
Making Rigorous Linear Programming Practical
for Program Analysis
Tengbin Wang !

College of Computer, National University of Defense Technology, Changsha, China

Liqian Chen1 !

College of Computer, National University of Defense Technology, Changsha, China

Taoqing Chen !

State Key Laboratory of High Performance Computing, College of Computer, National University
of Defense Technology, Changsha, China

Guangsheng Fan !

State Key Laboratory of High Performance Computing, College of Computer, National University
of Defense Technology, Changsha, China

Ji Wang1 !

State Key Laboratory of High Performance Computing, College of Computer, National University
of Defense Technology, Changsha, China

Abstract
Linear programming is a key technique for analysis and verification of numerical properties in
programs, neural networks, etc. In particular, in program analysis based on abstract interpretation,
many numerical abstract domains (such as Template Constraint Matrix, constraint-only polyhedra,
etc.) are designed on top of linear programming. However, most state-of-the-art linear programming
solvers use floating-point arithmetic in their implementations, leading to an approximate result
that may be unsound. On the other hand, the solvers implemented using exact arithmetic are too
costly. To this end, this paper focuses on advancing rigorous linear programming techniques based
on floating-point arithmetic for building sound and efficient program analysis. Particularly, as a
supplement to existing techniques, we present a novel rigorous linear programming technique based
on Fourier-Mozkin elimination. On this basis, we implement a tool, namely, RlpSolver, combining
our technique with existing techniques to lift effectiveness of rigorous linear programming in the
scene of analysis and verification. Experimental results show that our technique is complementary
to existing techniques, and their combination (RlpSolver) can achieve a better trade-off between
cost and precision via heuristic rules.

2012 ACM Subject Classification Theory of computation → Linear programming; Software and its
engineering → Formal methods

Keywords and phrases Linear programming, rigorous linear programming, abstract interpretation,
program analysis, Fourier-Mozkin elimination

Digital Object Identifier 10.4230/LIPIcs.CP.2021.22

Acknowledgements This work is supported by the National Key R&D Program of China (No.
2017YFB1001802), and the National Natural Science Foundation of China (Nos. 61872445, 62032024).

1 Introduction

Linear programming [23] is increasingly widespread in the field of analysis and verification,
such as program analysis, neural network verification, etc. Up to now, there have emerged a

1 Corresponding authors

© Tengbin Wang, Liqian Chen, Taoqing Chen, Guangsheng Fan and Ji Wang;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tengbin.wang@nudt.edu.cn
mailto:lqchen@nudt.edu.cn
mailto:chentaoqing19@nudt.edu.cn
mailto:guangshengfan@nudt.edu.cn
mailto:wj@nudt.edu.cn
https://doi.org/10.4230/LIPIcs.CP.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Making Rigorous Linear Programming Practical for Program Analysis

wide variety of high-efficiency and scalable linear programming solvers. One common trait of
these state-of-the-art solvers is that they are based on floating-point arithmetic and can only
produce an approximate solution which may be far away from the optimal solution or even
outside the feasible domain. On the other hand, the solvers based on exact arithmetic can
get exact optimal solutions, but are time-consuming and have poor scalability in practice.

In this paper, we particularly consider the scene of applying linear programming in
program analysis based on numerical abstract interpretation [6], in the context of which it is
important to guarantee the soundness of the analysis. Linear programming is one of the basic
operations of many numerical abstract domains, such as Template Constraint Matrix [21],
constraint-only polyhedra [7], etc. To achieve high efficiency while guaranteeing soundness,
this paper considers the scene of using low-cost rigorous linear programming techniques
based on floating-point arithmetic to implement numerical abstract domains.

Rigorous linear programming has received much attention in the last two decades in
the field of mathematics. In 2003, Neumaier and Shcherbina [19] propose a method that
computes safe bounds of the objective function of the primal problem by solving the dual
problem using floating-point linear programming. Jansson [11] proposes another technique
which focuses on linear programming problem with uncertain input data and infinite bounds
of decision variables. Although the above techniques produce general solution for rigorous
linear programming problems, they may provide too conservative results for some linear
programming problems in practice, especially when variables involve infinite bounds or
problems are ill-conditioned. Hence, they may cause much precision loss when being used to
implement program analysis.

Our approach. To make rigorous linear programming more practical for program
analysis, we propose a novel rigorous linear programming technique based on Fourier-Mozkin
elimination and interval arithmetic. This new technique is complementary to existing rigorous
linear programming techniques and their combination via some heuristic rules can achieve a
better trade-off between cost and precision than the identical ones.

The main contributions of this paper are as follows:
We introduce a new rigorous linear programming technique based on Fourier-Mozkin
elimination and interval arithmetic.
We conduct an experimental evaluation of the usefulness and effectiveness of our technique
for solving linear programming problems. The results show the availability of our
technique.
We develop a tool called RlpSolver that wraps existing rigorous linear programming
techniques together, and provide heuristic rules to help choosing proper solvers in different
cases.

For the sake of brevity, we use the following abbreviations throughout the paper:
LP: linear programming.
RLP: rigorous linear programming.
FME: Fourier-Mozkin elimination.

The rest of the paper is organized as follows. In Section 2, we review some preliminaries
of FME and RLP. Section 3 presents an overview of our work via a motivating example. In
Section 4, we illustrate our RLP approach based on FME in detail. Section 5 presents the
framework and heuristic rules of our tool named RlpSolver. Section 6 presents experimental
results. Section 7 discusses some related work. Finally, conclusions and future work are given
in Section 8.

