
NUMFUZZ: A Floating-Point Format Aware Fuzzer
for Numerical Programs

Chenghu Ma†‡ Liqian Chen†B Xin Yi† Guangsheng Fan†‡ Ji Wang†‡
†College of Computer, National University of Defense Technology, Changsha, China

‡HPCL, National University of Defense Technology, Changsha, China
{machenghu, lqchen, yixin09, guangshengfan, wj}@nudt.edu.cn

Abstract—It is difficult to write a numerical program that does
not incur floating-point exceptions in practice. To detect floating-
point exceptions, most existing methods use static analysis, which
may induce false alarms (due to over-approximation), or suffer
from scalability issues (since solving floating-point constraints is
expensive). Fuzzing is a widely used technique to finding bugs, but
existing fuzzing techniques have not yet considered the specific
format of floating-point and are lack of guidance for detecting
floating-point exceptions.

In this paper, we propose a floating-point format aware
coverage-based grey-box fuzzing to detect floating-point excep-
tions for numerical programs. More specifically, we propose
a novel mutation strategy for floating-point format aiming at
producing valid floating-point test inputs. Moreover, we present a
new guidance aiming to search for test inputs that are closer to ex-
posing exceptions. We implement our approach as a tool, named
NUMFUZZ, based on AFL. We have conducted experiments to
evaluate NUMFUZZ on GNU Scientific Library (GSL) and Sun’s
C math library respectively. The preliminary experimental results
suggest that our approach has promising ability in detecting
floating-point exceptions and achieving high floating-point branch
coverage in real-world numerical programs.

Index Terms—Fuzzing, Floating-point exception, Dynamic
analysis

I. INTRODUCTION

Floating-point arithmetic is widely used in software that
requires lots of scientific and engineering computing. In
modern computers, floating-point numbers are an approximate
representation of real numbers using a finite number of bits
[1], [2]. Thus, the execution of a floating-point operation
may incur exceptions. These floating-point exceptions may
lead to disastrous consequences in safety-critical systems such
as control systems for aerospace, finance, transportation and
medicine, etc. Therefore, it is critical to detect floating-point
exceptions in numerical software for ensuring the reliability
of the software.

Based on the results of floating-point operations, the IEEE
754 standard [1] defines five types of exceptions, including
Overflow, Underflow, Inexact, Invalid and Divide-By-Zero.
An Overflow exception is triggered when the result of an
operation exceeds the greatest normal floating-point number
in magnitude in the current precision, while an Underflow
exception is triggered when the result falls between zero
and the smallest normal floating-point number. An Inexact

∗Liqian Chen is corresponding author.

exception is triggered when the result falls between two
floating-point numbers, and thus needs rounding. An Invalid
or Divide-By-Zero exception is triggered when the operand of
a floating-point operation outsides its domain (e.g., x < 0.0 for
sqrt(x)). To execute program continually when an exception is
triggered, the computer may choose to mask the exception and
use the special value (subnormal number, infinity or NaN) to
represent the result.

In practice, it is difficult to write a numerical program that
will not incur floating-point exceptions [2], [3]. Hence, there
are several methods [4]–[6] have been proposed to detect
floating-point exceptions. Most methods use static analysis
based on symbolic execution [7], trying to find an input
that triggers a floating-point exception at runtime. However,
a real-world numerical program may have tens of thousands
of floating-point operations, and rounding errors are pervasive
in floating-point arithmetic. Meanwhile, solving floating-point
constraints is very expensive using SMT solvers.

Grey-box fuzzing is currently the most popular technique to
find vulnerabilities because it is easy to deploy and of good
scalability and feasibility [8]–[10]. Usually, fuzzing techniques
leverage coverage information as guidance for exploration of
different program paths. However, directly using existing grey-
box fuzzers for detecting floating-point exceptions does not
work, because the floating-point exception does not give rise
to a crash in numerical programs. On the other hand, it is
quiet difficult to produce test inputs causing floating-point
exception in numerical programs for existing coverage-based
fuzzing techniques, because there may be a little part of inputs
among all possible inputs causing floating-point exceptions
in numerical programs. Existing coverage-based fuzzers may
cover a statement that is potential to incur exception, but will
not deliberately trigger the exception.

In this paper, we present a floating-point format aware
fuzzing to automatically detect floating-point exceptions for
numerical programs. More specifically, we propose a novel
mutation strategy based on floating-point format aiming at
enhancing grey-box fuzzing to detect floating-point exceptions
by effectively generating valid floating-point test inputs. More-
over, we also introduce a new fitness guidance used within
our approach, which explicitly prefers to search for test inputs
that are closer to exposing exceptions. We have implemented
our approach as a tool, named NUMFUZZ, based on AFL

TABLE I
FLOATING-POINT FORMAT OF SINGLE AND DOUBLE

Sign Exponent Mantissa
32-bit Single 1 8 23
64-bit Double 1 11 52

[11]. NUMFUZZ first instruments neccessary checks for each
floating-point operation, which explicitly cause the program
abort when the exception is triggered in numerical program.
Then, it employs the proposed floating-point format aware
mutation strategy and the proposed fitness guidance to run
the instrumented program to detect floating-point exceptions.
We have evaluated NUMFUZZ on GNU Scientific Library
(GSL) and Sun’s math library respectively to demonstrate
the effectiveness of NUMFUZZ. NUMFUZZ achieves 91.9%
of branch coverage on average on Sun’s math library, which
outperforms AFL and CoverMe [12]. Besides, it has detected
264 floating-point exceptions on 154 interface functions of
GSL, which dramatically outperforms AFL.

