Numerical Static Analysis of
Interrupt-Driven Programs
via
Sequentialization

XueguangWu' Ligian Chen! Antoine Miné* Wei Dong' Ji Wang

'National University of Defense Technology, Changsha, China
2CNRS & LIP6, UPMC, Paris, France

05/10/2015 — EMSOFT 2015

Overview

e Motivation

* Interrupt-driven programs (IDPs)

* Sequentialization of IDPs

* Analysis of sequentialized IDPs via abstract interpretation
* Implementation and experiments

* Conclusion

Interrupts in Embedded Software

* Interrupts are a commonly used technique that

introduce concurrency in embedded software

* Embedded software may contain intensive numerical

computations which are error prone

satellite medical equipment automobile

Motivation

* Without considering the interleaving, sequential

program analysis results may be unsound

int x,, z; .
void TASK(){ void ISR(){

if(x<y){ 1) X+

z = 1/(x-y); 1@ Y=
} return;
return; !
Interrupt semantics:
P

Given x=1,y=3 , if ISR fires

Sequential program analysis:
at @), there is a division-

no division-by-zero

~ UNSOUND ! - oraero ererac®

Existing Work

* Sequentialization methods for concurrent programs

* KISS [PLDI04], Kidd et al. [SPIN’10], REKH [VMCALI’| 3],
Cseq [ASE’1 3], ...

* Numerical static analysis of concurrent embedded
software

* cXprop [LCTES06], Monniaux [EMSOFT’07],
AstreeA[ESOP’I 1] ...

Few existing numerical static analysis methods

consider interrupts

Our Goal

* Challenges of analyzing IDPs

* interleaving state space can grow exponentially with the

number of interrupts (scalability)

* interrupts are controlled by hardware (precision)

* e.g., periodic interrupts, interrupt mask register (IMR)

e Goal

* a sound approach for numerical static analysis of

embedded C programs with interrupts

IDPs

Basic ldea

‘ Seq>

Sequential
Programs

Numerical static analysis
via abstract interpretation

Overview

* Interrupt-driven programs (IDPs)

Interrupt-Driven Programs

* Our target interrupt-driven programs (IDPs)
* an IDP consists of a fixed finite set of tasks and interrupts

* tasks are scheduled cooperatively, while interrupts are

scheduled preemptively by priority

* Application scenarios

Satellite Wireless network OS LEGO robotics (OSEK)

9

Interrupt-Driven Programs

* Model of interrupt-driven programs
* | task + N interrupts
* each interrupt priority with at most one interrupt

* only 2 forms of statements accessing shared variables
* =g /lread from a shared variable g
* g=| /lwrite to a shared variable g

Expr = 1| C | FEi1o FEy (wherel e NV, C is a constant,
FEy\, FE> € Ezpr and ¢ € {+,—, X, +})

Stmt = |l=g|g=1|l=ce]|S1;52|skip | enableISR(i)
| disableISR(7) | if e then S; else S5
| while e do S

(where l € NV ,g € SV, e € Expr,i € [1, N],
S1,852,5 € Stmt)

Task := entry (where entry € Stmt)
ISR := (entry,p) (where entry € Stmt, p € [1, N])
Prog := |Ta8k | ISRy || ... |]SRNl

Interrupt-Driven Programs

* Model of interrupt-driven programs
* | task + N interrupts
* each interrupt priority with at most one interrupt
* only 2 forms of statements accessing shared variables
* =g /lread from a shared variable g
* g=| /lwrite to a shared variable g

This model simplifies IDPs without losing generality

Stmt = L=g|g=1L|lL=e€|D1;D2 | SKID | enavlel>r (1)
| disableISR(7) | if e then S; else S;
| while e do S

(where l € NV ,g € SV, e € Expr,i € [1, N],
51,52,5 € Stmt)

entry (where entry € Stmt)

(entry,p) (where entry € Stmt, p € [1, N])
Task || ISRy || ... || ISRN

Task
ISR
Prog

Interrupt-Driven Programs

* Assumptions over the model

|. all accesses to shared variables (=g and g=l) are atomic.
N

this assumption exists in most of

concurrent program analysis, e.g.,
Cseq [ASE'13], AstréeA[ESOP'l 1], KISS [PLDI'04] |

2. the IMR is intact inside an ISR, i.e. IMRIegRt:y = IMR%%

keeping IMR intact holds for practical
IDPs, e.g., satellite control programs

Overview

 Motivation

* Interrupt-driven programs (IDPs)

