode

FNN7 (9× 200) 240.987 608.13 1 LipSDP-Neuron
FNN8 (7× 1000) 4.60310E8 7.3674 1 LipSDP-Layer
FNN9 (14× 500) 2.45117E13 6.185 1 LipSDP-Layer
FNN9 (14× 500) 5.00261E12 261.57 2 LipSDP-Neuron

CNN1-Subnet1 41.020 39.13 1 LipSDP-Network
CNN1-Subnet2 11.259 7.0061 1 LipSDP-Network
CNN1-Subnet3 1.532 10.608 - LipSDP-Neuron
CNN1 (12412) 707.545 56.74 - Subnets

(b) SDP works on large networks.

FNN1 FNN7

Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

L. const 23.928 240.987
SDP safety L∞ ball 0.020 0.016 0.018 0.0024 0.0016 0.0024

Symb. safety L∞ ball 0.037 0.018 0.031 0.007 0.004 0.008

(c) Comparison of precision of the SDP methods and Symb.

Table 5. Experimental results of SDP methods for MNIST DNNs.

the regional Lipschitz constants become tighter. Note that the effect depends on many factors, including the size of the
DNN, the chosen input, and the size of the region. Although the effect is not significant, it may improve the precision
of robustness verification. Furthermore, it brings a side effect on efficiency, i.e., increasing the time consumption. A
reasonable explanation is that it makes the matrix involved less sparse when we assigns a positive number to α instead
of 0.

SDP works efficiently on large networks. Table 5 (b) gives the experimental results of computing the Lipschitz
constants by SDP on large DNNs. If we choose the SDP mode properly and make some necessary splits on the DNNs,
then it is quite efficient to obtain a global Lipschitz constant. As we can see, the SDP methods are strong in its high
efficiency, applicability to more activation functions, and the globalization of the Lipschitz constants.

Lip. is not as precise as Symb. Here, we compare the performance of Lip. methods with our Symb. approach for
computing the maximum verifiable radius, and the experimental results are shown in Table 5 (c). Basically, once we
obtain a Lipschitz constant L of a DNN f , then we can obtain a safe L∞ ball. Also, through a simple binary search,
we can use Symb. to get the largest robustness L∞ ball. Table 5 (c) gives the results of the two methods working
on FNN1 and FNN7. We can see that abstract interpretation based methods gives larger radius, so generally abstract
interpretation is more precise than Lip. methods in DNN verificaiton. However, from the perspective of efficiency,
since the Lipschitz constant can be reused to compute the maximum verifiable radius for different inputs and the
procedure only invokes simple arithmetic operations in a non-iterative way. In other words, Lip. method can be used
to compute a rougher robustness bounds, less precisely but more efficiently than the Symb. approach.

7.4. Verifying robustness on batch inputs using SDP

We also use the Lipschitz constant based method to verify local robustness of batch inputs. We randomly select 10,000
inputs of MNIST as the batch, and verify them with the framework of Sect. 6.3 on the networks tanh-FNN1∼3 and
sigmoid-FNN1∼3. The results are shown in Fig. 9 and Table 6.

24 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

robustness radius

100

80

60

40

20

0

robustness %

tanhFNN1~3 sigmoidFNN1~3

Fig. 9. Results of batch local robustness filter using SDP.

Computing Lip. Verifying Total

tanh-FNN1 23.673 2.78 26.453
tanh-FNN2 44.717 14.48 59.197
tanh-FNN3 30.705 3.76 34.465

sigmoid-FNN1 22.013 2.86 24.873
sigmoid-FNN2 43.511 14.48 57.991
sigmoid-FNN3 30.716 3.61 34.326

Table 6. The time (in seconds) of computing the Lipschitz constant and verifying the L∞ robustness for ten thousand
inputs with twenty δ values from 0.01 to 0.2.

As can be seen from Fig. 9, the Lipschitz based method verifies a substantial number of cases in this experiment.
Moreover, Table 6 shows that the time costs of batch local robustness verification are less than one minute in these
situation and mainly lie on the computation of Lipschitz constants of the networks by using SDP. So as a filter to speed
up the verification proceed, this method is very efficient and scalable.