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:3

2 Preliminaries

In this section, we first review some basic concepts and notations of linear system with
interval coefficients. After that, we illustrate two existing representative RLP techniques,
i.e., SafeBound [19] and ErrorBound [11].

2.1 Interval Linear System
Let A, A ∈ Rm×n be real matrices with A ≤ A. We define the following set of real matrices:

A =
[
A, A

]
=

{
A ∈ Rm×n : A ≤ A ≤ A

}
We call A an interval matrix, whose lower and upper bounds are A and A respectively. An
interval vector is a special interval matrix with one column, i.e., d =

{
d ∈ Rm : d ≤ d ≤ d

}
.

Assume that A ∈ IRm×n (where IR denotes the set of intervals whose bounds are real
numbers) is a interval matrix whose dimension is m× n and b ∈ Rm is a m-dimension real
vector. We define

Ax ≤ b (1)

as an interval linear inequality system, representing a set of linear inequality systems
constituted by all Ax ≤ b where A ∈ A.

2.2 Linearization Technique
Now, we describe a method (called Orthant Reduction in this paper) to transform interval
linear inequalities into linear inequalities [4]. Considering any interval linear inequality∑

i [ai, bi] xi ≤ c (0 ≤ i ≤ n), where the variable xk (0 ≤ k ≤ n) is always non-negative or
always non-positive. When xk ≥ 0, it always holds that akxk ≤ bkxk. Hence, in this
case,

∑
i [ai, bi] xi ≤ c is equivalent to

∑
i ̸=k [ai, bi] xi + akxk ≤ c. Similarly, when xk ≤ 0,

it always holds that akxk ≥ bkxk. Hence, in this case,
∑

i [ai, bi] xi ≤ c is equivalent to∑
i ̸=k [ai, bi] xi + bkxk ≤ c.

2.3 SafeBound
Neumaier and Shcherbina [19] propose a method (called SafeBound in this paper) that
derives the safe bounds of the objective function by post-processing on the approximate
result produced by a general floating-point LP solver.

Consider a LP model represented in the following form:

min cT x

s.t. Ax ≤ b (2)

the dual of which is

max bT y

s.t.

{
AT y = c

y ≤ 0
(3)

Suppose y is an approximate result of (3). By introducing interval arithmetic, we have
r := AT y − c ∈ r = [r, r]. Remind that Ax ≤ b and y ≤ 0, and thus we have cT x =

CP 2021

22:4 Making Rigorous Linear Programming Practical for Program Analysis

(
AT y − r

)T
x = yT Ax− rT x ≥ yT b− rT x ∈ yT b− rT x. Hence, µ := inf

(
yT b− rT x

)
is the

safe lower bound for cT x, which can be calculated via floating-point arithmetic as follows:

rounddown:
r = AT y − c;
t = yT b;
roundup:
r = AT y − c;
µ = max{ rT x, rT x, rT x, rT x } − t;
µ = −µ;

where rounddown (roundup) denotes that we set rounding mode to −∞ (+∞).

2.4 ErrorBound
Jansson [11] proposes a method (called ErrorBound in this paper) to derive rigorous error
bounds for the optimal value from boxes that are verified to contain feasible points. And
Keil implements this method in Lurupa [14]. The method is described as follows (we refer
the proofs to [11]).

Consider the following LP model:

f := min cT x

s.t.

{
Ax ≤ a

x ≤ x ≤ x
(4)

where the simple bounds of x, i.e., x and x, may be infinite (i.e., x = −∞ or x = +∞),
which can lead to uncertainties.

LP model (4) can be formally represented by the parameter tuple P := (A, a, c). To
cope with uncertainties of the input data, we introduce interval arithmetic by rewriting P

with corresponding interval parameter tuple P := (A, a, c). Then we focus on this resulting
interval LP problem P.

The dual of interval LP problem P is depicted as follows:

f := max aT y + xT u + xT v

s.t.

{
AT y + u + v = c
y ≤ 0, u ≥ 0, v ≤ 0

(5)

▶ Theorem 1 (Lower Bound). Consider an interval linear program P with simple bounds
x ≤ x. Suppose interval vectors y ≤ 0 satisfy
1. for all free xj and all A ∈ A, there exists y ∈ y such that

cj − (A:j)T
y = 0

holds, and
2. for all variables xj bounded on one side only the defects

dj := cj − (A:j)T y

are non-negative if the variable is bounded from below and non-positive if it is bounded
from above.

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:5

Then a rigorous lower bound for the optimal value can be computed as

inf
P ∈P

f(P) ≥ f := inf

aT y +
∑

xj ̸=−∞

xjd+
j +

∑
xj ̸=+∞

xjd−
j

 (6)

▶ Theorem 2 (Upper Bound). Consider an interval linear program P with simple bounds
x ≤ x. Suppose interval vector x satisfies

Ax ≤ a, x ≤ x ≤ x (7)

Then a rigorous upper bound for the optimal value can be computed as

sup
P ∈P

f(P) ≤ f := max{cT x} (8)

3 Overview

In this section, we provide a simple but typical example to illustrate our motivation. Consider
the following LP problem:

min z = −9x0 + 6x1 − 4x2

s.t.