* Sequentialization of IDPs

* Analysis of sequentialized IDPs via abstract interpretation
* Implementation and experiments

 Conclusion

13

Basic Idea of Sequentialization

* Observation: firing of interrupts can be simulated
by function calls

* Basic idea: add a schedule() function before each
(atomic) program statement of the task and
Interrupts

* the schedule() function non-deterministically schedules
higher priority interrupts

) ()

‘ Se Sequentialized
] St,’;...; St

-
Original

Sty;...;St,
\ J \

where st” = schedule(); st

Example

only allow I=g and g = |

int x,y,z;
void task(){

if(x<y){

z = |/(x-y);

}

return;

}
void ISR(){

X++;

int x,y,z;

void task’(){
int tx, ty;
tx = X;
ty=y
if(tx < ty){
txX = X;
ty=y
z = |/(tx-ty);
}

return ;

}

void ISR’(){
int tx, ty;
tx = Xx;

~

tx=tx + |}

X=
ty =y

ty =ty + |;
y =1ty
return ;

15

Example

int x,y,z;
void task(){

if(x<y){

z = |/(x-y);

}

return;

}
void ISR(){

X++;
)
return ;

}

Add schedule() before each program statement

Int Prio=0;
[Icurrent priority
ISR ISRs_seq[N];

void task seq(){
int tx, ty;
chedule())tx = x;
chedule();|ty = y;
chedule();
if(tx < ty){
schedule()j)tx = x;
schedule();ty = y;
chedule();
z = |/(tx-ty);
}

schedule()jreturn ;

int tx, ty,
fchedule()\;tx = X;
schedule();ltx = tx + 1;
ischedule();[x = tx;
ischedule();ity =y;
ischedule();fty =ty + |;

schedule();ly = ty;
kchedule()) return;}

void schedule(){
int prevPrio = Prio;
for(int i<=1;i<=N;i++){
if(i<=Prio) continue;
if(nondet()){
Prio = i;
ISRs_seq[i].entry();}}
Prio = prevPrio;

} 16

int x, y, z;
Examp|e int Prio=0;
[Icurrent priority
ISR ISRs_seq[N];
int x,y,z;
void task(){ void task seq(){
if(x<y){ int tx, ty;
z = |/(x-y); schedule(); tx = x;
} schedule(); ty = vy;
return; schedule();
} if(tx < ty){
void ISR(){ schedule(); tx = x;
X++; cchoadulal\: v =
y--; /Non-deterministically
return ; | schedule higher
) | pPriority interrupts

’

}

void ISR _seq(){

int tx, ty;
schedule();tx = x;

schedule();tx = tx + ;

schedule(); x = tx;
schedule(); ty = y;

schedule();ty =ty + |;

schedule(); y = ty;
schedule(); return;}

/void schedule(){
int prevPrio = Prio;
for(int i<=1;i<=N;i++){

if (f=PFi6) continue;

7f(nondet()){

\J

ISRs_seq[].entry();}}

Prio = prevPrio;

17

%

Basic Idea of Sequentialization

* The disadvantage of the basic sequentialization
method
* the resulting sequentialized program becomes large
* too many schedule() functions are invoked

* Further observation
* interrupts and tasks communicate with each other by
shared variables

* interrupts only affect those statements which access
shared variables

Further idea: utilize data flow dependency to reduce the

size of sequentialized programs

Sequentialization by Considering
Data Flow Dependency

® Example: Program { St;;St,;...;St.}, where only St_

reads shared variables (SVs)

Basic Sequentialization

{ schedule(); St,; schedule(); St,; ... ; schedule() ; St}
Consider SVs
{St;;Sty; .55t ;
for(int i=0;i<K;i++)
Schedule();
St
}

Sequentialization by Considering
Data Flow Dependency

* Key idea: schedule relevant interrupts only for

those statements accessing shared variables

* before | = g (i.e., reading a shared variable)

* schedule those interrupts which may affect the value

of shared variable g
* after g = | (i.e., writing a shared variable)

* schedule those interrupts of which the execution

results may be affected by shared variable g

Sequentialization by Considering
Data Flow Dependency

* Need to consider the firing number of interrupts,
otherwise the analysis results may be not sound

void scheduleG_K(group: int set){
for(int i=1;i<=K;i++ N
scheduleG(group); _ K is the upper bound of the
) firing times of each ISR, which

| can be a specific value or +oo

)