8. Discussion and Related Work

In this section, we discuss the soundness guarantee of the abstraction based approach and the precision of the abstract
domains, and then provide some closely related work.

8.1. Discussion on Soundness and Precision

Soundness is an essential property of formal verification. Abstract interpretation is known for its soundness guarantee
for analysis and verification [Min17], since it conducts over-approximation to enclose all the possible behaviors of
the original system. Computing over-approximations for a DNN is thus our soundness guarantee in this paper. As
shown in Thm. 4.1, if the results of abstract interpretation show that the property C holds (i.e., γ(X]

N) ⊆ C in
Equation 2), then the property also holds for the set of actual executions of the DNN (i.e., f(X0) ⊆ C). If the results
of abstract interpretation can not prove that the property C holds, however, the verification is inconclusive. In this
case, the results of the chosen abstract domain are not precise enough to prove the property, and thus more powerful
abstract domains are needed. Moreover, our symbolic propagation also preserves soundness, since it uses symbolic
substitution to compute the composition of linear transformations.

On the other hand, many existing DNN verification tools do not guarantee soundness. For example, Reluplex [KBD+17b]
(using GLPK), Planet [Ehl17] (using GLPK), and Sherlock [DJST18] (using Gurobi) all rely on the floating point im-
plementation of linear programming solvers, which is unsound. Actually, most state-of-the-art linear programming

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 25

solvers use floating-point arithmetic and only give approximate solutions which may not be the actual optimum solu-
tion or may even lie outside the feasible space [NS04]. It may happen that a linear programming solver implemented
via floating point arithmetic wrongly claims that a feasible linear system is infeasible or the other way round. In fact,
the paper [DJST18] reports several false positive results in Reluplex, and mentions that this comes from unsound
floating point implementation.

Different abstract domains have different precision in verification. In our DNN verification settings, if the input
region is a box, then the precision has the following order: Box< T-Zonotope< E-Zonotope<DeepPoly< Polyhedra.
DeepPoly [SGPV19b] is a specialized abstract domain for DNN verification. An abstract element in DeepPoly is a
tuple a = (a≤, a≥, l̄, ū), where a≤ and a≥ give the i-th variable xi a lower bound and an upper bound, respectively,
in the form of a linear combination of variables which appear before it, i.e.

∑i−1
k=1 wkxk + w0, for i = 1, . . . , n,

and l̄, ū ∈ Rn give the lower bound and upper bound of each variable, respectively. Box loses precision on both
affine transformations and non-linear activation functions, while the others only lose precision on non-linear activation
functions. With symbolic propagation, Box does not lose precision on affine transformations any more, and Zonotope
has better precision on uncertain ReLU neurons. Octagon is not often used in DNN verification, since the weights in
a DNN are generally not uniform and they do not fit for the constraints of Octagon.

8.2. Related Work

Verification of neural networks can be traced back to [PT10], where the network is encoded after approximating every
sigmoid activation function with a set of piecewise linear constraints and then solved with an SMT solver. It works
with a network of 6 hidden nodes. More recently, by considering DNNs with ReLU activation functions, the verifi-
cation approaches include constraint-solving [KBD+17b, LM18, Ehl17, NKR+17], layer-by-layer exhaustive search
[HKWW17], global optimisation [RHK18a, DJST18, RWS+19], abstract interpretation [GMDC+18, SGM+18, SGPV19b],
functional approximation [XTJ18], and reduction to two-player game [WHK18, WmWR+19], etc.

More specifically, In [KBD+17b] an SMT solver Reluplex is presented to verify properties on DNNs with fully-
connected layers. Independently [Ehl17] presents another SMT solver Planet which combines linear approximation
and interval arithmetic to work with fully connected and max pooling layers. Later, Reluplex has been extended in
Marabou [KHI+19] to support piece-wise linear activation functions and improves the efficiency. Also, an abstraction-
refinement framework is proposed in [EGK20], which helps reduce the size of DNNs to verify. Methods based on SMT
solvers do not scale well, e.g., Reluplex can only work with DNNs with a few hidden neurons.

