
Numerical Static Analysis of
Interrupt-Driven Programs

via
Sequentialization

Xueguang Wu1 Liqian Chen1 Antoine Miné2 Wei Dong1 Ji Wang1

1National University of Defense Technology, Changsha, China

2CNRS & LIP6, UPMC, Paris, France

05/10/2015 – EMSOFT 2015

Overview

• Motivation

• Interrupt-driven programs (IDPs)

• Sequentialization of IDPs

• Analysis of sequentialized IDPs via abstract interpretation

• Implementation and experiments

• Conclusion

2

Interrupts in Embedded Software

• Interrupts are a commonly used technique that

introduce concurrency in embedded software

• Embedded software may contain intensive numerical

computations which are error prone

3

satellite medical equipment automobile

Motivation
• Without considering the interleaving, sequential

program analysis results may be unsound

4

int x, y, z;

void TASK(){

if(x<y){ //❶
z = 1/(x-y); //❷

}

return;

}

void ISR(){

x++;

y--;

return;

}

Interrupt semantics:

Given x=1,y=3，if ISR fires

at ❶, there is a division-

by-zero error at ❷

Sequential program analysis:

no division-by-zero

UNSOUND !

Existing Work

• Sequentialization methods for concurrent programs

• KISS [PLDI’04], Kidd et al. [SPIN’10], REKH [VMCAI’13],

Cseq [ASE’13], …

• Numerical static analysis of concurrent embedded

software

• cXprop [LCTES’06], Monniaux [EMSOFT’07],

AstréeA[ESOP’11] …

5

Few existing numerical static analysis methods

consider interrupts

Our Goal

• Challenges of analyzing IDPs

• interleaving state space can grow exponentially with the

number of interrupts (scalability)

• interrupts are controlled by hardware (precision)

• e.g., periodic interrupts, interrupt mask register (IMR)

• Goal

• a sound approach for numerical static analysis of

embedded C programs with interrupts

6

Basic Idea

7

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

Overview

• Motivation

• Interrupt-driven programs (IDPs)

• Sequentialization of IDPs

• Analysis of sequentialized IDPs via abstract interpretation

• Implementation and experiments

• Conclusion

8

Interrupt-Driven Programs

• Our target interrupt-driven programs (IDPs)

• an IDP consists of a fixed finite set of tasks and interrupts

• tasks are scheduled cooperatively, while interrupts are

scheduled preemptively by priority

• Application scenarios

9

Satellite Wireless network OS LEGO robotics (OSEK)

Interrupt-Driven Programs

• Model of interrupt-driven programs

• 1 task + N interrupts

• each interrupt priority with at most one interrupt

• only 2 forms of statements accessing shared variables

• l=g //read from a shared variable g

• g=l //write to a shared variable g

10

Interrupt-Driven Programs

• Model of interrupt-driven programs

• 1 task + N interrupts

• each interrupt priority with at most one interrupt

• only 2 forms of statements accessing shared variables

• l=g //read from a shared variable g

• g=l //write to a shared variable g

11

This model simplifies IDPs without losing generality

Interrupt-Driven Programs

• Assumptions over the model

1. all accesses to shared variables (l=g and g=l) are atomic.

2. the IMR is intact inside an ISR, i.e. 𝐼𝑀𝑅𝐼𝑆𝑅𝑖
𝑒𝑛𝑡𝑟𝑦

= 𝐼𝑀𝑅𝐼𝑆𝑅𝑖
𝑒𝑥𝑖𝑡

12

this assumption exists in most of

concurrent program analysis, e.g.,
Cseq [ASE’13], AstréeA[ESOP’11], KISS [PLDI’04]

keeping IMR intact holds for practical

IDPs, e.g., satellite control programs

Overview

• Motivation

• Interrupt-driven programs (IDPs)

• Sequentialization of IDPs

• Analysis of sequentialized IDPs via abstract interpretation

• Implementation and experiments

• Conclusion

13

Basic Idea of Sequentialization

• Observation: firing of interrupts can be simulated
by function calls

• Basic idea: add a schedule() function before each
(atomic) program statement of the task and
interrupts
• the schedule() function non-deterministically schedules

higher priority interrupts

14

Original

st1;…;stk

Sequentialized

st1’;…; stk’

where sti’ = schedule(); sti

Seq

Example

int x, y, z;

void task’(){

int tx, ty;

tx = x;

ty = y;

if(tx < ty){

tx = x;

ty = y;

z = 1/(tx-ty);