Example

int x,y,z;
void task(){
int t, tx, ty, tz;

t = txtty;

=y;

tx = t-ty;

X = tX;

tz = t*2;

Z = tz;

=y

ty = t-ty;

}

Y=t

’

void ISR (){
int tx, ty;

Y=y

ty =ty + |;
tx = tx -1;

void ISR2(){

int tz;

tz = zjtz = tz+1 ;lz=tz;E

Y=ty

X = tX;

These statements access

shared variables

22

Example

int x,y,z; int x,y,z;
void task(){ void task(){
intt, int ¢, tx, ty, tz;

only invoke scheduleG_K()

x = I(. x = 10;|scheduleG_K({I});
y = 0; before reading or after | - o;[schedmeg_K(U});]
tx = x writing SVs X=X ty = Y;
ty =Yy, t = txtty;
t = tx+tty; ty=y;
ty=y; tx = t-ty;
tx = t-ty; x = tx;[scheduleG_K({I});
X = tx; m tz = t*2;
tz = t*2; z = tz;lscheduleG_K({2});
Z =tz scheduleG_K({1});
ty =y ty=y
ty = t-ty,; ty = t-ty;
y = ty; y = ty;lscheduleG_K({l});}
} void ISR _seq(){//Same as ISR |}
void ISR (){ void ISR2_seq(){//Same as ISR2}
int tx, ty; //scheduleG_K({I}) gives:
ty =y, ty=ty + L,y = ty; for(int i=0;i<K;i++)
tX = X; tX = tx -|; x = tx;} if(nondet()) ISRI _seq();
void ISR2(){ //scheduleG_K({2}) gives:
int tz; for(int i=0;i<K;i++)
tz = z;tz = tz+1; z=tz;} if(nondet()) ISR2_seq(); 23

Example

int x,y,z;
void task(){

int t, tx, ty, tz;
x = 10;
y=0;

only invoke
relevant ISRs

txX = X;
ty =y,
t = tx+tty;
ty=y;
txX = t-ty;
X = tX;
tz = t*2;
Z = tz;
ty=y
ty = t-ty;
y==ty;
}
void ISR (){
int tx, ty;
ty=y; ty=ty+ Ly =ty
tx = x; tx = tx -l; x = tx;}
void ISR2(){
int tz;
tz = z;tz = tz+1; z=tz;}

[Seq)

int x,y,z;
void task(){

int t, tx, ty, tz;

x = 10; scheduleG_K({1});

y = 0;scheduleG_K({I});

tX=X; ty =Y;

t = tx+ty;

ty=y;

txX = t-ty;

x = tx; scheduleG_K({1});

tz = t*2;

z = tz; scheduleG_K({2});

scheduleG_K({1});

ty =y

ty = t-ty;

y = ty; scheduleG_K({1});}
void ISR|_seq(){//Same as ISR |}
void ISR2_seq(){//Same as ISR2}
//scheduleG_K({I}) gives:
for(int i=0;i<K;i++)

if(nondet()) ISRI _seq();
//scheduleG_K({2}) gives:
for(int i=0;i<K;i++)

if(nondet()) ISR2_seq(); 24

Overview

* Analysis of sequentialized IDPs via abstract interpretation

Analysis of Sequentialized IDPs
via Abstract Interpretation

Sequential
IDPs ‘ €9 > Prcclagrams

Numerical static analysis
via abstract interpretation

Analysis of Sequentialized IDPs
via Abstract Interpretation

* Analysis of sequentialized |IDPs

* using generic numerical abstract domains

* Need to consider specific features of sequentialized IDPs
* firing number of interrupts affects the analysis result

* interrupts with period

Need specific abstract domains to consider interrupt features

A Specific Abstract Domain for
|IDPs

* At-most-once firing periodic interrupts
* periodic interrupts: firing with a fixed time interval

* the period of interrupts is larger than one task period

* An abstract domain for at-most-once firing periodic

Interrupts

* use boolean flag variables to distinguish whether ISRs have

happened or not

A Specific Abstract Domain for

IDPs

* Example of boolean flag abstract domain

int x;

void task()}{ void ISR (){
int tx,z; int tx;
x=0; tx = X;
tX=X; tx = tx+10;
tx=tx+ | s X = tX;
X=tX, }
z=1/(x-5);

