
Automated Program Repair by Using Similar Code Containing Fix Ingredients

Tao Ji, Liqian Chen, Xiaoguang Mao, Xin Yi
College of Computer

National University of Defense Technology
Changsha, China

jitao 91@163.com, {lqchen, xgmao}@nudt.edu.cn, yixin 09@163.com

Abstract—Recently, much attention has been paid on pro-
gram repair by reusing existing code from other software.
However, the technique of reusing code needs to search fix
ingredients which refer to the existing code that can be reused
to form a fix, and the searching space tends to be huge.
Finding out those code fragments that contain proper fix
ingredients efficiently will largely improve repair efficiency.
Based on the assumption that similar code fragments may
contain fix ingredients, this paper proposes reusability metrics
of similar code fragments for program repair. By combining
the similarity and differentiality at the level of program syntax
trees, reusablility metrics is able to help picking out the
most suitable reusable candidate. In order to apply reusability
metrics to automated program repair, we have implemented
SCRepair, which can utilize the guidance of reusability metrics
to automatically fix bugs. Experimental results indicate that
SCRepair can improve repair efficiency by making use of the
reusability metrics of similar code.

Keywords-Program Repair; Similar Code; Reusability Met-
rics; Fix Localization

I. INTRODUCTION

Recently, considerable attention has been paid on auto-
mated program repair, which aims at automatically generat-
ing patches without manual efforts [1]–[4]. Generally speak-
ing, the automated repair work consists of three major steps:
1) fault localization; 2) generation of candidate patches; 3)
validation of candidate patches. The process of generating
repair candidates plays an important role in the repair work.

In the area of search-based repair, much attention has been
paid on reusing existing code and reusing fix operations.
Due to the habit of copy-and-paste in programming, similar
code fragments may contain the same bug which may be
neglected to fix during software maintenance. Under the
hypothesis that recurring bugs are produced due to software
reusing, the technique of reusing fix operations to repair
faulty program is plausible [4] [5]. However, when the fix
operations are not available (e.g., a functionally similar code
fragment was implemented by other developers without any
known bugs), we fail to use the technique of reusing fix
operations to fix the faulty program. On the other hand,
reusing existing code can fix the bug with no need of fix
operations from historical versions of software. However,
this repair technique is limited by the huge searching space
of fix ingredients from other programs. Fix ingredients refer

to the existing code that can be reused to fix the faulty
program [6]. Finding out those code fragments that contain
proper fix ingredients efficiently will improve a lot the
efficiency of repair. In other words, if we can correctly
rank the code fragments by the probability of containing fix
ingredients, the repair work will achieve better performance.

Based on the assumption that similar code may contain
fix ingredients, we propose reusability metrics of similar
code fragments for program repair. In addition, to apply
the reusability metrics of similar code to automated repair
tools, we implement a prototype repair tool called SCRepair
(Similar-Code-based Repair).

Specifically, this paper makes the following contributions:
• To our knowledge, this paper is the first to propose

reusability metrics of similar code fragments for pro-
gram repair (Section III). Experimental results show
that reusability metrics can reduce the cost of finding
out similar code fragments that contain fix ingredients.

• We implement a repair tool called SCRepair, which can
leverage different techniques of fix localization (Section
IV). Under the assumption that similar code may con-
tain fix ingredients together with reusability metrics,
this paper proposes two strategies of fix localization
to guide the SCRepair to fix bugs. Experimental results
indicate that SCRepair can fix bugs efficiently by using
those two strategies.

II. BACKGROUND AND RELATED WORK

A. Program Repair

Semantic-based repair can fix simple bugs by synthe-
sizing correct code that meets the specifications. However,
these semantic-based repair tools fail to scale well to large-
scale programs due to the limitation of static analysis meth-
ods [2] [3]. Search-based repair transforms the problem of
program repair into the problem of searching the correct
repair. For example, GenProg uses genetic programming
to generate candidate patches by inserting code from other
locations in the faulty program [1]. CodePhage automatically
locates correct code in one application, and then transfers
that code into another application [4]. Search-based repair
has advantages over semantic-based repair on the size and
complexity of faulty programs.



B. Similar Code Detection

Similar code detection techniques have been applied in
many fields successfully, such as modifying clones consis-
tently, bug detection, software property protection and so on.
In the literature, many detection tools were implemented
based on different approaches, and most of them perform
well to find the textual similar code fragments, as shown in
Roy’s work [7].