The above target mainly the verification of local robustness. Research has been conducted to compute other prop-
erties, e.g., the output reachability. An exact computation of output reachability can be utilised to verify local robust-
ness. In [DJST18], Sherlock, an algorithm based on local and global search and mixed integer linear programming
(MILP), is put forward to calculate the output range of a given label when the inputs are restricted to a small sub-
space. [RHK18a] presents another algorithm for output range analysis, and their algorithm is suitable for all Lipschitz
continuous DNNs, including all layers and activation functions mentioned before. In [WPW+18], the authors use sym-
bolic interval propagation to calculate output range. Compared with [WPW+18], our approach is adequate for general
abstract domains, while their symbolic interval propagation is designed specifically for symbolic intervals. Further,
methods based on star sets have been developed in [TLM+19, TBXJ20] to compute a more precise reachablity for
DNNs. Abstraction based output range analysis is proposed in [PA19] to deal with larger models.

AI2[GMDC+18] is the first tool to use abstract interpretation to verify DNNs. They define a class of functions
called conditional affine transformations (CAT) to characterize DNNs containing fully connected, convolutional and
max pooling layers with the ReLU activation function. They use Interval and Zonotope as the abstract domains and the
powerset technique on Zonotope. Compared with AI2, we use symbolic propagation rather than powerset extension
techniques to enhance the precision of abstract interpretation based DNN verification. Symbolic propagation is more
lightweight than powerset extension. Moreover, we also use the bounds information given by abstract interpretation to
accelerate SMT based DNN verification. DeepZ [SGM+18] and DeepPoly [SGPV19b] propose two specific abstract
domains tailored to DNN verification in order to improve the precision of abstract interpretation on the verification on
DNNs, and [SGPV19a] improves DeepPoly in performing linear over-approximation over multiple uncertain ReLU
nodes together instead of one by one. In contrast to these works, our work is a general approach that can be applied
on various domains. Recently [APDC19] has proposed an approach which uses machine learning to recommend
the choice of split and abstract interpretation in DNN verification. This combines the various abstract interpretation
techniques in a clever and effective manner. Abstract interpretation based DNN verification can be performed in
parallel on GPU and it improves the size of the DNNs that can be treated to one million neurons [MSPV20].

Besides verification methods, adversarial attack and robustness training are also closely related to our work. Adver-

26 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

sarial examples and adversarial attack were first put forward in [SZS+14], and some famous robustness attack meth-
ods include Fast Gradient Sign [MFF16], Jacobian-based saliency map approach [PMJ+16], C&W attack [CW17],
etc. In recent years a great number of works like [KSDG20, CH20, XD20, RCBG20, HZ20, ZFY+19] have devel-
oped adversarial attack with a variety of methods and techniques. Robustness training for DNNs can be traced back
to [NW15, ARA+16], and the latest works include [MGN+20, WMB+19, YGZ18, GDV20, RCJ19, ZG19]. These
works improves the robustness of deep neural networks in the training step in different ways for various DNN models
and applications.

9. Conclusion

In this paper, we have studied different a variety of local robustness properties and the (δ, ε)-global robustness property
for deep neural networks, and the corresponding verification methods, based on abstract interpretation, SMT, as well
as Lipschitz constants.

We explore the potential of abstract interpretation for the verification of DNNs. We have proposed to use symbolic
propagation on abstract interpretation to take advantage of the linearity in most part of the DNNs, which achieved
significant improvements in terms of the precision and memory usage. This is based on a key observation that, for local
robustness verification of DNNs where a small region of the input space is concerned, a considerable percentage of
hidden neurons remain active or inactive for all possible inputs in the region. For these neurons, their ReLU activation
function can be replaced by a linear function. Our symbolic propagation iteratively computes for each neuron this
information and utilize the computed information to improve the performance. This paper has presented with formal
proofs three somewhat surprising theoretical results, which are then confirmed by our experiments. These results have
enhanced our theoretical and practical understanding about the abstract interpretation based DNN verification and
symbolic propagation.

We apply the tighter bounds of variables on hidden neurons from our approach to improve the performance of the
state-of-the-art SMT based DNN verification tools, like Reluplex. The speed-up rate is up to 549% in our experiments.
We believe this result sheds some light on the potential for improving the scalability of SMT-based DNN verification:
In addition to improving the performance through enhancing the SMT solver for DNNs, an arguably easier way is to
take an abstract interpretation technique (or other techniques that can refine the constraints) as a pre-processing.