}

return ;

}

void ISR’(){

int tx, ty;

tx = x;

tx = tx + 1;

x = tx;

ty = y;

ty = ty + 1;

y = ty;

return ;

}

15

only allow l=g and g = l

int x,y,z;

void task(){

if(x<y){

z = 1/(x-y);

}

return;

}

void ISR(){

x++;

y--;

return ;

}

Example

int x,y,z;

void task(){

if(x<y){

z = 1/(x-y);

}

return;

}

void ISR(){

x++;

y--;

return ;

}

int x, y, z;

int Prio=0;

//current priority

ISR ISRs_seq[N];

//ISR entry

void task_seq(){

int tx, ty;

schedule(); tx = x;

schedule(); ty = y;

schedule();

if(tx < ty){

schedule(); tx = x;

schedule(); ty = y;

schedule();

z = 1/(tx-ty);

}

schedule(); return ;

}

void ISR_seq(){

int tx, ty;

schedule();tx = x;

schedule(); tx = tx + 1;

schedule(); x = tx;

schedule(); ty = y;

schedule(); ty = ty + 1;

schedule(); y = ty;

schedule(); return;}

void schedule(){

int prevPrio = Prio;

for(int i<=1;i<=N;i++){

if(i<=Prio) continue;

if(nondet()){

Prio = i;

ISRs_seq[i].entry();}}

Prio = prevPrio;

}

Add schedule() before each program statement

16

int x, y, z;

int Prio=0;

//current priority

ISR ISRs_seq[N];

//ISR entry

void task_seq(){

int tx, ty;

schedule(); tx = x;

schedule(); ty = y;

schedule();

if(tx < ty){

schedule(); tx = x;

schedule(); ty = y;

schedule();

z = 1/(tx-ty);

}

schedule(); return ;

}

void ISR_seq(){

int tx, ty;

schedule();tx = x;

schedule(); tx = tx + 1;

schedule(); x = tx;

schedule(); ty = y;

schedule(); ty = ty + 1;

schedule(); y = ty;

schedule(); return;}

void schedule(){

int prevPrio = Prio;

for(int i<=1;i<=N;i++){

if(i<=Prio) continue;

if(nondet()){

Prio = i;

ISRs_seq[i].entry();}}

Prio = prevPrio;

}

Example

int x,y,z;

void task(){

if(x<y){

z = 1/(x-y);

}

return;

}

void ISR(){

x++;

y--;

return ;

}

17

Non-deterministically

schedule higher

priority interrupts

Basic Idea of Sequentialization

• The disadvantage of the basic sequentialization

method

• the resulting sequentialized program becomes large

• too many schedule() functions are invoked

• Further observation

• interrupts and tasks communicate with each other by

shared variables

• interrupts only affect those statements which access

shared variables

18

Further idea: utilize data flow dependency to reduce the

size of sequentialized programs

Sequentialization by Considering
Data Flow Dependency

 Example：Program { St1; St2; …; Stn}，where only Stn

reads shared variables (SVs)

19

{ St1; St2; … ; ; Stn }

Basic Sequentialization

schedule(); schedule(); schedule()

{ St1; St2; …; Stn-1 ;

for(int i=0;i<K;i++)

Schedule();

Stn

}

Consider SVs

Sequentialization by Considering
Data Flow Dependency

• Key idea: schedule relevant interrupts only for

those statements accessing shared variables

• before l = g (i.e., reading a shared variable)

• schedule those interrupts which may affect the value

of shared variable g

• after g = l (i.e., writing a shared variable)

• schedule those interrupts of which the execution

results may be affected by shared variable g

20

Sequentialization by Considering
Data Flow Dependency

• Need to consider the firing number of interrupts,

otherwise the analysis results may be not sound

21

void scheduleG_K(group: int set){

for(int i=1;i<=K;i++)

scheduleG(group);

}

K is the upper bound of the

firing times of each ISR, which

can be a specific value or +oo

Example
int x,y,z;

void task(){

int t, tx, ty, tz;

x = 10;

y = 0;

tx = x;

ty = y;

t = tx+ty;

ty=y;

tx = t-ty;

x = tx;

tz = t*2;

z = tz;

ty = y;

ty = t-ty;

y = ty;