C. Similar Code Detection used in Program Repair

SecureSync [5] measures the similarity between the re-
ported vulnerable code and the given code. If the similarity
between the reported vulnerable code and the suspicious
code is greater than a given threshold, and the similarity
will be decreased when the reported vulnerable code is fixed,
the fix operation will be recommended to fix the vulnerable
code. CodePhage [4] uses two instrumented executions of
the donor to identify the correct code to transfer into the
recipient: one positive testcase and one negative testcase
enable CodePhage to isolate a single check that is presented
in the donor but absented in the recipient. By comparing
the donor with the recipient shown in [4], we find that these
two code fragments are similar at the level of functions.
The cases of SecureSync and CodePhage have shown the
effectiveness of applying similar code to program repair.

III. REUSABILITY METRICS

In this section, we present our reusability metrics of
similar code fragments for program repair.

A. Motivating Example

Fig. 1 presents two code fragments from different stu-
dents’ answers during the final exam of a C programming
course in our university. Students are required to compute the
minimum value that meets the constraints by enumeration.
The detailed constraints are as follows. Given a (a∈[1,30]),
compute the minimum value of b+c (b, c∈ [1,1000]), where
a, b, c are integers, and a, b, c should satisfy the constraint:
|arctan(1/a)-arctan(1/b)-arctan(1/c)|<10−8. The code frag-
ment shown in Fig. 1(a) fails to compute the minimum value
of b+c and the IF-condition is wrong, which is correctly
implemented in Fig. 1(b). On the other hand, the code
fragment in Fig. 1(b) lacks the check for the value of a,
which exactly appears in line 4 of Fig. 1(a).

Suppose that we have constructed a database of all
students’ code fragments. The technique of reusing fix
operations obviously cannot be applied here to repair the
faulty program, because fix operations are not available.
Hence, we choose the technique of reusing existing code to
repair faulty programs. GenProg randomly picks the inserted
code that can pass the semantic check, which can filter out
the code containing undefined variables. However, the cost
of repair will still be high due to the similar naming rules in
students’ code. CodePhage requires two test cases to locate

the correct IF statement. One positive testcase is used to
locate the code that has similar property and one negative
testcase ensures that the code does not have the same bug.
However, it is disappointing that the positive testcase of Fig.
1(a) may failed in Fig. 1(b) and the positive testcase of Fig.
1(b) also may failed in Fig. 1(a). Consequently, CodePhage
is unable to repair Fig. 1(a) and Fig. 1(b) by locating correct
code from each other.

By comparing these students’ code, we find that these
code fragments are similar due to the same target function-
ality. The two code fragments have similar syntax trees, and
the different parts exactly contain the fix ingredients.

To improve the efficiency of fix localization, we now
propose the reusability metrics of similar code fragments
considering the similarity and differentiality between them.
After ranking the similar code by the probability of contain-
ing fix ingredients, software developers or automated repair
tools can efficiently locate fix ingredients.

B. Metric Formula

Although those similar code detection tools have dif-
ferent match algorithms, they all compute the similarity
between different code fragments. Similarity can represent
the proportion of similar part well. For example, based on
syntactic approaches, the literature [8] computes the syntax
trees similarity using the following equation:

Sim =
2 ∗ S

2 ∗ S + L+R
(1)

where Sim represents the similarity between two syntax
trees, S represents the number of the same nodes, L and R
represent the numbers of different nodes in each syntax tree
respectively. Other approaches of calculating similarity be-
tween code fragments also can be applied here in reusability
metrics.

In the process of similar code detection, a threshold of
similarity is needed to control the number of candidates.
Intuitively, the greater similarity we get, the higher like-
lihood of implementing the same function and containing
fix ingredients will be in those similar code. However, the
exactly identical code fragments that contain the same bug
should be filtered out from the database of candidates.

It is obvious that the different parts of similar code
fragments are more likely to contain the fix ingredients.
Existing work [5] shows that similar code fragments that
have high similarity often have the same bug, and the next
version of this fragment that has relatively smaller similarity
always contains fix ingredients. Based on this insight, not
only the similarity, but also differences between similar code
fragments should be considered for program repair.