3x0 − 8x1 + 5x2 ≤ −14
−5x0 − 2x1 + 6x2 ≤ 17
5x0 + 2x1 − 6x2 ≤ −17
−2x0 + 4x1 ≤ 19
x0, x1, x2 ≥ 0

(9)

Table 1 shows the results and execution time of solving the above LP problem via different
LP and RLP techniques. The first row of Table 1 shows the exact result given by glp_exact

which is based on exact arithmetic from GLPK [16], a linear programming kit maintained
by GNU. The existing RLP technique proposed by Neumaier and Shcherbina [19] (called
SafeBound in Sect. 2.4) only produces minus infinity which is sound but too conservative.
The reason lies in that the bounds of most variables in problem (9) involve infinity. Lurupa
[14] which implements Jansson’s method [11] (we call ErrorBound in Sect. 2.4), produces a
finite lower bound. Compared with Lurupa and SafeBound, our FME-based RLP produces
a more precise result which is also a rigorous finite lower bound. Besides, from the third
column of Table 1, we can see that among these techniques, our FME-based RLP has the
best performance.

Table 1 Results of motivating example.

approaches results time(s)

glp_exact 6.04166666666666785090 0.000292
Lurupa [14] 6.04166582676214503067 0.000063

SafeBound [19] −∞ 0.000160
FME-based RLP 6.04166666666666607454 0.000014

CP 2021

22:6 Making Rigorous Linear Programming Practical for Program Analysis

4 RLP based on Fourier-Mozkin Elimination

In this section, we will present our RLP approach based on Fourier-Mozkin elimination
(FME). First, we review how to solve LP problem using FME. Then, we introduce how to
derive a sound floating-point FME to construct a RLP approach. After that, we introduce
techniques to improve efficiency of FME, so as to improve efficiency of RLP.

4.1 LP via Fourier-Mozkin Elimination
Fourier-Mozkin elimination is a general technique to perform variable elimination from
a system of linear inequalities. Solving LP problems mathematically via FME has been
discussed by Williams [26]. In this subsection, we will introduce the principle of applying
FME to solve the following LP problem:

max cT x

s.t.

{
Ax ≤ b

x ≥ 0
(10)

To solve LP problem (10) by FME, we need to reconstruct the objective function by
generating a new linear inequality, namely, xn+1 − cT x ≤ 0 and then we get a new linear
inequality system:

Ax ≤ b

xn+1 ≤ cT x

x ≥ 0
(11)

For (11), we can get the upper bound of newly added variable, i.e., xn+1, by applying
FME to eliminate all the other variables in (11). Obviously, the upper bound of xn+1 is the
maximum value of cT x. Computing the minimum value of cT x can be reformulated as the
following problem:

min cT x = −
(
max − cT x

)
(12)

Following the above process, if applying FME based on exact arithmetic, we can get the
exact maximum (minimum) value of the LP problem. However, if we conduct FME using
floating-point arithmetic, the result may be unsound. In other words, we may get a smaller
(larger) value than the exact maximum (minimum) value.

To this end, in this paper, we propose a RLP approach based on FME using floating-point
arithmetic. The key idea is to use interval arithmetic and linearization techniques to derive a
sound floating-point FME. In the following subsections, we first describe how to get a sound
floating-point FME and then describe techniques to improve the precision and efficiency.

4.2 Sound Floating-Point FME
The key idea of constructing sound floating-point FME is to use interval arithmetic with
outward rounding, that is, rounding up for computing upper bound and rounding down for
computing lower bound. With interval arithmetic, we will get a new form of linear inequality
in which all coefficients of variables are intervals.

For the sake of presentation, we introduce the following notations to denote floating-point
operations:

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:7

⊕r: floating-point addition.
⊖r: floating-point minus.
⊗r: floating-point multiplication.
⊘r: floating-point division.

where r ∈ {+∞,−∞} represents rounding mode in which +∞ means upward and −∞ means
downward.

Assume we want to eliminate variable xi (i ≤ n) from the following two inequalities:
a+

i xi +
∑

k ̸=i,k≤n

a+
k xk + [a+

n+1, a+
n+1]xn+1 ≤ c+ if a+

i > 0 (13)

a−
i xi +

∑
k ̸=i,k≤n

a−
k xk + [a−

n+1, a−
n+1]xn+1 ≤ c− if a−

i < 0 (14)

where only the coefficient for variable xn+1 (that is introduced in (11) to denote the objective
value of the original LP problem) is an interval and all coefficients for other variables
xk (k ≤ n) are scalars. After dividing (13) and (14) respectively by the absolute value of the
coefficient of xi using interval arithmetic with outward rounding, we have

xi +
∑

k ̸=i,k≤n

[a+
k ⊘−∞ a+

i , a+
k ⊘+∞ a+

i]xk

+ [a+
n+1 ⊘−∞ a+

i , a+
n+1 ⊘+∞ a+

i]xn+1 ≤ c+ ⊘+∞ a+
i (15)

where a+
i > 0 and

− xi +
∑

k ̸=i,k≤n

[a−
k ⊘−∞ (⊖a−

i), a−
k ⊘+∞ (⊖a−

i)]xk

+ [a−
n+1 ⊘−∞ (⊖a−

i), a−
n+1 ⊘+∞ (⊖a−

i)]xn+1 ≤ c− ⊘+∞ (⊖a−
i) (16)

where a−
i < 0. By adding (15) and (16), we have∑

k ̸=i,k≤n

[(a+
k ⊘−∞ a+

i)⊕−∞ (a−
k ⊘−∞ (⊖a−

i)), (a+
k ⊘+∞ a+

i)⊕+∞ (a−
k ⊘+∞ (⊖a−

i))]xk+

[(a+
n+1 ⊘−∞ a+

i)⊕−∞ (a−
n+1 ⊘−∞ (⊖a−

i)), (a+
n+1 ⊘+∞ a+

i)⊕+∞ (a−
n+1 ⊘+∞ (⊖a−

i))]xn+1

≤ (c+ ⊘+∞ a+
i) ⊕+∞ (c− ⊘+∞ (⊖a−

i)) (17)