}

void ISR1(){

int tx, ty;

ty = y; ty = ty + 1; y = ty;

tx = x; tx = tx -1; x = tx;}

void ISR2(){

int tz;

tz = z; tz = tz+1; z=tz;} 22

These statements access

shared variables

Seq

Example
int x,y,z;

void task(){

int t, tx, ty, tz;

x = 10;

y = 0;

tx = x;

ty = y;

t = tx+ty;

ty=y;

tx = t-ty;

x = tx;

tz = t*2;

z = tz;

ty = y;

ty = t-ty;

y = ty;

}

void ISR1(){

int tx, ty;

ty = y; ty = ty + 1;y = ty;

tx = x; tx = tx -1; x = tx;}

void ISR2(){

int tz;

tz = z; tz = tz+1; z=tz;}

int x,y,z;

void task(){

int t, tx, ty, tz;

x = 10; scheduleG_K({1});

y = 0; scheduleG_K({1});

tx = x; ty = y;

t = tx+ty;

ty=y;

tx = t-ty;

x = tx; scheduleG_K({1});

tz = t*2;

z = tz; scheduleG_K({2});

scheduleG_K({1});

ty = y;

ty = t-ty;

y = ty; scheduleG_K({1});}

void ISR1_seq(){//Same as ISR1}

void ISR2_seq(){//Same as ISR2}

//scheduleG_K({1}) gives:

for(int i=0;i<K;i++)

if(nondet()) ISR1_seq();

//scheduleG_K({2}) gives:

for(int i=0;i<K;i++)

if(nondet()) ISR2_seq();

only invoke scheduleG_K()

before reading or after

writing SVs

23

Example
int x,y,z;

void task(){

int t, tx, ty, tz;

x = 10;

y = 0;

tx = x;

ty = y;

t = tx+ty;

ty=y;

tx = t-ty;

x = tx;

tz = t*2;

z = tz;

ty = y;

ty = t-ty;

y = ty;

}

void ISR1(){

int tx, ty;

ty = y; ty = ty + 1;y = ty;

tx = x; tx = tx -1; x = tx;}

void ISR2(){

int tz;

tz = z; tz = tz+1; z=tz;} 24

int x,y,z;

void task(){

int t, tx, ty, tz;

x = 10; scheduleG_K({1});

y = 0; scheduleG_K({1});

tx = x; ty = y;

t = tx+ty;

ty=y;

tx = t-ty;

x = tx; scheduleG_K({1});

tz = t*2;

z = tz; scheduleG_K({2});

scheduleG_K({1});

ty = y;

ty = t-ty;

y = ty; scheduleG_K({1});}

void ISR1_seq(){//Same as ISR1}

void ISR2_seq(){//Same as ISR2}

//scheduleG_K({1}) gives:

for(int i=0;i<K;i++)

if(nondet()) ISR1_seq();

//scheduleG_K({2}) gives:

for(int i=0;i<K;i++)

if(nondet()) ISR2_seq();

only invoke

relevant ISRs

Seq

Overview

• Motivation

• Interrupt-driven programs (IDPs)

• Sequentialization of IDPs

• Analysis of sequentialized IDPs via abstract interpretation

• Implementation and experiments

• Conclusion

25

Analysis of Sequentialized IDPs
via Abstract Interpretation

26

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

Analysis of Sequentialized IDPs
via Abstract Interpretation

• Analysis of sequentialized IDPs

• using generic numerical abstract domains

• Need to consider specific features of sequentialized IDPs

• firing number of interrupts affects the analysis result

• interrupts with period

27

Need specific abstract domains to consider interrupt features

A Specific Abstract Domain for
IDPs

• At-most-once firing periodic interrupts

• periodic interrupts: firing with a fixed time interval

• the period of interrupts is larger than one task period

• An abstract domain for at-most-once firing periodic

interrupts

• use boolean flag variables to distinguish whether ISRs have

happened or not

28

int x;

void task(){

int tx,z;

x=0; /* xnf ∈ [0,0], xf∈ [0,0] */

if(*) ISR1(); /* xnf ∈ [0,0], xf ∈ [10,10] */

tx=x;

tx=tx+1; /* xnf ∈ [0,0], xf ∈ [10,10] */

x=tx; /* xnf ∈ [1,1], xf ∈ [11,11] */

if(*) ISR1(); /* xnf ∈ [1,1], xf ∈ [11,11] */

z=1/(x-5); /* division is safe */

}

A Specific Abstract Domain for
IDPs

• Example of boolean flag abstract domain

29

int x;

void task(){

int tx,z;

x=0;

tx=x;

tx=tx+1;

x=tx;

z=1/(x-5);