Now the question is how to compute the value of Dif,
which represents the metric value of differentiality. First, we
use the notion of change action to refer to a kind of source
code modification as shown in [9]. ChangeDistiller [10] is



1: int solution(int a){

2:   int b!c;

3:   int sum=0;

4:   if(a>=1&&a<=30){

5:   for(b=0;b>=0&&b<=1000;b++){

6:     for(c=0;c>=0&&c<=1000;c++){

7:       if(fabs(b-c)<1.0e-8&&atan(1/a)==atan(1/b)+atan(1/c))

8:         sum=b+c;

9:      }

10:  }

11:  return sum;}

12:  else return 0;}

(a) a code fragment that does not compute b+c correctly

1:int solution(int a)

2:{

3:  int min=100000;

4:  for(int b=1;b<1000;b++)

5:  for(int c=1;c<1000;c++)

6:  {

7:    double m=atan(1.0/a)-atan(1.0/b)-atan(1.0/c);

8:    if(fabs(m)<0.00000001)

9:      if(min>b+c)

10:      min=b+c;

11:  }

12: return min;}

(b) a code fragment that misses the check for the value of a

Figure 1: Two Code Fragments from Different Students’ Answers during An Exam

a fine-grained AST differencing tool for Java. It expresses
fine-granularity source code changes using a taxonomy of
41 source changes types, such as “statement insertion” and
“if conditional change”. Since change actions vary when
the types of bugs are different, each change action should
make different contributions to the value of Dif. While some
change actions are common, other change actions are rare
in bug fix activities. For example, imagine that both B and
C are similar with the buggy code fragment A. The change
action from A to B is “insertion of IF statement” whereas
the change action from A to C is “change of variable name”.
In most cases, to fix the bug, software developers prefer B
to C. In the metrics, we calculate the sum of the weight
values of all change actions. However, the higher number
of change actions does not mean the higher probability of
containing fix ingredients. Based on these insights, we put
forward the mean value of the weights of all change actions
to calculate Dif.

Dif =

∑n
i=1 Weighti

n ∗Weightmax
(2)

where Weighti represents the weight value of the i-th
change action, n represents the number of change actions,
Weightmax is the normalization divisor and represents the
maximum weight value of all change actions.

As described earlier, Sim and Dif are two key parameters
in reusability metrics for program repair. We expect reusable
similar code fragments to have the greater Sim and Dif
values than others in reusability metrics. Based on the
analysis above, we propose the following reusability metrics
for program repair:

R =

{
0 Sim<TH or Sim=1,
1
2 ∗ (Dif + Sim−TH

1−TH ) 1>Sim≥TH.
(3)

where R represents the recommendation value of code frag-
ment (where 1>R≥0, and the higher the value, the higher the
likelihood of containing fix ingredients), TH represents the

threshold of Sim which can be empirically given by similar
code detection tools.

The weight model of change actions to determine Weighti
in reusability metrics should efficiently reflect the reusability
of change actions. This paper will use a weight model of
change actions from the previous work [9] to calculate Dif.

C. Experimental Design

In our experiments, we use NICAD [11] to compute Sim
and the change action model CTET [9] to compute Dif. In
addition, we set the weight value of each change action by
the “ALL” sample of CTET.

We randomly picked out six groups of similar code
fragments from Tomcat701 to construct the benchmark.
TABLE I shows detailed information of this bench-
mark. The column “Buggy Code Fragment” shows
the buggy method of a particular version. For exam-
ple, “java.org.apache.coyote.ajp.AjpProcessor.process” rep-
resents the method name, and “88108dd387” represents
the part of commit number which represents the particular
version of this method. The column “Candidates” shows the
method that may contain fix ingredients, while the column
“Sim≥0.3” shows the number of candidates whose similarity
values are greater than 0.3.

Note that during the process of computing reusability
metrics, we have filtered out the debugging statements that
do not affect program behaviors.

D. Results and Analysis

Fig. 2 shows R values of candidates from “java.org.apache
.coyote.ajp.AjpAprProcessor.process” by using reusablity
metrics. We use the NCC (Number of Checked Candidates)
to evaluate the effectiveness of reusability metrics. NCC
denotes the number of candidates that we have checked
before we find one reusable candidate. TABLE II shows the
NCC scores of given candidates by different methods. The