Then according to the LP model (10), we have xk ≥ 0 when k ≤ n. Hence, via Orthant
Reduction technique described in Sect. 2.2, (17) can be linearized into the following form
(where all coefficients for xk (k ≤ n) are scalars):∑

k ̸=i,k≤n

dkxk + [dn+1, dn+1]xn+1 ≤ c′ (18)

where

dk = ((a+
k ⊘−∞ a+

i)⊕−∞ (a−
k ⊘−∞ (⊖a−

i)) when k ≤ n

dn+1 = (a+
n+1 ⊘−∞ a+

i)⊕−∞ (a−
n+1 ⊘−∞ (⊖a−

i))

dn+1 = (a+
n+1 ⊘+∞ a+

i)⊕+∞ (a−
n+1 ⊘+∞ (⊖a−

i))

CP 2021

22:8 Making Rigorous Linear Programming Practical for Program Analysis

and

c′ = (c+ ⊘+∞ a+
i)⊕+∞ (c− ⊘+∞ (⊖a−

i))

We use the above process to eliminate a variable xi (i ≤ n) from a system of inequalities
where only the coefficient for variable xn+1 is an interval and the coefficients for other
variables xk (k ≤ n) are scalars, which results in a system of the same form. Obviously, from
the implementation point of view, we can skip the calculation of upper bound of interval
coefficient of xk (when k ≤ n) in (15) (17), which can reduce some unnecessary calculations.

The division operation during converting (13) ~(14) into (15) ~(16) may introduce many
interval coefficients for other variables, and converting interval coefficients into scalar ones
using linearization may introduce precision loss. Considering that integer values of normal
(not too large) magnitude can be represented exactly in floating-point representation, we
also consider implementing FME using multiplication described as follows.

Assume a+
i ⊗−∞ a−

i = a+
i ⊗+∞ a−

i can be represented exactly by floating-point represent-
ation (e.g., an integer). Then, after multiplying (13) by the minus of coefficient of xi in (14)
and multiplying (14) by the coefficient of xi in (13) using interval arithmetic with outward
rounding, we have

− a+
i a−

i xi +
∑

k ̸=i,k≤n

[a+
k ⊗−∞ (⊖a−

i), a+
k ⊗+∞ (⊖a−

i)]xk

+ [a+
n+1 ⊗−∞ (⊖a−

i), a+
n+1 ⊗+∞ (⊖a−

i)]xn+1 ≤ c+ ⊗+∞ (⊖a−
i) (19)

a+
i a−

i xi +
∑

k ̸=i,k≤n

[a−
k ⊗−∞ a+

i , a−
k ⊗+∞ a+

i]xk

+ [a−
n+1 ⊗−∞ a+

i , a−
n+1 ⊗+∞ a+

i]xn+1 ≤ c− ⊗+∞ a+
i (20)

where ai+ > 0 and a−
i < 0. By adding (19) and (20), we have∑

k ̸=i,k≤n

[(a+
k ⊗−∞ (⊖a−

i))⊕−∞ (a−
k ⊗−∞ a+

i), (a+
k ⊗+∞ (⊖a−

i))⊕+∞ (a−
k ⊗+∞ a+

i)]xk+

[(a+
n+1 ⊗−∞ (⊖a−

i))⊕−∞ (a−
n+1 ⊗−∞ a+

i), (a+
n+1 ⊗+∞ (⊖a−

i))⊕+∞ (a−
n+1 ⊗+∞ a+

i)]xn+1

≤ (c+ ⊗+∞ (⊖a−
i)) ⊕+∞ (c− ⊗+∞ a+

i) (21)

Then we can linearize (21) into scalar form similarly as linearizing (17). Similarly, we can
skip the calculation of upper bound of interval coefficient of xk in (21).

Finally, after we eliminate all variables x (consisting of xk’s (k ≤ n) from the system
(11), we will result in an one-variable interval linear system over xn+1:

[a1, a1]xn+1 ≤ b1

· · ·
[am, am]xn+1 ≤ bm

which is equivalent to the disjunction of the following two linear systems:
−xn+1 ≤ 0
a1xn+1 ≤ b1
· · ·
amxn+1 ≤ bm

∨

xn+1 ≤ 0
a1xn+1 ≤ b1
· · ·
amxn+1 ≤ bm

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:9

from which we can easily drive the upper bound of variable xn+1.
To sum up, overall, we can derive FME-based RLP by substituting the process of FME

described in Sect. 4.1 with sound floating-point FME described in this subsection. As
floating-point FME is sound, so the result of FME-based RLP is also rigorous.

4.3 Redundancy Removal
It is known that FME for eliminating multiple variables may introduce a large number of
redundant constraints during the process, which may lead to extra space and time cost.
Hence, redundancy removal is a significant point to make FME practical.

In this paper, we utilize bit vector to implement two techniques, that is, Chernikov’s rule
[5] and Kohler’s rule [15], to remove redundant constraints. The main ideas of these two
techniques are described in the following subsections.

To simplify the descriptions of redundancy removal techniques, we rewrite linear inequality
system (11) as

A′x′ ≤ b′ (22)

where A′, x′ and b′ respectively are

A′ =

 A 0
−I 0
−cT 1

 , x′ =
(

x

xn+1

)
, b′ =

b

0
0

 (23)

Note that sometimes we also represent linear system (22) via the parameter tuple (A′, b′).

