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Abstract—Floating-point rounding errors are pervasive when
using numerical code to implement the real arithmetic algorithm.
In particular, high floating-point inaccuracies may cause serious
problems once being triggered. Hence, a testing method that can
find concrete test cases to trigger high floating-point inaccuracies,
is quite helpful to aid debugging and reduce high inaccuracies.
Recently, two testing approaches have been proposed to find
inputs triggering high floating-point inaccuracies in numerical
programs: Locality-Sensitive Genetic Algorithm (LSGA) and
Binary Guided Random Testing (BGRT). However, experiments
show that LSGA may result in a high rate of false alarm while
BART may easily fall into a local maximum when the search
space is large. In this paper, we propose a novel testing approach
to trigger high floating-point inaccuracies in numerical code. The
main idea is utilizing heuristic rules drawn from error analysis
to guide the process of global search of test cases. Comparative
experiments with the random and BGRT methods are conducted
on benchmarks including real-world scientific programs. Experi-
mental results show that our approach can efficiently find inputs
that trigger higher floating-point inaccuracies in 11 of 12 real-
world programs (especially for programs whose input space are
large) and have better stability.

I. INTRODUCTION

In numerical code, floating-point inaccuracies are inevitable
due to the rounding errors since floating-point number uses
finite precision to represent the real number. High floating-
point inaccuracies may lead to serious software failures and
even disastrous results. Known examples include the Vancou-
ver Stock Exchange event [1] and the sinking of the Sleipner
A offshore platform [2].

Several methods [3][4][5], have been proposed to estimate
the worst-case bounds of errors in numerical code with respect
to the given input domain. However, the bounds of errors
provided by static analysis are often too conservative [6].

Besides, the accuracy estimation can not provide the direct
information to help debugging. In contrast, the testing method
which can find concrete test cases that trigger high inaccu-
racies is a better choice for aiding debugging. Recently, two
testing approaches have been proposed to find inputs triggering
high floating-point inaccuracies in numerical code: Locality-
Sensitive Genetic Algorithm (LSGA) [7] and Binary Guided
Random Testing (BGRT) [6].

LSGA uses the genetic algorithm with meta-heuristic princi-
ples to automatically generate test inputs that can trigger high
inaccuracies. We verified the 18 bugs that were detected by
LSGA in [7] and found that 16 of 18 bugs were false alarms in

the sense of comparing with the expected mathematical output
of tested program. The high rate (88.8%) of false alarm is
due to the fact that LSGA may introduce extra errors when
so-called precision-specific operations [8] are not handled
correctly, which is also pointed out in their successive work
[8] that focuses on fixing the precision-specific operations.
BGRT divides the input domain into two parts of the same
size each time, and iteratively chooses the part that has the
higher floating-point error among the results of sampling test.
Apparently, this method has a fast velocity to reduce the
search space (half after each iteration). However, due to the
incomplete sampling, the part that in fact contains exact higher
errors may be discarded, which lead to a local maximum.

Following the above two testing methods [6][7], we also
consider the problem of triggering high floating-point inaccu-
racies in numerical programs as a search problem. To improve
the search efficiency, there exits three challenges:

• Finding effective heuristic rules. Heuristic rules are
used to guide a testing method to find an input that
maximizes the error of the output. Effective heuristic rules
should consider the general situation. The heuristic rules
of LSGA method that are drawn from empirical analysis
but without considering precision-specific operations are
not generic and may lead to a high rate of false alarm.

• Dealing with large search space. Under the same
sampling rate, the greater the search space, the more
likely to lead to local maximization. The BGRT method,
which discards half search space each iteration, would
easily lead to local maximum especially for large search
space. Proper handling of huge search space requires
selecting an appropriate search algorithm and increasing
the sampling rate.

• Reducing time overhead. In order to measure the accu-
racy of outputs of a numerical program, we need to calcu-
late the real (mathematical) outputs of the program, which
leads to the main time overhead for testing methods.
Both LSGA and BGRT cost a lot of time in calculating
real outputs. Reducing time overhead needs to reduce the
number of calculations of real outputs.