Furthermore, we propose a Lipschitz constant based verification framework. It is more efficient and scalable to
verify local or global robustness of DNNs with Lipschitz constants solved by semidefinite programming. We present
a method to compute a maximum verifiable radius for verifying the local robustness properties related to Lp-norms.
We also present a method to verify the (δ, ε)-global robustness of a DNN in a given region. The maximum verifiable
radii obtained can be used as a filter in batch tasks to speed up the verification process of DeepSymbol, which meet
the demand of working on large complex networks and more general robustness properties.

Acknowledgement

This work has been partially supported by Key-Area Research and Development Program of Guangdong Province
(Grant No. 2018B010107004), National Natural Science Foundation of China (Grant No. 61761136011, 61836005,
61872445, 62002363), and Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515011689).

Declarations: Conflicts of interest / Competing interests (Not applicable)

We claim no conflicts of interests.

Declarations: Availability of data and material (Not applicable)

We use MNIST and ACAS Xu as datasets. See Section 7.1 for details. All the networks we trained on MNIST are
contained in https://github.com/CAS-LRJ/LipSDP/tree/master/LipSDP/examples.

https://github.com/CAS-LRJ/LipSDP/tree/master/LipSDP/examples

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 27

Declarations: Code availability (Not applicable)

PRODeep is open source in https://iscasmc.ios.ac.cn/prodeep. For other abstract domains and the SDP
based Lipschitz constant calculation, see Section 7.1 for details. All the experimental materials on Lipschitz constant
based verification are included in https://github.com/CAS-LRJ/LipSDP/tree/master/LipSDP/examples.

References

[APDC19] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization and abstraction: a synergistic approach for
analyzing neural network robustness. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 731–
744. ACM, 2019.

[ARA+16] Sheikh Waqas Akhtar, Saad Rehman, Mahmood Akhtar, Muazzam Ali Khan, Farhan Riaz, Qaiser Chaudry, and Rupert C. D. Young.
Improving the robustness of neural networks using k-support norm based adversarial training. IEEE Access, 4:9501–9511, 2016.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In Fourth ACM Symposium on Principles of Programming Languages (POPL), pages 238–252, 1977.

[CH20] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks.
CoRR, abs/2003.01690, 2020.

[CW17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In Security and Privacy (SP), 2017 IEEE
Symposium on, pages 39–57. IEEE, 2017.

[DJST18] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis for deep feedforward neural
networks. In NASA Formal Methods - 10th International Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018,
Proceedings, pages 121–138, 2018.

[DSG+18] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet Kohli. A dual approach to scalable
verification of deep networks. CoRR, abs/1803.06567, 2018.

[EGK20] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. An abstraction-based framework for neural network verification. In
Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer Science, pages 43–65. Springer, 2020.

[Ehl17] Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In 15th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA2017), pages 269–286, 2017.

[FRH+19] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. Efficient and accurate estimation of
lipschitz constants for deep neural networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 11423–11434, 2019.

[GDV20] Sidharth Gupta, Parijat Dube, and Ashish Verma. Improving the affordability of robustness training for dnns. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pages 3383–
3392. IEEE, 2020.

[GGP09] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope abstract domain taylor1+. In International Conference on Computer
Aided Verification, pages 627–633. Springer, 2009.

[GGP10] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. A logical product approach to zonotope intersection. In Tayssir Touili, Byron Cook,
and Paul B. Jackson, editors, Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings, volume 6174 of Lecture Notes in Computer Science, pages 212–226. Springer, 2010.

[GMDC+18] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. AI2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on Security and Privacy (S&P 2018), pages 948–963, 2018.

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke,
Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Process. Mag., 29(6):82–97, 2012.

[HKWW17] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural networks. In 29th International
Conference on Computer Aided Verification (CAV2017), pages 3–29, 2017.