4.3.1 Bit Vector
We associate each inequality respectively with an index set which consists of integers
representing the row index of the inequality in the original system (22). For efficiency, we
encode the index set via a bit vector. The main idea is that if one inequality generated
during FME is a combination result of some original inequalities, then in the bit vector of
the generated inequality, the bits corresponding to the combined original inequalities will be
set to 1, while the remaining bits are set to 0. E.g., if an inequality φ is a combination result
of the first and third inequalities of the original inequality system, then the bit vector of φ is
0 · · · 00101 (the lowest bit from right corresponds to the first inequality in the system).

4.3.2 Chernikov’s Rule
In [5], Chernikov proposes a heuristic rule to avoid generating some redundant constraints
during FME by restricting the length of the index set associated with each inequality. To
simplify description, we write qi to denote the index set of inequality i. Before the starting
of elimination, the index sets of each constraint qi in the original inequality system (22) are
initialized as singleton sets which consist of the row index i of the corresponding constraint qi

in the constraint matrix A′ (i.e., qi is one of {1, 2, . . . , m}, where m is the number of rows in
A′). Assume that we want to make a combination between inequalities i and j. Before doing
combination, we can calculate the index set of this combination, that is, qij = qi ∪ qj . If the
size of qij is strictly greater than s + 1, where s means the combination is to be conducted
during the process of eliminating the s-th variable (after eliminating s− 1 variables), then
we can skip this combination since the resulting constraint is definitely redundant [5].

Algorithm 1 depicts the procedure of FME integrated with Chernikov’s rule.

CP 2021

22:10 Making Rigorous Linear Programming Practical for Program Analysis

Algorithm 1 Procedure of FME with Chernikov’s rule.

1: /* (A′, b′) denotes the linear inequality system (22)*/
2: /* bv′ denotes the set of bit vectors corresponding to the inequalities in (A′, b′) */
3: /* j means the index of the variable to be eliminated, also corresponding to the j-th

column of A′*/
4: procedure FME_Iteration(A′, b′, bv′, j)
5: // i means the i-th row of A′ (i = 1, 2, . . . , m)
6: I+

j ← {i : aij > 0}; I−
j ← {i : aij < 0}; I0

j ← {i : aij = 0}
7: // Extracting inequalities and their corresponding bit vectors of A′ with indices in I0

j

8: (A′′, b′′, bv′′)← (A′, b′, bv′) |I0
j

9: for k+ ∈ I+
j do

10: for k− ∈ I−
j do

11: // bv_1bits() derives the number of one’s in a bit vector
12: ij_1bits← bv_1bits(bvk+ | bvk−) //Here | denotes bitwise OR operation
13: // Check Chernikov’s rule
14: if ij_1bits > j + 1 then
15: continue
16: end if
17: // FME_combine() combines of two inequalities, as described in Sect. 4.2
18: // FME_add() adds one inequality together with its corresponding
19: // bit vector into the resulting inequality system
20: (ac, bc)← FME_combine((A′

k+ , b′
k+), (A′

k− , b′
k−))

21: (A′′, b′′, bv′′)← FME_add((A′′, b′′, bv′′), (ac, bc, bvk+ | bvk−))
22: end for
23: end for
24: return (A′′, b′′, bv′′)
25: end procedure

Algorithm 2 Procedure of redundancy removal with Kohler’s Rule.

1: procedure RMR_ByKohler(A′, b′, bv′)
2: (A′′, b′′)← ∅; bv′′ ← ∅
3: // nb_rows() derives the number of rows for the parameter matrix
4: for i← 0 to nb_rows(A′)− 1 do
5: flag = false

6: for j ← i + 1 to nb_rows(A′) do
7: if (bvi | bvj) == bvi then
8: flag = true

9: break

10: end if
11: end for
12: if flag == false then
13: (A′′, b′′, bv′′)← FME_add((A′′, b′′, bv′′), (A′

i, b′
i, bv′

i))
14: end if
15: end for
16: return (A′′, b′′, bv′′)
17: end procedure

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:11

4.3.3 Kohler’s Rule
Kohler’s rule is another well-known technique for removing redundant constraints during
FME. In our design, after doing FME in one iteration step (i.e., eliminating one variable),
we can derive a new inequality system, (A′, b′), together with its bit vectors, bv′. Then we
check each inequality in (A′, b′) with others to find out whether the subset relation exists
between them, to determine the redundant inequality, more clearly, superset being redundant
and subset not. Algorithm 2 depicts the procedure of Kohler’s rule to remove redundant
constraints.

Finally, we integrate Chernikov’s rule and Kohler’s rule into the process of FME. Algorithm
3 depicts the procedure of our FME-based RLP, with initial inequality system as input and
maximum value of objective function as output.

Algorithm 3 Procedure of FME-based RLP.

Input: Initial linear inequality system (A′, b′)
Output: The maximum value of xn+1

1: // bv_initial() initializes bit vectors for initial system, as described in Sect. 4.3.1
2: bv′ ← bv_initial(A′, b′)
3: for j ← 1 to nb_columns(A′) do
4: (A′, b′, bv′) ← FME_Iteration(A′, b′, bv′, j)
5: (A′, b′, bv′) ← RMR_ByKohler(A′, b′, bv′)
6: end for
7: // max() derives the maximum value for objective function (noting
8: // that at this location, (A′, b′) only involves one variable, i.e., xn+1)
9: return max(A′, b′)

4.4 Optimization Considering Sparsity
In the field of program analysis, the objective function and constraint system are usually sparse
[24, 25], i.e., they contain mostly zeros. Hence, when we solve RLP problems encountered
during program analysis, we may make use of the sparsity in the LP problem to accelerate
the solving process.