1git://git.apache.org/tomcat70.git



Table I: Six Groups of Similar Code

No. Buggy Code Fragment Candidates Sim≥0.3

1 java.org.apache.coyote.ajp.AjpProcessor.
process-88108dd387

java.org.apache.coyote.ajp.
AjpAprProcessor.process 33

2 java.org.apache.coyote.http11.InternalAprInputBuffer.
parseRequestLine-6e05c982b4

java.org.apache.coyote.http11.
InternalInputBuffer.parseRequestLine 6

3 test.org.apache.catalina.tribes.demos.IntrospectionUtils.
setProperty-93df08d1f2

java.org.apache.tomcat.util.
IntrospectionUtils.setProperty 10

4 java.org.apache.jasper.compiler.TldLocationsCache.
tldScanResourcePaths-e78978d6ce

java.org.apache.catalina.startup.
TldConfig.tldScanResourcePaths 12

5 java.org.apache.coyote.ajp.AbstractAjpProcessor.
asyncDispatch-6e05c982b4

java.org.apache.coyote.http11.
AbstractHttp11Processor.asyncDispatch 5

6 java.org.apache.catalina.ha.session.DeltaSession.
isValid-2acefbd810

java.org.apache.tomcat.util.
net.AprEndpoint.isValid 7

a8
4f
ab

cb
c6

51
4c

d3
0b

4b

7c
e1

c9
c3

c3

ba
30

dc
a1

79

91
ea

d6
dc

27

7d
6b

13
36

71

05
6a

30
90

6e

56
2b

54
6a

69

ce
4c

5d
d6

b9

e1
68

64
90

d0

66
12

c3
75

92

54
11

f9
79

ff

61
d2

b8
89

3c

67
e4

ea
18

64

3d
7e

d6
14

1c

9a
5e

db
71

15

98
4a

e2
36

ea

b0
35

25
e0

6b

69
72

5a
38

0c

94
e6

c0
58

df

c8
2f
12

ba
ca

e1
72

46
6e

98

90
ec

96
75

fa

da
50

3e
e3

93

8f
df
b0

49
91

12
9b

4b
d3

ec

9e
ae

33
4e

94

32
71

3a
61

e3

03
0e

66
45

bc

de
95

ba
cf
fb

35
41

76
dd

87

ec
cb

83
f5
34

30
bd

c2
c9

1f

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

R

java.org.apache.coyote.ajp.AjpProcessor.process-88108dd387

fix ingredients don't exist
fix ingredients exist

Figure 2: Candidates from java.org.apache.coyote.ajp.Ajp-
AprProcessor.process

column “Randomness” represents the mean value of NCC by
randomly picking out from all similar fragments; the column
“Similarity” represents the NCC by using rankings of sim-
ilarity values; the column “Reusability Metrics” represents
the NCC by using rankings of reusability metrics values.

Table II: NCC of Picking Out Randomly, Guiding by Simi-
larity and Reusablity Metrics

No. Randomness Similarity Reusability Metrics
1 5.7 3 1
2 3.5 2 1
3 2.8 3 2
4 3.2 2 2
5 3 2 2
6 2.7 3 2

The results showed in TABLE II indicate that each
buggy code fragment’s NCC decreases obviously after us-
ing reusability metrics. Then, we use nonparametric statis-
tics to analyze the result data. For nonparametric Mann-
Whitney-Wilcoxon test, the null hypothesis is that result
data from sample1 and sample2 share the same distribution;
the alternate hypothesis is that the two group data have
different distributions. We say the improvement of sample1

over sample2 is statistically significant when we reject the
null hypothesis at a 0.05 significance level and the mean
value of sample1 is smaller than sample2’s. We compute
the p-values of Mann-Whitney-Wilcoxon test between these
three samples. The p-value between “Randomness” and
“Reusability Metrics” is 0.004267. The p-value between
“Similarity” and “Reusability Metrics” is 0.03788. Given
the 0.05 significance level, the improvement of “Reusability
Metrics” over “Randomness” and “Similarity” is statistically
significant.

In the candidates of “java.org.apache.tomcat.util.net.AprE-
ndpoint.isValid”, there are two reusable candidates. One
reusable candidate ranks second in reusability metrics
values. However, the metrics value of the other reusable
candidate is the smallest. After analyzing the faulty
program and this reusable candidate, we find that the error
in computing the similarity of ordering IF-statements leads
to the smallest metrics value. Moreover, we have used the
reusability metrics to conduct experiments on the students’
programs as shown in the Fig. 1. However, the NCC
score is not low enough, because students’ code has many
different fragments that own high weight values of change
actions in reusability metrics, such as updating of variable
names and changing loops. Because “ALL” is composed of
all commits, the probability values of change actions cannot
reflect the frequency over activities of fixing one specialized
bug. After increasing the weight of updating IF condition
and decreasing the weight of updating variable names, the
NCC score decreased. We believe that reusability metrics
can perform better if we can set the weight value more
reasonable according to bug types.

Given the analysis above, we find that the reusability
metrics is effective for program repair when similar code
contains fix ingredients.