The rest of the paper is organized as follows. Section II
introduces the necessary background of floating-point format
and fuzzing technique, while Section III gives an overview of
our approach via a motivating example. Section IV presents
the technical details of our approach. Section V details the
implementation and evaluation of our technique. Section VI
discusses related work, and Section VII concludes the paper.

II. PRELIMINARY

A. Floating-Point Format

Floating-point numbers are an approximate representation
of real numbers using a finite number of bits. According to
the IEEE 754 standard [1], a floating-point number consists of
three parts: sign, exponent, mantissa (also called significand).
When all the bits in the exponent of a floating-point represen-
tation are all 1, the value of the floating-point number is one
of several special values: +∞,−∞ or NaN (Not-a-Number),
where NaN denotes exceptions in computation, e.g., divide-
by-zero. Otherwise, a floating-point number can be depicted
by

(−1)S ×M × 2E , where

• S ∈ {0, 1} is the value of the 1-bit sign, representing a
floating-point number is positive (if S = 0) or negative
(if S = 1).

• E = e − bias indicates exponent, where e is the biased
unsigned integer with p bits, and bias = 2p−1 − 1.

• M = m0.m1m2 . . .mn indicates mantissa, where the
leading bit m0 is a hidden bit that does not need to be
stored, and m1m2 . . .mn is a n-bit fraction.

Table I shows the numbers of bits of the sign, exponent, and
mantissa in a 32-bit single as well as a 64-bit double precision
floating-point number according to the IEEE 754 standard.

Fig. 1. Sliced code of gsl sf exprel 2 function.

B. Fuzzing Technique

Fuzzing is an effective software testing technique for finding
vulnerabilities in software, which was originally proposed by
Miller et al. [13] in 1990s. The primary idea of fuzzing is
to create and feed the target program with a large number of
test inputs by mutating existing test data. These test inputs are
prospective to trigger software vulnerabilities.

A traditional fuzzer consists of four main components:
testcase generator for generating test cases, monitor for
monitoring program execution status, testcase selector for
selecting interesting test cases and bug detector for finding
potential bugs. The process of fuzzing test typically starts
with generating plenty of test cases by testcase generator
for target program which may be either binary or source
code. These test cases will be added into a seed pool. Then
the fuzzer takes a test case from the seed pool to feed to
target program, and executes the target program. During the
execution of target program, the fuzzer leverages the monitor
to monitor the program state and utilizes the testcase selector
to determine whether to retain the test case into the seed pool
for further mutation according to the feedback information.
At the mean time, the fuzzer makes use of the bug detector
to find potential bugs when the target program crashes or has
other abnormal behaviors. The fuzzing loop is repeated until
reaching the predefined time limit or stopping by users.

III. OVERVIEW

In this section, we give an overview of our approach via
a motivating example to illustrate how our approach detects
floating-point exceptions. The example is the gsl sf exprel 2
function1 from GSL. The sliced source code of the
gsl sf exprel 2 function is shown in Fig. 1. The sliced code
in Fig. 1 shows that the true branch of the else if
statement at Line 7 contains some floating-point operations.
Among these floating-point operations, there are 2 subtractions
(Line 8), 4 multiplications (Lines 8-9), 1 division and 1
exp() function call (Line 8), aggregately 8 floating-poinnt
operations directly or indirectly involving the input x. In the
sliced code, GSL_LOG_DBL_MIN is about -7.083964e+02
and GSL_LOG_DBL_MAX is about 7.097827e+02.

1With a few changes for illustration

TABLE II
EXCEPTION-RELATED CHECKERS

Checker Operator Pseudocode

Check double() ⊙*

/* the checker takes the result of the arithmetic operation as the argument a */
if(fabs(a) > DBL MAX){

Report error(“Overflow”); abort();
}
if(fabs(a) < 0 && fabs(a) < DBL MIN){

Report error(“Underflow”); abort();
}

Check div() division

/* the checker takes the numerator and denominator of the division operation as arguments a and b */
if(b == 0){

if(a == 0) Report error(“Invalid”);
else Report error(“Div-By-Zero”);
abort();
}
if(fabs(a) > fabs(b)*DBL MAX){

Report error(“Overflow”); abort();
}
if(fabs(a) > 0 && fabs(a) < fabs(b)*DBL MIN){

Report error(“Underflow”); abort();
}

Check sqrt() sqrt()

/* the checker takes the argument of the function sqrt() as argument a */
if(a < 0){

Report error(“sqrt Invalid”); abort();
}

Check log() log()

/* the checker takes the argument of the function log() as argument a */
if(a < 0){

Report error(“log Invalid”); abort();
}
if(a == 0){

Report error(“log Div-By-Zero”); abort();
}

Check exp() exp()

/* the checker takes the argument of the function exp() as argument a */
if(a > log(DBL MAX)){

Report error(“exp Overflow”); abort();
}
if(a < log(DBL MIN)){

Report error(“exp Underflow”); abort();
}

Check pow() pow()

/* the checker takes the argument of the function pow() as arguments a and b */
if(a == 0 && b <= 0){

Report error(“pow Invalid”); abort();
}

* The operator ⊙ ∈ {+,−, ∗}

Instrumentation. To detect exceptions over floating-point
operations, we first instrument bug checkers for each opera-
tion which has potential to trigger floating-point exceptions.
According to the difference of the operation types, the corre-
sponding bug checkers are also different. The details of the
bug checkers are shown in Table II. Besides, we instrument
ErrBits function for each floating-point operation that has
potential to trigger floating-point exceptions, where the ErrBits
function is used to measure how close a test case comes to
triggering a potential exception at the given exception location.
The definition of the ErrBits function will be detailed in
Section IV-A.