Consider the LP problem encoded in (22), we say two variables xi and xj are relevant, if
there exists a constraint ϕ in A′x′ ≤ b′ of (22) such that the coefficients of xi and xj in ϕ

are not zero. The defined relevant relation is an equivalence relation on the set of variables
in x′, and the collection of its equivalence classes forms a partition of set of variables in x′.
Let S denote the equivalence class that variable xn+1 belongs in, and let S̄ denote the set of
variables not in S. Then the LP problem encoded in (22) can be reformulated as

A′x′ ≤ b′

where

A′ =
(

AS 0
0 AS̄

)
, x′ =

(
xS

xS̄

)
, b′ =

(
bS

bS̄

)
(24)

Thus, the LP problem encoded via
A′x′ ≤ b′

can be reduced to the following equivalent LP problem:

ASxS ≤ bS (25)

CP 2021

22:12 Making Rigorous Linear Programming Practical for Program Analysis

Note that to derive the variable bound for xn+1, (25) is equivalent to (22). It is worth
mentioning that solving (25) will be more efficient than solving (22), since solving (25)
involves less variables to be eliminated from a linear system with less constraints.

5 Integrating RLP Techniques

Our proposed FME-based RLP, and two existing RLP techniques (i.e., SafeBound and
ErrorBound) have their own advantages and disadvantages. E.g., FME-based RLP has high
precision and specializes in small-scale LP problems but degrades a lot in efficiency when
the scale of LP problems increases. SafeBound and ErrorBound can handle large-scale LP
problems but have poor accuracy. To make RLP more practical and effective, we implement
a tool called RlpSolver, combining our FME-based RLP together with two existing RLP
techniques, that is, SafeBound [19], ErrorBound [11] (implemented in Lurupa [14]). Fig. 1
provides an overview of RlpSolver.

Exit

SafeBound ErrorBoundFME

Input

Heuristics

user's
options

Exit Exit

(a) Framework of RlpSolver

problem
size

FME Percent of

infinite
bounds of
variables

SafeBound ErrorBound

FME ExitExit

No. of variables and
No. of constraints

fail successsuccess

largesmall

Exit

Exit

Input

low high

 infinite
 bounds

(b) Workflow of Heuristics in RlpSolver

Figure 1 Overview of RlpSolver

As shown in Fig. 1a, in RlpSolver, we can choose any of the three techniques to solve
one LP problem. Moreover, RlpSolver provides an option to automatically choose a proper
technique to solve a LP problem via heuristic rules. The workflow of the heuristics we design
is depicted in Fig. 1b, which automatically chooses a proper RLP technique for a given LP
problem. The details of heuristic rules are as follows:

FME-based RLP is often more precise than SafeBound and ErrorBound in many cases,
but may cost more time when the number of constraints is greater than some threshold.
Hence, by default, RlpSolver will choose FME-based RLP when the number of constraints
is less than some threshold. In other cases, we will try SafeBound or ErrorBound.
When the number of constraints is greater than some threshold, we will choose between
ErrorBound and SafeBound. Specifically, when many variables’ bounds are infinite (i.e.,
when the percent of infinite bounds exceeds some threshold), we will use ErrorBound
since SafeBound may often give infinity as results and ErrorBound behaves better than
SafeBound for infinite bounds.
Since ErrorBound and SafeBound depend upon floating-point simplex or other LP
algorithms, they may encounter numerical instability when solving LP problems and may
not fit for dealing with ill-conditioned (dual) problems, while FME-based RLP is more
robust than ErrorBound and SafeBound, thus we will try FME-based RLP if ErrorBound
or SafeBound fails.

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:13

6 Implementation and Experiments

To evaluate the precision and efficiency of our proposed FME-based RLP and the integration
tool RlpSolver, we conduct experiments over randomly generated LP problems. We apply
glp_exact, SafeBound, Lurupa (which implements ErrorBound), and FME-based RLP to
our benchmark respectively. We use the exact LP API from GLPK (a linear programming
kit maintained by GNU) [16], i.e., glp_exact (which is implemented via exact arithmetic), as
our baseline.

By setting thresholds for the number of variables and constraints (10 and 15 respectively),
we split our benchmark into four categories, that is, small number of variables with small
number of constraints (SV_SC), small number of variables with large number of constraints
(SV_LC), large number of variables with small number of constraints (LV_SC), and large
number of variables with large number of constraints (LV_LC). In our benchmark, the
ranges of sizes of constraints (and variables) in SV_SC, SV_LC, LV_SC and LV_LC are
6~14 (4~9), 15~25 (4~9), 12~14 (10~12), 15~25 (10~18) respectively. Fig. 2 shows the log
of execution time. From Fig. 2, we can see that when the number of constraints is small
(as shown in Fig. 2 (a) and (c)), the performance of FME-based RLP is almost at the same
level as Lurupa and SafeBound, even better in many cases. When the number of constraints
is large (as shown in Fig. 2 (b) and (d)), FME-based RLP costs more time than SafeBound
and Lurupa, but its performance is mostly better than that of glp_exact.

0 20 40 60 80 100120140160
Case ID

(a)

6
5
4
3
2
1
0

Lo
g

of
 E

xe
cu

tio
n

Ti
m

e

glp_exact
FME
SafeBound
Lurupa

0 20 40 60 80 100 120 140
Case ID

(b)

5
4
3
2
1
0
1

Lo
g

of
 E

xe
cu

tio
n

Ti
m

e

glp_exact
FME
SafeBound
Lurupa

0 20 40 60 80 100 120
Case ID

(c)

6
5
4
3
2
1
0

Lo
g

of
 E

xe
cu

tio
n

Ti
m

e

glp_exact
FME
SafeBound
Lurupa

0 20 40 60 80 100 120
Case ID

(d)

5
4
3
2
1
0
1

Lo
g

of
 E

xe
cu

tio
n

Ti
m

e

glp_exact
FME
SafeBound
Lurupa

Figure 2 Execution time over benchmark SV_SC (a), SV_LC (b), LV_SC (c), and LV_LC (d).