[HZ20] Zhichao Huang and Tong Zhang. Black-box adversarial attack with transferable model-based embedding. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[JGK+15] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan Gardner, Aurora Schmidt, Erik Zawadzki, and André Platzer. Formal
verification of ACAS x, an industrial airborne collision avoidance system. In 2015 International Conference on Embedded Software,
EMSOFT 2015, Amsterdam, Netherlands, October 4-9, 2015, pages 127–136, 2015.

[JKO18] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. Deep neural network compression for aircraft collision avoidance
systems. CoRR, abs/1810.04240, 2018.

[KBD+17a] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Towards proving the adversarial robustness of deep
neural networks. arXiv, 2017.

[KBD+17b] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An efficient SMT solver for verifying
deep neural networks. In 29th International Conference on Computer Aided Verification (CAV2017), pages 97–117, 2017.

[KHI+19] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze
Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W. Barrett. The marabou framework for verification
and analysis of deep neural networks. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in Computer
Science, pages 443–452. Springer, 2019.

https://iscasmc.ios.ac.cn/prodeep
https://github.com/CAS-LRJ/LipSDP/tree/master/LipSDP/examples

28 Pengfei Yang, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian Chen, Xiaowei Huang, and Lijun Zhang

[KSDG20] Xu Kang, Bin Song, Xiaojiang Du, and Mohsen Guizani. Adversarial attacks for image segmentation on multiple lightweight models.
IEEE Access, 8:31359–31370, 2020.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 1106–1114, 2012.

[LBBH98] Yann Lécun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[LLcH+20] Renjue Li, Jianlin Li, Cheng chao Huang, Pengfei Yang, Xiaowei Huang, Lijun Zhang, Bai Xue, and Holger Hermanns. Prodeep: a
platform for robustness verification of deep neural networks. In ESEC/FSE 2020, 2020.

[LLY+19] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun Zhang. Analyzing deep neural networks with
symbolic propagation: Towards higher precision and faster verification. In Bor-Yuh Evan Chang, editor, Static Analysis - 26th
International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings, volume 11822 of Lecture Notes in Computer
Science, pages 296–319. Springer, 2019.

[LM18] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward ReLU neural networks. In KR2018,
2018.

[MFF16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and accurate method to fool deep
neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 2574–2582. IEEE Computer Society, 2016.

[MGN+20] Chengzhi Mao, Amogh Gupta, Vikram Nitin, Baishakhi Ray, Shuran Song, Junfeng Yang, and Carl Vondrick. Multitask learning
strengthens adversarial robustness. CoRR, abs/2007.07236, 2020.

[Min17] Antoine Miné. Tutorial on static inference of numeric invariants by abstract interpretation. Foundations and Trends in Programming
Languages, 4(3-4):120–372, 2017.

[MMS+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models
resistant to adversarial attacks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[MSPV20] Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Neural network robustness verification on gpus. CoRR,
abs/2007.10868, 2020.

[NKR+17] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. Verifying properties of binarized
deep neural networks. arXiv preprint arXiv:1709.06662, 2017.

[NS04] A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer linear programming. Math. Program., 99(2):283–296,
2004.

[NW15] Arun Narayanan and DeLiang Wang. Improving robustness of deep neural network acoustic models via speech separation and joint
adaptive training. IEEE ACM Trans. Audio Speech Lang. Process., 23(1):92–101, 2015.

[NWL19] JAY NANDY, HSU WYNNE, and LEE MONG LI. Robustness for adversarial lp≥1 perturbations. In NeurIPS 2019 Workshop on
Machine Learning with Guarantees, Vancouver, Canada, 2019.

[NYC15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable
images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 427–436, 2015.

[PA19] Pavithra Prabhakar and Zahra Rahimi Afzal. Abstraction based output range analysis for neural networks. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 15762–15772, 2019.

[PMJ+15] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The limitations of
deep learning in adversarial settings. CoRR, abs/1511.07528, 2015.

[PMJ+16] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The limitations of
deep learning in adversarial settings. In IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pages 372–387. IEEE, 2016.

[PT10] Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of artificial neural networks. In Computer
Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, pages 243–257, 2010.

[RCBG20] Binxin Ru, Adam D. Cobb, Arno Blaas, and Yarin Gal. Bayesopt adversarial attack. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[RCJ19] Eitan Rothberg, Tingting Chen, and Hao Ji. Towards better accuracy and robustness with localized adversarial training. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 10017–10018. AAAI Press, 2019.