For the motivating example shown in Fig. 1, we instrument
the check function Check double() after the floating-point
arithmetic ⊙2 operations (Lines 8-9), the check function
Check div() after the floating-point division operation (Line

8) and the check function Check exp() after the exp() func-

2The operator ⊙ ∈ {+,−, ∗}

tion call. The function body implementations of these check
functions are shown in Table II. Moreover, we instrument
the ErrBits function after each floating-point operation in the
sliced code of the motivating example. After the instrumen-
tation stage, we will get the instrumented program, and then
step into the next stage, i.e., the Fuzzing loop stage.

Fuzzing Loop. In this stage, our fuzzer NUMFUZZ takes
the instrumented program and the initial seeds as inputs.
Differently from the traditional grey-box fuzzers, we propose
a novel mutation strategy for floating-point format, aiming to
generate valid floating-point test inputs. We will detail our mu-
tation strategy in Section IV-B. NUMFUZZ generates new test
inputs utilizing the mutation strategy we proposed, and feeds
them to the instrumented program. Then NUMFUZZ collects
the branch coverage information and ErrBits information as
guidance for whether retaining the test inputs as the interesting
inputs for further mutation. If the test inputs are closer to the
exceptions or lead to new branch coverage, they are saved as
interesting test inputs for further mutation. NUMFUZZ repeats

Fig. 2. The architecture of NUMFUZZ.

the fuzzing loop until reaching the predefined time limit or
stopped by users.

For the sake of illustration of the example in Fig. 1, we
suppose that the initial seed value of x is 0.5. At Line 7 in
Fig. 1, the program executes the true branch of the last else
if statement. Based on the mutation strategy we proposed for
floating-point format, NUMFUZZ can easily generate a new
valid test input i1. Suppose i1 is 2.56e+02. Then the input
i1 still hits the true branch of the last else if statement,
i.e., none of new branches have been covered. At this time,
i1 would be discarded by the traditional coverage-based grey-
box fuzzers, which misses the chance to generate a new input
which is hopeful to expose exceptions. However, the ErrBits
information guidance of NUMFUZZ considers that i1 is closer
to the Overflow exception (the result of the first multiplication
operation in expression at Line 8 is closer to the Overflow
exception), and thus retains it as an interesting input. When
i1 is further mutated, NUMFUZZ may generate a new valid
input (e.g., i2 = 5.120004e+02) that is closer to the Overflow
exception. After several mutations, NUMFUZZ generates an
exception-trigger input (ie = 7.094447e+02) that triggers the
Overflow exception in the first multiplication operation of
the expression at Line 8. Note that traditional coverage-based
grey-box fuzzers can hardly discover the Overflow exception,
because they may generate inputs that cover those statements
which have potential to trigger exception, but can hardly
generate inputs triggering such exception. This is due to the
fact that the mutated inputs do not incur new branch coverage
and due to the lack of guidance for exception triggering.

IV. APPROACH

In this section, we present the details of our approach.
Figure 2 depicts the architecture of NUMFUZZ, which contains

two main stages: instrumentation and fuzzing loop. We detail
each stage in the subsections.

A. Instrumentation
For the given target numerical program, we first conduct

static analysis to obtain two kinds of information: control
flow graph and floating-point operations. Then we use the
information to help NUMFUZZ to decide where to instrument
the numerical target program. Based on the control flow graph
information of the numerical target, NUMFUZZ instruments
the program to record branch coverage for guidance of pro-
gram path explorations. In addition, based on the floating-
point operations information, we instrument the program to
explicitly check each floating-point operation for floating-
point exceptions and collect ErrBits information for guiding
the fuzzing process towards triggering more floating-point
exceptions.

Control Flow Graph. Similarly to traditional coverage-
based grey-box fuzzers (e.g., AFL), NUMFUZZ leverages the
control flow graph information of the numerical program
to collect the branch coverage information for guidance of
program path explorations. It instruments every branch for
collecting the branch coverage during runtime.

Floating-point Operations. We instrument bug checkers
and ErrBits function for each floating-point operation. To give
rise to a crash during running a program when the floating-
point exception occurs, we instrument the corresponding bug
checker for each floating-point operation (see Table II), which
facilitates NUMFUZZ to check and find exception-triggering
inputs. After the instrumentation, the instrumented program
would throw and report an exception when the exception is
triggered by the test input, then abort.

We use ErrBits function to measure the distance between
the result O of a floating-point operation and the exception

Algorithm 1 Floating-point Exception Detection Fuzzing
Input: an instrumented program P , and a set of initial inputs I0.

Output: test cases BuggyS triggering floating-point exceptions.

1: BuggyS ← ∅
2: CurSet ErrBits← ∅
3: SeedQueue← I0

4: while time not expire do

5: s← SELECT(SeedQueue)

6: s′ ← FPMUTATE(s)

7: (trace, CurSet ErrBits)← EXECUTE(s′)

8: if TRIGGERCRASH(trace) then

9: BuggyS ← BuggyS ∪ s′

10: else

11: if NEWPATH(trace) ∨ ISCLOSER(CurSet ErrBits) then

12: SeedQueue← SeedQueue ∪ s′

13: end if

14: end if

15: end while

16: return BuggyS

value E (e.g., E is 0 for division). Following [14], we define
the ErrBits function as follows:

ErrBits (O,E) = log2 |{f ∈ F | min(O,E) ≤ f ≤ max(O,E)}|

The ErrBits function represents (the 2-base logarithm of)
the number of floating-point values between the result of a
floating-point operation O and the exception value E. Intu-
itively, if the result of the ErrBits function for a floating-point
operation over the current program execution is lower than
before, the test input is more potential to trigger exception,
and thus should be retained as interesting input for further
mutation. That is to say, these inputs are hopeful to expose
floating-point exceptions in next cycle of mutation. By using
the ErrBits information as guidance, NUMFUZZ can mutate
the test inputs towards exposing the floating-point exceptions
in a numerical program.