For the precision, as shown in Table 2, we provide the statistics of the number of instances
that FME-based RLP, SafeBound and Lurupa respectively provide the highest precision in
benchmark. For example, in SV_LC category, there are 149 out of 152 cases where FME-
based RLP obtains the highest precision. Experimental results show that FME-based RLP
is mostly more precise than SafeBound and Lurupa. Thus, when the number of constraints
is small, FME-based RLP is the best choice and also a good choice in the cases where the
number of constraints is large but requiring high precision. Moreover, during experiments,

CP 2021

22:14 Making Rigorous Linear Programming Practical for Program Analysis

we find that there are many cases where SafeBound outputs too conservative results (i.e.,
infinity as the objective value) while FME-based RLP can output bounded (finite) results
which are close to that of glp_exact. In other words, FME-based RLP can be used in these
cases where SafeBound or Lurupa provide too conservative results, to improve the precision
of program analysis. The last column of Table 2 shows that there are 272 out of 575 cases
where integration tool RlpSolver can derive the highest precision.

Table 2 The number of cases where each technique provides the highest precision.

Categories Total FME-based RLP SafeBound Lurupa Equal1) RlpSolver

SV_SC 173 1572) 8 24 7 156
SV_LC 152 149 2 1 0 1
LV_SC 123 1153) 1 10 1 115
LV_LC 127 127 0 0 0 0

1) "Equal" means the results of FME-based RLP, SafeBound and Lurupa are equal.
2) There is 1 case where FME-based RLP is equal to only SafeBound and 1 case where

FME-based RLP is equal to only Lurupa in this category.
3) There is 1 case where FME-based RLP is equal to only Lurupa in this category.

For the execution time, Fig. 3 shows the cumulative time of different techniques for
solving LP problems in benchmark. The dashed line at the top left corner of Fig. 3 means the
time-out period. The curves of FME-based RLP and RlpSolver show that FME-based RLP
and RlpSolver take less execution time over the left half part than Lurupa and SafeBound.
Over the right half part (which consists of problems with large number of constraints), the
performance of FME-based RLP degrades a lot, while the execution times of RlpSolver,
SafeBound and Lurupa are still in the same order of magnitude. On the whole, via heuristic
rules, RlpSolver can achieve a good balance in terms of time cost and precision by choosing
a proper technique for different cases.

0 90 180 270 360 450 540
Number of LP problems Solved

10 5

10 4

10 3

10 2

10 1

100

Ti
m

e(
s)

2

glp_exact
FME-based RLP
SafeBound
Lurupa
RlpSolver

Figure 3 Execution time of several techniques.

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:15

7 Related Work

FME and FME-based LP. Fourier-Mozkin elimination is a general technique to perform
variable elimination from a system of linear inequalities. Kohler [15] proposes a heuristic
rule (called Kohler’s rule now) for removing redundant constraints. Chernikov [5] proposes
additional rules to avoid generating some redundant combinations during elimination. Bas-
trakov et al. [1] propose a new way of checking Chernikov rules using bit pattern trees as an
accelerating data structure to avoid extensive enumeration. Maréchal et al [17] present a
raytracing algorithm that replaces most LP problem resolutions by distance computations
to efficiently eliminate redundancies in polyhedra. Solving LP problems via FME has been
continuously studied. Williams [26] first adapts FME to solve LP problems mathematically.
Kanniappan et al. [12] propose a modified FME method of solving LP problems which can
reduce the number of additional constraints to a considerable extent.

RLP. Rigorous linear programming has received much attention in the recent two
decades. In the 2003 seminal paper, Neumaier and Shcherbina [19] propose a technique that
computes safe bounds of objective value of primal problem by solving the dual problem with
floating-point linear programming. At almost the same time, Jansson [11] proposes another
method for LP with uncertain input data and infinite bounds. Keil implements Jansson’s
method [11] in a tool, named Lurupa [14]. Guilbeau et al. [10] review the technique proposed
in[19] and point out typographical errors in original publication and give some advice for
other implementers. Rump [20] gives some details on how to obtain mathematically rigorous
results for global optimization implemented in floating-point arithmetic.

LP and RLP in Analysis and Verification. LP is widely-used in analysis and
verification of programs, neural networks, etc. Sankaranarayanan et al. [22] use standard LP
in their Template Constraint Matrix (TCM) domain to compute the right-hand constants
for templates. Chen et al. [3] use RLP in their floating-point polyhedra domain [3] and
interval polyhedra domain [4] to support domain operations. David Monniaux [18] proposes
a simple but sound and complete preprocessing phase which can be adapted to existing SMT
solvers via floating-point computations to help an exact linear arithmetic decision procedure.
Besson [2] explains how to design a sound procedure for linear arithmetic built on an inexact
floating-point LP solver. Dillig et al. [8] propose a sound and complete simplex-based
algorithm for solving linear inequalities over integers which can be viewed as a semantic
generalization of the branch-and-bound technique. It is also worth mentioning that LP and
mixed integer LP (MILP) are used in recent neural network verification [9, 13].