IV. SCREPAIR

This section firstly describes the implementation of SCRe-
pair, a prototype repair tool that can leverage different fix
localization techniques. Then we present two fix localization
strategies, which are based on the rankings of similarity



and reusability metrics. Finally, we analyze the experimental
results.

A. Implementation

We implement SCRepair on top of RSRepair [12]. Like
GenProg, RSRepair fails to leverage other fix localization
techniques to find out fix ingredients efficiently. SCRepair
adapts the same fault location strategy of RSRepair to locate
faulty code. After setting each statement the probability
value of containing errors, SCRepair uses the same muta-
tion operators of RSRepair to modify the faulty program.
Note that the insertion operator needs code from other
locations, which is the main difference between SCRepair
and RSRepair. In the process of generating candidate repairs
of SCRepair, each statement of the faulty program and all
candidates owns the probability value given by fix localiza-
tion. The greater the probability value is, the more likely
the statement will be chosen to insert into the fault location.
After generating the candidate repair, SCRepair uses test
cases to ensure that the bug has been eliminated.

Note that similar code may contain some different vari-
ables and code structures that cannot be directly reused in
faulty program. At present, SCRepair does not support the
normalization of variables and other syntactic elements.

B. Strategies of Fix Localization

To apply metrics in automated repair, we present two fix
localization strategies based on the rankings of code frag-
ments by similarity values and reusability metrics results.

SCRepair-sim, is a fix localization strategy, which is
based on the insight that similar code fragments may contain
fix ingredients. After picking out the similar code fragments,
we set the statements in those remaining fragments the same
value prob0, as the probability of reusing, defined as

prob0 =
1

2n
(4)

where n represents the number of all statements. We set
the statements from the similar code fragments the reusing
probability probsim, defined as

probsim =
1

2
∑m

i=1 li
+

1

2n
(5)

where m represents the number of similar code fragments,
li represents the number of statements from the i-th similar
code fragment.

SCRepair-metric, is a fix localization strategy, which
uses reusability metrics to guide SCRepair to repair faulty
programs automatically. This strategy set the same values
as SCRepair-sim for those statements that are not similar to
faulty programs. However, unlike SCRepair-sim, SCRepair-
metric sets different probability values for the statements
from those similar code. Essentially, the similar code frag-
ment can be divided into two parts: one similar part and one
different part. The similar part always does not contain any

fix ingredients at all, while the different part often contains
the fix ingredients exactly, which is depicted in Fig. 1.
Hence, we set the same probability value given by equation
(4) for those similar parts and set different probability value
probj for those statements from the different part of the
similar code fragment whose NCC score is j. probj is defined
as

probj =
m− j + 1

2
∑m

k=1(dk ∗ (m− k + 1))
+

1

2n
(6)

where dk represents the number of statements from the
different part of the similar code fragment whose NCC score
is k.

C. Experimental Design

SCRepair relies on test cases to validate the candidate
repair, but the test cases of Tomcat70 are not available. As
a result, we choose the Introclass [13] to conduct repair
experiments. In this benchmark, there are six assignments
that each student should complete. Due to the same goal of
each assignment, students’ programs are functionally similar
to some degree. We randomly choose three faulty programs
from different assignments to measure the effectiveness of
presented fix localization strategies. For each buggy pro-
gram, to construct the database of candidates, we randomly
choose three programs whose similarity values are greater
than 0.3 given by NICAD and six programs whose similarity
values are smaller than 0.3. All students’ programs have
been rewritten from C to Java without changing semantics
so that programs can be handled by ChangeDistiller.

Because of the randomized algorithm in SCRepair, we
use SCRepair to repair every faulty program for 100 times.
Meanwhile, we have limited the number of candidate patches
produced to reduce the cost of computation. As described in
[12], when more than 400 patches are produced, we consider
this case as that the repair fails to find a valid patch.

D. Results and Analysis

Table III: the Success Rate of Different Tools

Faulty Program RSRepair SCRepair-
sim

SCRepair-
metric

digits-d120480a-002.c 86% 98% 100%
grade-f5b56c79-012.c 91% 93% 100%

median-07045530-001.c 100% 100% 100%

TABLE III shows the success rate when using one repair
tool to fix each faulty program. “digits-d120480a-002.c”
represents the program was completed by the student whose
ID was hashed into “d120480a” in the third commit to
solve the problem of “digits”. The data of the experiments
on fixing the “digits-d120480a-002.c” and “grade-f5b56c79-
012.c” indicates that the success rate increases when we
apply two strategies respectively. The data of the experi-
ment on fixing the “median-07045530-001.c” indicates that
SCRepair works at least as well as RSRepair. Fig. 3 depicts



GenProg            SCRepair-sim          SCRepair-metric

0
  
  
  
1

0
0

  
  
  
2

0
0

  
  
  
3

0
0

  
  
  
4

0
0

N
C

P

Figure 3: Boxplot on NCPs of digits-d120480a-002.c

the detailed results of the experiment on fixing the “digits-
d120480a-002.c” in terms of NCP (Number of Candidate
Patches) [12].