B. Fuzzing Loop

Algorithm 1 describes the main procedure of NUMFUZZ.
First, the algorithm uses SELECT function to select an input
s from seed pool SeedQueue (Line 5), and mutates it to
generate a mutant s′ through FPMUTATE function that is
proposed to mutate floating-point number (Line 6). At Line
7, NUMFUZZ then executes input s′ on the instrumented
numerical program, and monitors its execution. If the input
s′ triggers floating-point exceptions, it is added to output
BuggyS (Line 9). Otherwise, NUMFUZZ analyzes its branch
coverage and ErrBits information (Line 11). If it is closer
to floating-point exception or has new branch coverage, it is
retained as interesting seed and added into the SeedQueue for
the further mutation (see Line 12). NUMFUZZ checks whether
s′ is closer to floating-point exception based on ISCLOSER

function (see Section IV-B2) at Line 11. After Algorithm 1
terminates, the exception-triggering test inputs are obtained in
BuggyS.

As traditional coverage-based grey-box fuzzers, NUMFUZZ
leverages the branch coverage information for guidance of
program path explorations. NUMFUZZ utilizes the NEWPATH
function to consider whether the newly generated test input
reachs a new branch or not during runtime. Note that the
main difference of this process with tranditional coverage-
based greybox fuzzers falls in that NUMFUZZ presents a new
mutation strategy for floating-point number and adds ErrBits
information guidance to retain interesting inputs, which is
explained in detail in the following.

1) Mutation Strategy: Considering floating-point format,
our strategy mutates sign, exponent, mantissa of a floating-
point number respectively. Since the sign bit is 1-bit, we flip
it with half probability, i.e., switch between 0 and 1. For
exponent and mantissa, we design several mutators as follows.

Bitflip. For exponent, we flip one random bit at a random
position or flip a randomly-chosen continuous chuck of n-bits,
where n is 2, 3, 4 and 8. The flip operation of mantissa is the
same as exponent but adds a new value for n, that is 16.

Arithmetic. For exponent, we add an integer to it, where
the integer is from 1 to 32. The opposite mutate operation
is subtracting an integer from it. The arithmetic operation of
mantissa is the same as exponent but the added or subtracted
integer is 2m − 1 , where m is from 1 to 33.

Havoc. The mechanism of havoc is the same as traditional
greybox fuzzers, while the main difference lies in its mutators.
For floating-point number, we design several havoc muta-
tors including bitflip e, bitflip m, addition e,
addition m, decrease e, decrease m, and random
bit.

• bitflip e: flipping one bit at a random position of
the exponent.

• bitflip m: flipping one bit at a random position of
the mantissa.

• addition e: adding an integer to the exponent, where
the integer is randomly generated in the range 1 to 32.

• addition m: adding an integer to the mantissa, where
the integer is 2 p − 1 , wherein p is randomly generated
in the range 1 to 33.

• decrease e: subtracting an integer from the expo-
nent, where the integer is randomly generated in the range
1 to 32.

• decrease m: subtracting an integer from the mantissa,
where the integer is 2 p − 1 , wherein p is randomly
generated in the range 1 to 33.

• random bit: setting a randomly-chosen continuous
chuck of n-bits to a random value, where n is 4 for
exponent, while n is 8, 16 and 32 for mantissa.

2) ErrBits Metric: First, let us introduce several notations.
Let Set ErrBits be a global map that retains the least ErrBits
at each location that has potentail to trigger floating-point
exception. Let CurSet ErrBits be a map from all exception

locations to their corresponding ErrBits as attained in the cur-
rent run. The ISCLOSER() function takes CurSet ErrBits
from current program execution as argument, compares it with
Set ErrBits and checks whether the current test input is
closer to the exception or not, and updates Set ErrBits
when needed. Similarly to the hit-count table of AFL [11],
NUMFUZZ maintains an exclusive table in shared memory for
recording and communicating the ErrBits information during
runtime. During the program execution, if the test input is
closer to the exception based on the ErrBits information than
other test inputs saved so far, NUMFUZZ would retain it as
interesting input for further mutation to generate new test
inputs which are hopeful to expose the exception.

To summarize, we adopt two mechanisms of guidance for
guiding NUMFUZZ to retain the interesting inputs for further
mutation to discover the floating-point exceptions. Test inputs
that reach new branch are saved as interesting inputs, which
is inherited from the traditional coverage-based fuzzing. The
other guidance mechanism is the ErrBits information we
proposed to use. More specifically, if the test inputs is closer
to the exception than other previously generated test inputs, it
would be retained as the interesting input for further mutation.

V. EVALUATION

In this section, we present the implementation and evalua-
tion of our approach. We have built a prototype tool named
NUMFUZZ based on AFL [11]. NUMFUZZ consists of instru-
mentation and fuzzing loop components. The instrumentation
components is implemented based on the LLVM, while the
execution engine of NUMFUZZ is built on top of AFL.

A. Experimental Setup

1) Benchmarks: To measure the performance of NUMFUZZ
for achieving high floating-point code coverage and detecting
floating-point exceptions, our benchmarks include two sets.

a) Floating-point exception benchmarks: We conduct
our experiments to evaluate the detection-performance of
floating-point exceptions of NUMFUZZ on subjects chosen
from the widely used GNU Scientific Library3 (GSL), version
2.7.1. The special function package of GSL has about 487
functions but only has 178 interface functions. 154 of these
178 interface functions take and return floating-point numbers,
and thus we choose these functions as our experimental
subjects. It is not necessary to detect floating-point exceptions
for internal functions, because these functions will be called
by interface functions and normally are not visible for end
users.

b) Floating-point code coverage benchmarks: To mea-
sure the performance of NUMFUZZ for achieving high
floating-point code coverage, we conduct a set of experi-
ments on subjects chosen from the Freely Distributable Math
Library4 (Fdlibm), version 5.3. Note that we conduct our
experiments on subjects following existing work [12] for direct
comparisons.