To cope with these challenges, we propose a new method
called EAGT (Error Analysis Guided Testing), which tries
to provide generic heuristic rules drawn from error analysis
and global search with high sampling rate while reducing



time overhead of testing by leveraging efficient approximate
calculation. Unlike the LSGA algorithm which draws heuristic
rules from empirical analysis, we draw the heuristic rules from
the forward and backward errors analysis. Moreover, we do
not search iteratively like BGRT, instead, we search all the
input space to decrease the possibility of local maximum and
use approximate calculations to quickly get the intermediate
results that are then used to guide the search.

We have conducted comparative experiments of EAGT with
BGRT and random (RAND) testing methods on benchmarks
including real-world scientific programs. Experimental results
show that 1) EAGT, in most cases, can detect higher floating-
point inaccuracies than BGRT and RAND; 2) Compared with
BGRT and RAND, EAGT is more stable and more efficient
especially for program whose input spaces is large.

In summary, this paper makes the following contributions:
• We propose a new searching approach namely EAGT,

based on the heuristic rules obtained from error analysis.
The main idea is using effective heuristic rules to guide
the search process and leveraging approximate calcula-
tion to speed up global search, which can significantly
improve the efficiency of testing method especially when
the search space is large.

• We have conducted experiments on basic polynomial
functions and numerical programs from GNU Scien-
tific Library (GSL). Experimental results show that our
approach can efficiently find inputs that trigger higher
floating-point inaccuracies in 11 of 12 real-world pro-
grams (especially for programs whose input space are
large) and have better stability than BGRT and RAND.

The rest of this paper is organized as follows. Section II
gives the background on floating point representation and error
analysis. Section III shows empirical study of LSGA and
BGRT. Section IV introduces our approach. Section V shows
our experiment setting and research questions. Section VI
provides experimental results and answers research questions.
Section VII gives discussion and future work. Section VIII
concludes.

II. BACKGROUND

The section introduces basic background of floating-point
format and error.

A. Floating-Point Format

According to the IEEE-754 Standard [9], a floating-point
number can be represented by

f = (−1)S ×M × 2E (1)

where S ∈ {0, 1} represents the sign, M = m0.m1m2...mp is
the significand (also called the mantissa), where .m1m2...mp
represents a p-bit fraction and m0 is the hidden bit without
need of storage, and E = e− bias means exponent, is a e-bit
signed integer and bias = 2e−1 − 1. Table I shows the bits
of the sign, exponent, and mantissa of 32-bit single and 64-
bit double precision floating-point according to the IEEE-754
Standard.

TABLE I
SINGLE AND DOUBLE PRECISION FLOATING-POINT

sign mantissa exponent
Single 1 8 23
Double 1 11 52

B. Error of Floating-Point

Based on the format of floating-point, floating-point num-
bers can not exactly represent all real numbers. The conversion
of the floating-point to the real number unavoidably introduces
rounding errors for some values. Fig. 1 shows the conversion
intuitively.

0

0

real

float

Fig. 1. Conversion from real to float

As shown in Fig. 1, the rounding error less than one ULP
(the unit in the last place [10]) under the conversion. The ULP
can be simply regarded as the distance between a floating-point
number and its the next floating-point number. Due to the fixed
bits in the mantissa, with the increasing of exponent value, the
ULP value also bigger.

The absolute error and relative error are two common
indicators to evaluate the error of floating-point program. For a
real function f(x), we use fp(x) as its corresponding floating-
point program. The formulas (2) and (3) show the absolute
error and relative error.

Absolute error = |f(x)− fp(x)| (2)

Relative error =
|f(x)− fp(x)|
|f(x)|

(3)

Absolute error and relative error are defined from the
mathematical point of view, so they both are ill-suited to
floating-point error measure [11]. In this paper, we use a
standard method to measure the floating-point error, which
is also used in [11] [12] [13]. The method can be illuminated
by the formulas (4) and (5).

ulperror{f(x), fp(x)} =
|f(x)− fp(x)|
|ulp(fl(f(x))|

(4)

biterror{f(x), fp(x)} = log2{ulperror{f(x), fp(x)}} (5)

In formula (4), fl(f(x)) returns the floating-point value of
f(x), and ulp(fl(f(x)) returns the ULP value of fl(f(x)).
In this way, we can evaluate the error by the significant bits
through the log2(x) function, as shown in formula (5).