After analyzing experimental results, we find that the
mean value of NCPs decreases obviously in each experi-
ment. Then, we use nonparametric Mann-Whitney-Wilcoxon
test to analyze the result data. In the experiments on
fixing the “digits-d120480a-002.c” and “grade-f5b56c79-
012.c”, the p-values are much smaller than the given sig-
nificance level, which indicates that the repair effectiveness
is significant after using proposed fix localization tech-
niques. However, in the experiment on fixing the “median-
07045530-001.c”, the p-value between “SCRepair-sim” and
“SCRepair-metric” is 0.693, which means that the difference
between distributions is not statistically significant in the
significance level 0.05. After analyzing the faulty program
and its candidates manually, we find that all similar candi-
dates contain fix ingredients, which leads to the almost equal
reusing probability values of fix ingredients.

The analysis above shows that SCRepair can efficiently
fix bugs with the guidance of reusability metrics.

V. THREATS TO VALIDITY

We leverage NICAD to compute the similarity and adapt
the probability model “ALL” of CTET to compute the
differetiality. These two parameters are crucial for metrics
result. Moreover, the size of these benchmark programs is
small and the errors are simple. In future work, we plan to
conduct more experiments to validate the effectiveness of
reusablity metrics and SCRepair.

VI. CONCLUSION

Similar code detection techniques become playing an
important role in the field of program repair activities. This
paper presents the reusability metrics to rank the similar
code fragments so that developers or automated repair tools
can efficiently find out the fragments that contain fix ingredi-
ents. The results of our experiments indicate that reusability
metrics can perform better than picking out randomly and

ranking by similarity. We implement an automated repair
tool called SCRepair, which can be guided by different fix
localization techniques. Based on the rankings by similarity
values and reusability metrics values, this paper presents
two fix localization strategies and carries out experiments
to compare the repair effectiveness. The results indicate that
using the reusability metrics to guide SCRepair can achieve
better repair effectiveness.

ACKNOWLEDGMENT

This research is supported by the National Natural Sci-
ence Foundation of China under Grant No.91318301 and
No.61379054.

REFERENCES

[1] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Gen-
prog: A generic method for automatic software repair,” IEEE
TSE, vol. 38, no. 1, pp. 54–72, 2012.

[2] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer,
and A. Zeller, “Automated fixing of programs with contracts,”
in ICSE’10. ACM, 2010, pp. 61–72.

[3] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: program repair via semantic analysis,” in ICSE’13.
IEEE Press, 2013, pp. 772–781.

[4] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“Automatic error elimination by horizontal code transfer
across multiple applications,” in PLDI’15. ACM, 2015, pp.
43–54.

[5] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Detection of recurring software vulnerabilities,” in ASE’10.
ACM, 2010, pp. 447–456.

[6] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix
ingredients already exist? an empirical inquiry into the re-
dundancy assumptions of program repair approaches,” in
ICSE’14. ACM, 2014, pp. 492–495.

[7] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Science of Computer Programming,
vol. 74, no. 7, pp. 470–495, 2009.

[8] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in ICSM’98.
IEEE, 1998, pp. 368–377.

[9] M. Martinez and M. Monperrus, “Mining software repair
models for reasoning on the search space of automated
program fixing,” Empirical Software Engineering, vol. 20,
no. 1, pp. 176–205, 2015.

[10] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall, “Change dis-
tilling: Tree differencing for fine-grained source code change
extraction,” IEEE TSE, vol. 33, no. 11, pp. 725–743, 2007.

[11] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of
near-miss intentional clones using flexible pretty-printing and
code normalization,” in ICPC’08. IEEE, 2008, pp. 172–181.

[12] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength
of random search on automated program repair,” in ICSE’14.
ACM, 2014, pp. 254–265.

[13] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. De-
vanbu, S. Forrest, and W. Weimer, “The manybugs and
introclass benchmarks for automated repair of c programs,”
IEEE TSE, vol. 41, no. 12, pp. 1236–1256, 2015.