3https://www.gnu.org/software/gsl/
4http://www.netlib.org/fdlibm/

2) Comparison: We have compared NUMFUZZ with AFL
[11] and CoverMe [12] respectively on different benchmarks.

a) Floating-point branch coverage comparison: We
compare NUMFUZZ against the start-of-the-art tool named
CoverMe and in achieving high coverage for floating-point
code. We also compare our tool with AFL. Because CoverMe
does not support functions from GSL5, we did not compare the
floating-point branch coverage with it on GSL benchmarks.

b) Floating-point exception detection comparison: We
compare our tool with the traditional coverage-based grey-
box fuzzer, AFL, which integrates a variety of guidance
strategies and leverages genetic algorithms to efficiently detect
vulnerabilities. For each tested function, we run each fuzzer for
10 minutes, perform each experiment for 3 times, and evaluate
their statistical performance. There are also other approaches
with aiming to detect floating-point exceptions, including [4],
[5] and [6]. However, these tools are not publicly available so
we cannot compare NUMFUZZ with them.

We have performed all of our experiments on a machine
running the 64-bit Ubuntu 20.04 LTS with a 3.30GHz Intel
(R) Core (TM) i9-10940X CPU and 32GB RAM.

B. Evaluation Results

1) Floating-point Branch Coverage Performance: The re-
sults of our experiments to evaluate the ability of NUMFUZZ
in achieving high floating-point branch coverage are shown
in Table III. The column “File” and “Function” indicates the
programs and the corresponding functions respectively, which
is sorted by their names. The column “#Branches” gives the
numbers of branches of the corresponding functions.

The column “Time” gives the spent time in seconds by
NUMFUZZ, CoverMe and AFL respectively. We set the spent
time of AFL as ten times of the NUMFUZZ time, follow-
ing existing work [12]. To measure the branch coverage,
we employ AFL-cov [15] for NUMFUZZ and AFL, while
we utilize the Gnu coverage tool Gcov [16] for Coverme,
following existing work [12]. The column “Branch Coverage”
shows the branch coverage results of NUMFUZZ, CoverMe
and AFL respectively. NUMFUZZ achieves 100% coverage
for 17 out of all tested functions, while CoverMe achieves
100% coverage for 10 out of all tested functions and AFL
achieves 100% coverage for 2 out of all tested functions. For
all tested functions, AFL achieves an average of 82.4% branch
coverage, while NUMFUZZ achieves an average of 91.9%
branch coverage, as shown in the last row of the Table III. The
average improvement is 9.5% between NUMFUZZ and AFL
(see the last row). Note that, NUMFUZZ can handle mixed
types of input, while CoverMe can not, e.g., the last 8 functions
shown in Table III. Except the last 8 functions, NUMFUZZ
achieves an average of 91.9% branch coverage, which provides
3.3% coverage improvement on average, compared CoverMe.
For total tested functions, the average improvement is 18.1%

5All of interface functions from GSL is wrapped by macro processing
and some of them invoke other external functions. However, CoverMe only
handles the entry function, i.e., it does not handle other external functions
invoked by the entry function.

TABLE III
NUMFUZZ VERSUS COVERME AND AFL IN ACHIEVING BRANCH COVERAGE FOR FLOATING-POINT PROGRAMS

Benchmark Time(s)* Branch Coverage(%) Improvement(%)

File Function #Branches AFL CoverMe NUMFUZZ AFL CoverMe NUMFUZZ NUMFUZZ vs. AFL NUMFUZZ vs. CoverMe

e acos.c ieee754 acos(double) 12 23 5.3 2.3 91.7 91.7 100.0 8.3 8.3

e acosh.c ieee754 acosh(double) 10 4 0.7 0.4 80.0 100.0 100.0 20.0 0.0

e asin.c ieee754 asin(double) 14 38 5.2 3.8 85.7 92.9 92.9 7.2 0.0

e atan2.c ieee754 atan2(double,double) 44 267 13.4 26.7 90.9 59.1 91.4 0.5 32.3

e atanh.c ieee754 atanh(double) 12 3 5.4 0.3 91.7 91.7 91.7 0.0 0.0

e cosh.c ieee754 cosh(double) 16 3 5.4 0.3 81.3 93.8 93.8 12.5 0.0

e exp.c ieee754 exp(double) 24 4 5.6 0.4 58.3 95.8 95.8 37.5 0.0

e fmod.c ieee754 fmod(double,double) 60 269 12.8 26.9 70.0 56.7 80 10.0 23.3

e hypot.c ieee754 hypot(double,double) 22 110 9.4 11.0 81.8 81.8 95.5 13.7 13.7

e j0.c
ieee754 j0(double) 18 12 6.0 1.2 83.3 94.4 94.4 11.1 0.0

ieee754 y0(double) 16 4 0.5 0.4 81.2 100.0 100.0 18.8 0.0

e j1.c
ieee754 j1(double) 16 19 6.6 1.9 87.5 93.8 93.8 6.3 0.0

ieee754 y1(double) 16 15 1.4 1.5 93.8 100.0 100.0 6.2 0.0

e log.c ieee754 log(double) 22 24 2.1 2.4 86.4 90.9 95.5 9.1 4.6

e log10.c ieee754 log10(double) 8 3 3.3 0.3 87.5 87.5 87.5 0.0 0.0

e pow.c ieee754 pow(double,double) 114 1634 14.6 163.4 85.9 78.9 89.5 3.6 10.6

e rem pio2.c ieee754 rem pio2(double,double*) 30 5 8.2 0.5 83.3 90.0 100.0 16.7 10.0