8 Conclusion

Rigorous linear programming is an important technique to make implementations of program
analysis and verification techniques sound and efficient in practice. Existing RLP techniques
sometimes produce too conservative (even unbounded) results, especially when many bounds
of variables in the problem are infinite or when the LP problem is ill-conditioned. To address
this problem, we propose a new technique, FME-based RLP, which can be treated as a
supplement to existing RLP techniques. On this basis, we implement a tool, RlpSolver,
wrapping FME-based RLP and existing RLP techniques together, and propose heuristics
to select a proper technique for different LP problems. Experimental results show that our
FME-based RLP is complementary to existing RLP techniques and provides more precise
results than existing RLP techniques for many cases. Experimental results also show that
our RLP integration tool, i.e., RlpSolver, achieves a good performance in terms of precision
and efficiency by choosing a proper technique for different cases.

CP 2021

22:16 Making Rigorous Linear Programming Practical for Program Analysis

For future work, we plan to make use of more techniques to expedite removing redundancy
during the process of FME. We also plan to conduct experiments in the context of using
RLP in program analysis and verification.

References
1 SI Bastrakov, AV Churkin, and N Yu Zolotykh. Accelerating fourier–motzkin elimination

using bit pattern trees. Optimization Methods and Software, pages 1–14, 2020.
2 Frédéric Besson. On using an inexact floating-point lp solver for deciding linear arithmetic in

an smt solver. In 8th International Workshop on Satisfiability Modulo Theories, 2010.
3 Liqian Chen, Antoine Miné, and Patrick Cousot. A sound floating-point polyhedra abstract

domain. In Asian Symposium on Programming Languages and Systems, pages 3–18. Springer,
2008.

4 Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. Interval polyhedra: An abstract
domain to infer interval linear relationships. In International Static Analysis Symposium,
pages 309–325. Springer, 2009.

5 Sergei Nikolaevich Chernikov. The convolution of finite systems of linear inequalities. USSR
Computational Mathematics and Mathematical Physics, 5(1):1–24, 1965.

6 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252,
1977.

7 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 84–96, 1978.

8 Isil Dillig, Thomas Dillig, and Alex Aiken. Cuts from proofs: A complete and practical technique
for solving linear inequalities over integers. In International Conference on Computer Aided
Verification, pages 233–247. Springer, 2009.

9 Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
International Symposium on Automated Technology for Verification and Analysis, pages 269–
286. Springer, 2017.

10 Jared T Guilbeau, Md Istiaq Hossain, Sam D Karhbet, Ralph Baker Kearfott, Temitope S
Sanusi, and Lihong Zhao. A review of computation of mathematically rigorous bounds on
optima of linear programs. Journal of Global Optimization, 68(3):677–683, 2017.

11 Christian Jansson. Rigorous error bounds for the optimal value of linear programming problems.
In International Workshop on Global Optimization and Constraint Satisfaction, pages 59–70.
Springer, 2002.

12 P Kanniappan and K Thangavel. Modified fourier’s method of solving linear programming
problems. Opsearch, 35(1):45–56, 1998.

13 G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. In International Conference on Computer Aided
Verification, 2017.

14 Christian Keil. Lurupa-rigorous error bounds in linear programming. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

15 David A Kohler. Projections of convex polyhedral sets. Technical report, CALIFORNIA UNIV
BERKELEY OPERATIONS RESEARCH CENTER, 1967.

16 Andrew Makhorin. Gnu linear programming kit. Moscow Aviation Institute, Moscow, Russia,
38, 2001.

17 Alexandre Maréchal and Michaël Périn. Efficient elimination of redundancies in polyhedra
by raytracing. In International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 367–385. Springer, 2017.

T. Wang, L. Chen, T. Chen, G. Fan and J. Wang 22:17

18 David Monniaux. On using floating-point computations to help an exact linear arithmetic
decision procedure. In International Conference on Computer Aided Verification, pages
570–583. Springer, 2009.

19 Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-integer linear
programming. Mathematical Programming, 99(2):283–296, 2004.

20 Siegfried M Rump. Mathematically rigorous global optimization in floating-point arithmetic.
Optimization Methods and Software, 33(4-6):771–798, 2018.

21 Sriram Sankaranarayanan, Thao Dang, and Franjo Ivančić. Symbolic model checking of hybrid
systems using template polyhedra. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 188–202. Springer, 2008.

22 Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna. Scalable analysis of linear
systems using mathematical programming. In International Workshop on Verification, Model
Checking, and Abstract Interpretation, pages 25–41. Springer, 2005.

23 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
24 Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Making numerical program analysis

fast. In David Grove and Stephen M. Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 303–313. ACM, 2015.

25 Gagandeep Singh, Markus Püschel, and Martin T. Vechev. A practical construction for
decomposing numerical abstract domains. Proc. ACM Program. Lang., 2(POPL):55:1–55:28,
2018.

26 H Paul Williams. Fourier’s method of linear programming and its dual. The American
mathematical monthly, 93(9):681–695, 1986.

CP 2021

	1 Introduction
	2 Preliminaries
	2.1 Interval Linear System
	2.2 Linearization Technique
	2.3 SafeBound
	2.4 ErrorBound

	3 Overview
	4 RLP based on Fourier-Mozkin Elimination
	4.1 LP via Fourier-Mozkin Elimination
	4.2 Sound Floating-Point FME
	4.3 Redundancy Removal
	4.3.1 Bit Vector
	4.3.2 Chernikov's Rule
	4.3.3 Kohler's Rule

	4.4 Optimization Considering Sparsity

	5 Integrating RLP Techniques
	6 Implementation and Experiments
	7 Related Work
	8 Conclusion