III. EMPIRICAL STUDY OF LSGA AND BGRT

A. LSGA Approach

Zou et al. [7] proposed the LSGA approach which had
conducted experiments over GSL programs and achieved
remarkable results. According to their experimental results,
LSGA reports 18 potential bugs in GSL programs.



TABLE II
TEST RESULTS: LSGA VS MPMATH

Program
Relative Error

LGSA mpmath L/m

gsl sf airy Ai deriv 1.54E+06 2.29E-07 6.72E+12

gsl sf airy Ai deriv scaled 1.54E+06 2.29E-07 6.72E+12

clausen 5.54E-02 3.74E-02 1.48E+00

eta 9.58E+13 2.38E-15 4.02E+28

exprel 2 2.85E+00 5.25E-12 5.43E+11

gamma 1.07E-02 2.17E-16 4.94E+13

synchrotron 1 5.35E-03 5.95E-14 8.99E+10

synchrotron 2 3.67E-03 1.30E-13 2.83E+10

zeta 9.58E+13 2.04E-15 4.70E+28

zetam1 1.42E-02 2.50E-15 5.67E+12

bessel Knu 6.08E-03 2.10E-15 2.90E+12

bessel Knu scaled 6.08E-03 2.10E-15 2.90E+12

beta 9.21E-03 9.75E-16 9.44E+12

ellint E 8.92E-03 1.56E-16 5.70E+13

ellint F 8.79E-03 1.33E-16 6.62E+13

gamma inc Q 1.36E+13 3.62E-05 3.75E+17

hyperg 0F1 5.80E+06 7.33E+49 7.91E-44

hyperg 2F0 4.35E-03 1.62E-13 2.69E+10

To check those potential bugs, we need to get the output
produced by the real arithmetic function corresponding to
the original program. FPDebug [14] can be used to sup-
ply approximate real arithmetic output for LSGA. However,
FPDebug directly increases precision on all floating-point
operations of tested programs, which may introduce extra
errors for some precision-specific floating-point operations [8]
and break the semantics of the original program. For example,
the precision-specific operation (x + n) − n (where n =
6755399441055744.0) is used to round x to integer under
the 64-bit floating-point arithmetic. n is a special number that
only works for 64-bit floating-point arithmetic, and increasing
the precision (e.g., to 128-bit) for this operation will save the
decimal part of x, which breaks the semantic of the operation
and introduces extra error (i.e., the value of decimal part of
x).

To avoid the possible extra errors, we use programs from
mpmath [15] which is a free Python library for real and
complex floating-point arithmetic with arbitrary precision, as
the real (mathematical) functions to calculate real outputs.
For example, we use the zeta program in mpmath as the
real arithmetic version of gsl sf zeta program in GSL. By
directly using programs in mpmath, we can keep the real arith-
metic semantics of the programs that are tested while without
introducing extra errors for precision-specific operations.

As our experimental resuls shown in TABLE II, except
for clausen and hyperg 0F1, the relative errors returned by
LSGA are ten orders of magnitudes greater than mpmath at
least (see the “L/m” column which shows the ratio of relative
errors given by LSGA and mpmath), which means that only
2 of 18 inputs that produced by LSGA indeed trigger high
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Fig. 2. Error distribution of program erf

inaccuracies and the false alarm rate of LSGA is around
88.8%.

The heuristic rules of LSGA are extracted from the empir-
ical analysis. There are five heuristic rules that are used to
guide the LSGA in [7]:
(a). Both exponents and the significands have great impact on

the relative error;
(b). Exponents that invoke large relative errors stay in a small

interval;
(c). Only small parts of exponents invoke the large error;
(d). Near the large error would have error higher than average;
(e). The exponents that lead to significant errors are likely

near 1023.
We investigate the five heuristic rules from two aspects:

One is whether the results that are used to do the empirical
analysis are not right from a certain point of view; Another
is whether there exist counterexamples that disobey some of
those heuristic rules.

For the first aspect, we retest the erf program which is
used as one of the examples to get those heuristic rules in
[7]. We get the relative error by using mpmath and FPDebug
respectively, and the results are shown in Fig. 2. The maximum
error reported by FPDebug reaches the order 1e-7, but the
error reported by mpmath is just under the order 1e-15. The
difference is due to the fact that FPDebug can not handle
precision-specific operations correctly, which introduces extra
errors. The difference shows that those heuristic rules are
somehow built on unreliable empirical analysis.