e remainder.c ieee754 remainder(double,double) 22 7 8.2 0.7 81.8 86.4 90.9 9.1 4.5

e scalb.c ieee754 scalb(double,double) 14 7 9.7 0.7 57.1 92.9 100.0 42.9 7.1

e sinh.c ieee754 sinh(double) 20 3 5.5 0.3 80.0 90.0 90.0 10.0 0.0

e sqrt.c ieee754 sqrt(double) 46 184 11.1 18.4 95.7 78.3 84.8 -10.9 6.5

k cos.c kernel cos(double,double) 8 1 8.6 0.1 87.5 87.5 87.5 0.0 0.0

s asinh.c asinh(double) 12 4 5.5 0.4 91.7 91.7 91.7 0.0 0.0

s atan.c atan(double) 26 9 5.7 0.9 88.5 92.3 92.3 3.8 0.0

s cbrt.c cbrt(double) 6 3 0.3 0.3 83.3 83.3 83.3 0.0 0.0

s ceil.c ceil bis(double) 30 10 5.7 1.0 90.0 83.3 90.0 0.0 6.7

s cos.c cos(double) 8 3 0.2 0.3 87.5 100.0 100.0 12.5 0.0

s erf.c
erf(double) 20 3 5.5 0.3 90.0 100.0 100.0 10.0 0.0

erfc(double) 24 11 0.2 1.1 100.0 100.0 100.0 0.0 0.0

s expm1.c expm1 bis(double) 42 31 0.7 3.1 95.2 97.6 97.6 2.4 0.0

s floor.c floor bis(double) 30 9 5.6 0.9 73.3 76.7 90.0 16.7 13.3

s ilogb.c ilogb bis(double) 12 10 6.2 1.0 66.7 41.7 41.7 -25.0 0.0

s log1p.c log1p bis(double) 36 34 6.9 3.4 91.7 88.9 91.7 0.0 2.8

s logb.c logb bis(double) 6 1 0.2 0.1 50.0 83.3 50.0 0.0 -33.3

s modf.c modf(double,double*) 10 7 2.2 0.7 100.0 100.0 100.0 0.0 0.0

s nextafter.c nextafter bis(double,double) 44 221 13.9 22.1 81.8 79.6 90.9 9.1 11.3

s rint.c rint(double) 20 224 1.7 22.4 95.0 90.0 100.0 5.0 10.0

s sin.c sin(double) 8 1 0.2 0.1 87.5 100.0 100.0 12.5 0.0

s tan.c tan bis(double) 4 2 0.2 0.2 75.0 100.0 100.0 25.0 0.0

s tanh.c tanh bis(double) 12 5 0.4 0.5 75.0 100.0 100.0 25.0 0.0

e jn.c
ieee754 jn(int,double) 42 520 – 52.0 83.3 – 92.9 9.6 92.9

ieee754 yn(int,double) 26 129 – 12.9 73.1 – 100.0 26.9 100.0

e lgamma r.c ieee754 lgamma r(double, int*) 47 213 – 21.3 93.6 – 100.0 6.4 100.0

s frexp.c frexp(double, int*) 6 2 – 0.2 66.7 – 83.3 16.6 83.3

s ldexp.c ldexp(double, int) 8 7 – 0.7 50.0 – 100.0 50.0 100.0

s scalbn.c scalbn(double, int) 16 45 – 4.5 81.2 – 81.2 0.0 81.2

k sin.c kernel sin(double, double, int) 6 2 – 0.2 66.7 – 83.3 16.6 83.3

k tan.c kernel tan(double, double, int) 16 13 – 1.3 93.8 – 93.8 0.0 93.8

Average 23 87 5.3 8.7 82.4 88.6 91.9 9.5 18.1
* We first run our tool NUMFUZZ and record the time that the tool achieves the highest coverage in ten minutes. Then we set the spent time of AFL as

ten times of that of NUMFUZZ, since AFL is not specifically designed for numerical programs and thus needs more time to obtain good coverage.

Fig. 3. The comparison of the number of floating-point exceptions detected
by NUMFUZZ and AFL

TABLE IV
FLOATING-POINT EXCEPTIONS NUMFUZZ AND AFL FOUND

Function (gsl sf) Inputs Line Exception NUMFUZZ AFL

airy Ai e -1.8427611519777436e+00 274 DivByZero
exprel 2 e 7.0944466083035695e+02 406 Overflow
erf Z e 2.681561585988519e+154 380 Overflow
exp e -6.7741493348497897e+02 117 Underflow
fermi dirac mhalf e -6.8299992414604640e+02 1444 Underflow

legendre H3d 0 e
4.30391878095824e-283

272 DivByZero
8.54409844947519e-60

laguerre 3 e
-1.00e+00

225 Invalid
1.79769313286231e+307

between NUMFUZZ and CoverMe (see the last row). There are
some functions that NUMFUZZ can achieve higher coverage
than CoverMe but the time overhead is bigger than CoverMe.
For example, for the tested function (e_pow.c), NUMFUZZ
spent 163.4 seconds in achieving 89.5% coverage. We have
manually checked the test inputs for this function, and ob-
served that NUMFUZZ can achieve 80.7% coverage at 14.6
seconds, which is competitive with CoverMe.

Note that, although NUMFUZZ is not specifically designed
for achieving high branch coverage, we can see from Table III
that our NUMFUZZ is competitive with CoverMe and AFL
in achieving high floating-point branch coverage in numerical
programs.