[RHK18a] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep neural networks with provable guarantees.
In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden., pages 2651–2659, 2018.

[RHK18b] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep neural networks with provable guarantees. In
IJCAI2018, pages 2651–2659, 2018.

[RWS+19] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta Kwiatkowska. Global robustness evaluation of
deep neural networks with provable guarantees for the hamming distance. In IJCAI2019, 2019.

[SGM+18] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T. Vechev. Fast and effective robustness certification.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada., pages 10825–10836, 2018.

[SGPV19a] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin T. Vechev. Beyond the single neuron convex barrier for neural
network certification. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman

Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation 29

Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 15072–15083, 2019.

[SGPV19b] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain for certifying neural networks. PACMPL,
3(POPL):41:1–41:30, 2019.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[SRBB19] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first adversarially robust neural network model
on MNIST. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. In International Conference on Learning Representations (ICLR2014), 2014.

[TB19] Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 5858–5868, 2019.

[TBXJ20] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. Verification of deep convolutional neural networks using
imagestars. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer Science, pages
18–42. Springer, 2020.

[TLM+19] Hoang-Dung Tran, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, and Taylor T.
Johnson. Star-based reachability analysis of deep neural networks. In Maurice H. ter Beek, Annabelle McIver, and José N. Oliveira,
editors, Formal Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings,
volume 11800 of Lecture Notes in Computer Science, pages 670–686. Springer, 2019.

[vEG14] Christian von Essen and Dimitra Giannakopoulou. Analyzing the next generation airborne collision avoidance system. In Tools
and Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings,
pages 620–635, 2014.

[WHK18] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. Feature-guided black-box safety testing of deep neural networks. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS2018), pages 408–426.
Springer, 2018.

[WK18] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial polytope. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, pages 5283–5292, 2018.

[WMB+19] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the convergence and robustness of
adversarial training. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 6586–6595. PMLR, 2019.

[WmWR+19]Min Wu, matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. A game-based approximate verification of deep
neural networks with provable guarantees. Theoretical Computer Science, 5 2019.

[WPW+18] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis of neural networks using
symbolic intervals. CoRR, abs/1804.10829, 2018.

[WZC+18] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S. Boning, and Inderjit S. Dhillon.
Towards fast computation of certified robustness for relu networks. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 5273–5282, 2018.

[XD20] Jincheng Xu and Qingfeng Du. Texttricker: Loss-based and gradient-based adversarial attacks on text classification models. Eng.
Appl. Artif. Intell., 92:103641, 2020.

[XTJ18] W. Xiang, H. Tran, and T. T. Johnson. Output reachable set estimation and verification for multilayer neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 29(11):5777–5783, Nov 2018.

[YGZ18] Ziang Yan, Yiwen Guo, and Changshui Zhang. Deep defense: Training dnns with improved adversarial robustness. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada, pages 417–426, 2018.

[ZFY+19] Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, and Chaomin Shen. The adversarial attack and detection
under the fisher information metric. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 5869–5876. AAAI Press, 2019.

[ZG19] Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph convolutional networks. In Ankur Tere-
desai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages
246–256. ACM, 2019.

	Introduction
	Preliminaries
	Deep neural networks
	Abstract interpretation

	Robustness Properties
	Local robustness
	Global robustness

	Methods for Verifying Local Robustness
	SMT based methods
	Abstract interpretation based methods

	Optimisations by Symbolic Propagation
	DeepSymbol: Symbolic propagation for DNN abstract interpretation
	Accelerating SMT-based verification

	Lipschitz Constant Based Method
	Approximating from above the Lipschitz constant by SDP
	Regionalization of Lipschitz constant by local slope bounds
	Computing the maximum verifiable radius
	Verifying (,)-global robustness in a region

	Experimental Evaluation
	Experimental setup
	Symbolic propagation versus other abstract interpretation based methods
	Lipschitz constant based method
	Verifying robustness on batch inputs using SDP

	Discussion and Related Work
	Discussion on Soundness and Precision
	Related Work

	Conclusion
	References