For the second aspect, we try to find counterexamples that
do not fit in some of those heuristic rules. In the community
of GSL, we find bug reports1 that show many functions do
not obey some of those heuristic rules. Those bug reports
exhibit that high floating-point inaccuracies would occur when
the input value increases beyond the value 823549.6645 in
those functions, which conflict with three heuristic rules (b,
c, e) that implicate the errors stay in a small part and the
exponents leading to large errors are near the value 1023. And
our experimental results shown in Fig.7(a) (Section VI) also
indicate cases not fitting for the three heuristic rules.

From the above analysis, we see that not all heuristic rules of
LSGA are generic and fit for general cases. In our experimental
results, the high false alarm rate (88.8%) of LSGA also
supports this argument.

1https://savannah.gnu.org/bugs/?45746
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Fig. 3. Error distribution of program gsl sf bessel J1

B. BGRT Approach

The BGRT method proposed by Chiang et al. [6] is a
straightforward binary search method. BGRT divides the input
domain into two parts of same size each time, and iteratively
chooses the part that has the higher floating-point error in the
results of sampling test inputs. Apparently, when the input
space is huge, BGRT is easy to fall into a local maximum
due to the incomplete sampling of input domain. The only
way to get out from the local maximum is to reset the search
domain to the initial domain [6], which would waste more
time and still can not guarantee not getting into another local
maximum after reset. For illustrating the local maximum of
BGRT algorithm intuitively, we test the BGRT algorithm on
the function gsl sf bessel J1 which is a GSL program for
implementing the 1 order regular cylindrical Bessel function.
Fig. 3 shows the distribution of maximum errors that BGRT
finds in 100 trials. The distribution of maximum errors are dis-
persing, and only few trials result in several inputs that reach
the relatively higher inaccuracies. The results illustrate that
the BGRT algorithm easily terminates with a local maximum
when the input domain is large.

Theoretically, the local maximum is hard to avoid because
the search is not exhaustive, and the BGRT which throws out
half input domain each iteration would easily lead to a local
maximum.

IV. APPROACH

In this section, we illustrate the error analysis and the
heuristic rules that are used in our approach. After that,
we introduce our Error Analysis Guided Testing (EAGT)
approach.

A. ERROR ANALYSIS

Error analysis can be divided into two kinds: forward and
backward error analysis. Forward error analysis has been
extensively studied and widely applied to floating-point, such
as in dynamic testing [14], precision tuning [12] and static
analysis [16] [17].

In contrast, backward error analysis is seldom used. In this
paper, both backward and forward error analysis results are
used for drawing the heuristic rules.
• Forward Error. For calculating the forward error, we

just concern the error of the output of the origin program

fp(x)

x

f(x+ Δx)
Δx

Numerical program fp
Real function f

Fig. 4. Backward error

rather than the intermediate error for each instruction
in the program. Therefore, the forward error is only
calculated one time for each input, and the formula
(3) represents the standard forward error of the origin
program. In this paper, we used formulas (4, 5) instead
of (3), which fit better for the floating-point arithmetic.

• Backward Error. In Section II-B, we use fp(x) to
approximate f(x). For backward error, we would like
to find the smallest ∆x such that

fp(x) ' f(x+ ∆x)

Here, we mean that fp(x) equals approximately to the
exact value of f(x + ∆x). ∆x (or ∆x

x ) is called the
backward error. Fig. 4 intuitively shows the concept of
the backward error.

Our next analysis is based on the following assumption:
the function f is smooth around the neighbourhood of x. This
assumption is reasonable when δ = ∆x

x is small. According to
the analysis of Fu et.al [18] for numerical code, we find that
the backward error is usually small. Under the assumption
above, we reconstruct the forward error by combining with
backward error and Taylor expansion.

f(x+ δ · x) ≈ f(x) + f ′(x)(δ · x) + Θ(δ2) (6)
⇒ |f(x)− f(x+ δ · x)| ≈ |f ′(x)(δ · x)| (7)

⇒
∣∣∣∣
f(x)− f(x+ δ · x)

ulp(fl(f(x)))

∣∣∣∣ ≈
∣∣∣∣
δ · x · f ′(x)

ulp(fl(f(x)))

∣∣∣∣ (8)