}

int x; - :
void task(){ ISR| hasn’t flred] [ISRI has flred]
int tx,z; V

x=0; /* x & [0,0],x & [0,0] *
if(*) ISRI(); /*xf & [0,0],x" € [10,10]*/
tX=X;

tx=tx+|; /* xf & [0,0],x" € [10,10] */
X=tX; Fxte [LI],x e [ILTI] *
if(*) ISRI(); /*xt e [I,I],xe [II,11] *
z=1/(x-5); [* division is safe *

}

If only using interval domain:x € [1,21] and
there will be a division by zero false alarm

Overview

* Implementation and experiments

Implementation and Experiments

* Implementation
* frontend: CIL

* numerical abstract domain library: Apron

* Benchmarks

* OSEK programs from Goblint [Schwarz et al. POPLI |]
LEGO robotic control program (Nxt_gs)

universal asynchronous receive and transmitter (UART)

ping pong buffer program from satellite application program

ADC controller from satellite application program

a satellite control program

Implementation and Experiments

* Aims of the experiments
* check run time errors of IDPs

* compare the generated program size and the time
consumption of sequentialization methods with and without

considering data flow dependency

* compare the scalability and precision of numerical static
analysis for sequentialization methods with and without

considering data flow dependency

Implementation and Experiments

* Experiments of sequentialization

Program Sequentialization
Name Loc_ | Loc_ | #Vars | #ISR SEQ DF SEQ DF_SE
. , Q/SEQ
task | BR LOC | Time (s) | LOC | Time (5)| 5;Lo)
Motv_Ex 10 7 8 I 158 | 0.004 134 | 0.006 | 84.8I

DataRace Ex 20 40 2 385 | 0.004 | 242 | 0.005 | 62.86
Privatize 25 37 7 2 393 | 0.006 168 | 0.004 | 42.75
Nxt_gs 23 |54 27 I 1199 | 0.005 552 | 0.006 | 46.04
UART 129 |5 47 I 5940 | 0.010 ([1215 | 0.010 | 20.45
PingPong_Sate 130 53 21 I 3159 | 0.006 | 842 | 0.006 | 26.65
ADC_Sate 1870 | 2989 | 312 I 123K'| 0.449 | 23K 0.8 18.70
Satellite_Control | 33885 | 1227 | 1352 I |OM 16.1 534K 1.6 5.34

The scale of sequentialized program by DF _SEQ is smaller than SEQ

Implementation and Experiments

* Experiment of numerical static analysis

Program Analysis of SEQ (s) Analysis of DF_SEQ (s)| Warnings &
Name BOX oCT BOX oCT Proved
Properties
Motv_Ex 0.007 0.011 0.006 0.007 Div-by-zero
DataRace Ex 0.042 0.053 0.011 0.015 Assertion holds
Privatize 0.029 0.036 0.005 0.007 Assertion holds
Nxt_gs 0.113 0.140 0.040 0.046 Integer overflow
UART 0.732 5.782 0.128 |.177 No ArrayOutofBound
Ping_Pong 0.429 2.434 0.054 0.251 No ArrayOutofBound
ADC_Sate MemOut MemOut 80.5 MemOut 143(109/0/34)
Satellite Control | MemOut MemOut 5190 MemOut 544(479/19/46)

Precision of SEQ&DF_SEQ is the same and the scalability of DF_SEQ is

much better

Overview

 Motivation

* Interrupt-driven programs

* Sequentialization of IDPs

* Analysis of sequentialized IDPs via abstract interpretation
* Implementation and experiments

* Conclusion

35

Conclusion

* Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

éa) 4)

Sequential
DPs ‘ €9 > Prcc|>grams

Numerical static analysis
via abstract interpretation

Conclusion

* Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

éa) 4)

Programs

IDPs ‘ Seq > Sequential

a simple model
with restrictions
and assumptions

tatic analysis
t interpretation

Conclusion

* Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

éa) 4)

IDPs ‘ Seq > Sequential

Programs

consider data flow

dependency to sequentialize
IDPs (scalability)

Conclusion

* Contribution: a sound approach for numerical static
analysis of embedded C software with interrupts

4 4)

a specific abstract domain D\Programs
J

for sequentialized IDPs y

(precision)
Numerical static analysis
via abstract interpretation

Conclusion

* Future work

* extending the model to support IDPs with tasks
preemption tasks

* designing more specific abstract domains that fit IDPs

éa) 4)

Sequential
IDPs ‘ €9 > Prcclngrams

Numerical static analysis
via abstract interpretation

Thank you
Any Questions!