2) Floating-point Exception Detection Performance: The
comparison of the number of floating-point exceptions de-
tected by our tool NUMFUZZ and that by AFL, is shown
in Figure 3. In total, NUMFUZZ detected 264 exceptions,
including 182 Underflow exceptions, 77 Overflow exceptions,
4 Divide-By-Zero exceptions and 1 Invalid exception, while
AFL found 103 exceptions, including 59 Underflow excep-
tions, 43 Overflow exceptions, 1 Invalid exception and none of
Divide-By-Zero exception. From the distribution in Figure 3,
we see that NUMFUZZ detects more Underflow and Over-
flow exceptions than Divide-By-Zero or Invalid exceptions.

The number of Divide-By-Zero and Invalid exception is few,
which is reasonable in theory because NUMFUZZ only detects
interface functions of GSL’s special function package and GSL
is quite mature. Note that, on the other hand, the Overflow
or Underflow exceptions may mask the Divide-By-Zero and
Invalid exceptions. For example, an Underflow occurs in the
calculation of the denominator and terminates the execution
of the path before the division is computed.

The experimental results suggest the promising ability of
NUMFUZZ in detecting floating-point exceptions in numerical
programs, compared with AFL. In particular, it has outstanding
ability in detecting Underflow and Divide-By-Zero exceptions.
NUMFUZZ finds 4 Divide-By-Zero exceptions while AFL
finds none of Divide-By-Zero exception. The Divide-By-Zero
exceptions cause serious consequences. We particularly de-
tail some floating-point exceptions detected by NUMFUZZ,
as shown in Table IV. For example, NUMFUZZ detected
a Divide-By-Zero exception in function gsl sf airy Ai e
from gsl/specfunc/airy.c, while AFL fails to de-
tect. With the input x = -1.8427611519777436e+00, the
program will trigger a Divide-By-Zero exception in the op-
eration result_m.err/result_m.val of the function
airy mod phase invoked by function gsl sf airy Ai e at Line
274 of this file.

On the other hand, it is worthy noting that there are
exception-triggering inputs which violate the preconditions
in the comments internal to the source code. For example,
in the erfc8 sum function from gsl/specfunc/erfc.c,
an Underflow exception was triggered at Line 74 for the
statement den = x*den + Q[i] in a loop when the input x
= 1.25542034707733e+58. However, the input x is specified
as 8 < x < 100 in the comments internal to the source code
and thus the Underflow exception is a false positive. Among
all the 264 exceptions detected by NUMFUZZ, there are 6
false positives because of this reason. In the future, we plan to
automatically collect the information in the comments internal
to the source code for avoiding these false positives.

In summary, from the results of our all experiments, we can
conclude that our approach has promising ability in detecting
floating-point exceptions and achieving high floating-point
branch coverage in real-world numerical programs.

VI. RELATED WORK

A. Analysis of Floating-point Programs

Abstract interpretation [17] is one of the techniques widely
used in analyzing floating-point program. Miné [18] employs
abstract interpretation-based static analysis using relational
abstract domains to detect floating-point runtime exceptions.
Astreé [19] leverages the relational abstract domains in [18],
attempting to demonstrate the absence of runtime errors, over
floating-point numbers. However, abstract interpretation has
limitation that it does not sensitively analyze all program paths
and may bring false positives.

Symbolic execution is another commonly used technique for
analysis of floating-point programs. The symbolic execution
tool KLEE-FP [20] is designed to support symbolic reasoning

about the equivalence between floating-point values for cross-
checking of floating-point and SIMD code, which is based on
KLEE [21]. T. Barr et al. [5] first employ symbolic execution
technique for automatic detection of floating-point runtime
exceptions. They first consider floating-point arithmetic as
real arithmetic, use SMT solver over real numbers to search
for inputs that trigger exceptions, and then convert or search
around those real number inputs to floating-point numbers
and finally test them on the original floating-point program.
To improve the efficiency of symbolic execution, Wu et al.
[4] combine symbolic execution with value-range analysis to
detect floating-point exceptions. They leverage value-range
analysis to accelerate constraint solving, and thus can find
more floating-point exceptions and eliminate false positives,
comparing with the traditional symbolic execution techniques.

There are also many dynamic methods for analysis of
floating-point programs. [22] and [23] employ genetic algo-
rithm to automatically detect significant floating-point inaccu-
racies in numerical programs. AutoRNP [24] automatically
detects and repairs high floating-point inaccuracy errors in
numerical libraries. Similarly, ATOMU [25] utilizes condition
numbers for atomic numerical operations to effectively de-
tect floating-point inaccuracy errors in numerical programs.
However, all the above works focus on floating-point inac-
curacy errors, while our approach aims to detect floating-
point exceptions. Recently, Fu et al. [6] present a dynamic
analysis method for detection of floating-point overflow excep-
tion, which transforms the problem of detecting floating-point
overflow exception into a search problem via weak-distance
minimization. Compared to their work, we leverage fuzzing
techniques and can detect general floating-point exceptions
(e.g., Underflow). Moreover, we handle numerical programs
with both floating-point and integer inputs.

B. Coverage-based Grey-box Fuzzing

Coverage-based grey-box fuzzing [8]–[10], [26]–[28] is a
popular technique to find vulnerabilities and bugs, which has
raised the wide-attention from both academic and industry.
Coverage-based grey-box fuzzers generally leverages the cov-
erage information as guidance for exploration of different
program paths, e.g., the start-of-the-art coverage-based grey-
box fuzzer, AFL [11].

Recently, to improve the effectiveness of fuzzing, grammar-
based fuzzing [29] has received much attention to generate
tests that meet the input syntax. NAUTILUS [30] combines
the use of coverage feedback with the use of grammars as
guidance to find deep bugs by generating valid test inputs.
u4SQLi [31] proposes a set of mutation operations for
SQLs to produce syntactically correct test inputs to touch
deeper SQL statements. ProFuzzer [32], Zest [33] and
Superion [34] automatically collect the syntactic or seman-
tic knowledge in input fields, which aims to generate valid test
inputs in syntactic and semantic to explore deeper program
code. However, all of these works mentioned above have
not considered mutation strategy of floating-point format for
generating valid floating-point test inputs.