}

void ISR1(){

int tx;

tx = x;

tx = tx+10;

x = tx;

}

If only using interval domain: x ∈ [1,21] and

there will be a division by zero false alarm

ISR1 has firedISR1 hasn’t fired

Overview

• Motivation

• Interrupt-driven programs (IDPs)

• Sequentialization of IDPs

• Analysis of sequentialized IDPs via abstract interpretation

• Implementation and experiments

• Conclusion

30

Implementation and Experiments

• Implementation

• frontend: CIL

• numerical abstract domain library: Apron

• Benchmarks

• OSEK programs from Goblint [Schwarz et al. POPL11]

• LEGO robotic control program (Nxt_gs)

• universal asynchronous receive and transmitter (UART)

• ping pong buffer program from satellite application program

• ADC controller from satellite application program

• a satellite control program

31

Implementation and Experiments

• Aims of the experiments

• check run time errors of IDPs

• compare the generated program size and the time

consumption of sequentialization methods with and without

considering data flow dependency

• compare the scalability and precision of numerical static

analysis for sequentialization methods with and without

considering data flow dependency

32

Implementation and Experiments

• Experiments of sequentialization

33

Program Sequentialization

Name Loc_

task

Loc_

ISR

#Vars #ISR SEQ DF_SEQ DF_SE

Q/SEQ

(%LOC)LOC Time (s) LOC Time (s)

Motv_Ex 10 7 8 1 158 0.004 134 0.006 84.81

DataRace_Ex 20 40 9 2 385 0.004 242 0.005 62.86

Privatize 25 37 7 2 393 0.006 168 0.004 42.75

Nxt_gs 23 154 27 1 1199 0.005 552 0.006 46.04

UART 129 15 47 1 5940 0.010 1215 0.010 20.45

PingPong_Sate 130 53 21 1 3159 0.006 842 0.006 26.65

ADC_Sate 1870 2989 312 1 123K 0.449 23K 0.8 18.70

Satellite_Control 33885 1227 1352 1 10M 16.1 534K 1.6 5.34

The scale of sequentialized program by DF_SEQ is smaller than SEQ

Implementation and Experiments

• Experiment of numerical static analysis

34

Program Analysis of SEQ (s) Analysis of DF_SEQ (s) Warnings &

Proved

Properties
Name BOX OCT BOX OCT

Motv_Ex 0.007 0.011 0.006 0.007 Div-by-zero

DataRace_Ex 0.042 0.053 0.011 0.015 Assertion holds

Privatize 0.029 0.036 0.005 0.007 Assertion holds

Nxt_gs 0.113 0.140 0.040 0.046 Integer overflow

UART 0.732 5.782 0.128 1.177 No ArrayOutofBound

Ping_Pong 0.429 2.434 0.054 0.251 No ArrayOutofBound

ADC_Sate MemOut MemOut 80.5 MemOut 143(109/0/34)

Satellite Control MemOut MemOut 5190 MemOut 544(479/19/46)

Precision of SEQ&DF_SEQ is the same and the scalability of DF_SEQ is

much better

Overview

• Motivation

• Interrupt-driven programs

• Sequentialization of IDPs

• Analysis of sequentialized IDPs via abstract interpretation

• Implementation and experiments

• Conclusion

35

Conclusion

• Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

36

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

Conclusion

• Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

37

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

a simple model

with restrictions

and assumptions

Conclusion

• Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

38

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

consider data flow

dependency to sequentialize

IDPs (scalability)

Conclusion

• Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

39

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

a specific abstract domain

for sequentialized IDPs

(precision)

Conclusion

• Future work

• extending the model to support IDPs with tasks
preemption tasks

• designing more specific abstract domains that fit IDPs

40

IDPs Seq
Sequential
Programs

Numerical static analysis

via abstract interpretation

41

Thank you

Any Questions?