Different from these works, we propose a novel mutation
strategy for floating-point format aiming to generate valid
floating-point test inputs. Moreover, we explore a new guid-
ance based on ErrBits to guide our fuzzer for whether retaining
the test input as interesting test inputs for further mutation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a floating-point format aware
coverage-based grey-box fuzzing to detect floating-point ex-
ceptions for numerical programs. More specifically, we pro-
pose a novel mutation strategy for floating-point format,
aiming at producing valid floating-point test inputs. Besides,
we also present a new guidance, which explicitly prefers to
search for test inputs that are closer to exposing exceptions. We
have implemented our approach in a tool, named NUMFUZZ,
based on AFL. We have conducted preliminary experiments
to evaluate our tool in detecting floating-point exceptions and
achieving high branch coverage respectively. The preliminary
experimental results suggest that our tool achieve 91.9% of
branch coverage on average on Sun’s math library, which
outperforms AFL and CoverMe. Moreover, NUMFUZZ has
detected 264 floating-point exceptions on GSL, which is
clearly better than AFL.

For future work, we will conduct experiments over more
real-word numerical programs to detect runtime exceptions.
Another direction of work is to extend our approach to support
functions with vectors or matrices parameters.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (Nos. 61872445, 62032024).

REFERENCES

[1] I. C. Society, “Ieee standard for floating-point arithmetic,” IEEE Std
754-2008, pp. 1–70, 2008.

[2] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM computing surveys (CSUR), vol. 23,
no. 1, pp. 5–48, 1991.

[3] J. R. Hauser, “Handling floating-point exceptions in numeric programs,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 18, no. 2, pp. 139–174, 1996.

[4] X. Wu, L. Li, and J. Zhang, “Symbolic execution with value-range
analysis for floating-point exception detection,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2017, pp. 1–10.

[5] E. T. Barr, T. Vo, V. Le, and Z. Su, “Automatic detection of floating-
point exceptions,” ACM Sigplan Notices, vol. 48, no. 1, pp. 549–560,
2013.

[6] Z. Fu and Z. Su, “Effective floating-point analysis via weak-distance
minimization,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2019, pp. 439–
452.

[7] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[8] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, pp. 1–13, 2018.

[9] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the
art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218,
2018.

[10] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
2019.

[11] M. Zalewski. (2017) American fuzzy lop 2.52b. [Online]. Available:
https://lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/

[12] Z. Fu and Z. Su, “Achieving high coverage for floating-point code via
unconstrained programming,” ACM SIGPLAN Notices, vol. 52, no. 6,
pp. 306–319, 2017.

[13] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
pp. 32–44, 1990.

[14] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Au-
tomatically improving accuracy for floating point expressions,” ACM
SIGPLAN Notices, vol. 50, no. 6, pp. 1–11, 2015.

[15] “afl-cov: Code coverage analysis tool for afl.”
https://github.com/mrash/afl-cov.

[16] “Gcov: Gnu compiler collection tool.”
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[17] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, 1977, pp. 238–252.

[18] A. Miné, “Relational abstract domains for the detection of floating-point
run-time errors,” in European Symposium on Programming. Springer,
2004, pp. 3–17.

[19] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The astrée analyzer,” in European Symposium on Pro-
gramming. Springer, 2005, pp. 21–30.

[20] P. Collingbourne, C. Cadar, and P. H. Kelly, “Symbolic crosschecking of
floating-point and SIMD code,” in Proceedings of the sixth conference
on Computer systems, 2011, pp. 315–328.

[21] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[22] X. Yi, L. Chen, X. Mao, and T. Ji, “Efficient global search for inputs
triggering high floating-point inaccuracies,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2017, pp. 11–20.

[23] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and H. Mei, “A
genetic algorithm for detecting significant floating-point inaccuracies,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 529–539.

[24] X. Yi, L. Chen, X. Mao, and T. Ji, “Efficient automated repair of high
floating-point errors in numerical libraries,” Proceedings of the ACM on
Programming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[25] D. Zou, M. Zeng, Y. Xiong, Z. Fu, L. Zhang, and Z. Su, “Detecting
floating-point errors via atomic conditions,” Proceedings of the ACM on
Programming Languages, vol. 4, no. POPL, pp. 1–27, 2019.

[26] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program
transformation,” in 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 2018, pp. 697–710.

[27] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for
software security testing and quality assurance. Artech House, 2018.

[28] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[29] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN conference on
programming language design and implementation, 2008, pp. 206–215.

[30] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Nautilus: Fishing for deep bugs with grammars.” in NDSS,
2019.

[31] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated
testing for SQL injection vulnerabilities: an input mutation approach,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, 2014, pp. 259–269.

[32] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang,
“Profuzzer: On-the-fly input type probing for better zero-day vulnerabil-
ity discovery,” in 2019 IEEE symposium on security and privacy (SP).
IEEE, 2019, pp. 769–786.

[33] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with zest,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
329–340.

[34] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

	Introduction
	Preliminary
	Floating-Point Format
	Fuzzing Technique

	Overview
	Approach
	Instrumentation
	Fuzzing Loop
	Mutation Strategy
	ErrBits Metric

	Evaluation
	Experimental Setup
	Benchmarks
	Comparison

	Evaluation Results
	Floating-point Branch Coverage Performance
	Floating-point Exception Detection Performance

	Related Work
	Analysis of Floating-point Programs
	Coverage-based Grey-box Fuzzing

	Conclusion and Future Work
	References