⇒
∣∣∣∣
f(x)− f(x+ δ · x)

ulp(fl(f(x)))

∣∣∣∣ ≈
∣∣∣∣

∆x · f ′(x)

ulp(fl(f(x)))

∣∣∣∣ (9)

According to Formulas (4) and (9), we have

ulperror{f(x), fp(x)} ≈
∣∣∣∣

∆x · f ′(x)

ulp(fl(f(x)))

∣∣∣∣ (10)

By replacing ∆x with (n + λ) · ulp(x) where n ∈ N is a
natural number and λ ∈ [0, 1], we get

ulperror{f(x), fp(x)} ≈
∣∣∣∣
(n+ λ) · ulp(x) · f ′(x)

ulp(fl(f(x)))

∣∣∣∣ (11)

The substitution above is valid when δ is small, which
means the distance between x′ = (x + ∆x) and ∆x can be
represented by n ·ulp(x) +λ ·ulp(x) when x′ is nearby of x,
as depicted in Fig. 5.



After reconstructing the forward error, we can divide the
forward error into two parts:
• The index of backward error: Bi = |(n+ λ)|
• The condition number that is represented by floating-

point ULP: Cfp = |f ′(x)| ·
∣∣∣∣

ulp(x)

ulp(fl(f(x)))

∣∣∣∣
Then, ulperror(f(x), fp(x)) can be approximated as

ulperror(f(x), fp(x)) ≈ Bi × Cfp (12)

According to the definition of Bi, the value of Bi that
depends on the implement action of fp can not be calculated
directly. We think trying to find the large Bi is unrealistic,
because the implemented program may be too complicated and
hard to predict the law of the distribution of Bi. This point
is also supported by the experiments of Fu et.al [18]. Their
experiments use the Monte Carlo Markov Chain (MCMC)
techniques to estimate the backward error, but waste much
time even in a small input range for some basic functions,
such as sin, cos, sqrt, etc.

Since the value of Bi is unfortunately hard to calculated, we
decide to use the distribution of Cfp to estimate the possible
high floating-point inaccuracies and propose the following
heuristic rules that are used in our approach:
• High floating-point inaccuracy has a greater probability

of having a large value of Cfp. According to the formula
(12), the high inaccuracies may be more likely caused by
the large value of Cfp than the small one.

• The maximum value of Cfp does not guarantee the
maximum floating-point error. According to the formula
(12), Bi also affects the floating-point error of output.
Moreover, according to the definition of Bi and Cfp, the
value of Cfp is independent of fp while Bi depends on
fp. Thus, the maximum value of Cfp dose not mean the
maximum value of Bi.

B. EAGT Approach

According to our heuristic rules, we need to quickly cal-
culate the value of Cfp to find the large Cfp to guide the
search. In fact, we do not need to know the exact value of
Cfp, since we just use the value of Cfp as a guide and do not
need the value to calculate the final result, which means that
an approximate value is acceptable. The approximate value
of f ′(x) can be calculated by a derivative evaluated function
on fp(x). The derivative evaluated function is supplied by
many scientific function libraries. The value of |ulp(fl(f(x)))|
can also be directly obtained by approximating |ulp(fp(x))|,
because in most situations the ULP of outputs should be ap-
proximate identical for f(x) and fp(x), under the assumption

x︸ ︷︷ ︸
∆x

n·ulp(x)︷ ︸︸ ︷
x′

Fig. 5. Distance between x′ and x

Algorithm 1 Error Analysis Guided Testing
Input: fp, Cinit,K
Output: error list
1: tmp list← [ ]
2: error list← [ ]
3: while has resources do
4: Confs← Partition(Cinit)
5: for c ∈ Confs do
6: (lAppro(Cfp), lx)← Cfp Eval(fp, c)
7: (erri, xi)← Error Eval(fp, lx)
8: tmp list.append((erri, xi))
9: end for

10: tmp list← SortByError(tmp list)[0 : K]
11: for (err, xi) ∈ tmp list do
12: Confxi

← Reconf(xi)
13: (max err, xt) = Error Eval(fp, Confi)
14: error list.append((max err, xt))
15: end for
16: end while
17: error list← SortByError(error list)
18: return error list

that the high errors stay in a small interval. In this way, the
approximate value of Cfp can be represented by:

Appro(Cfp) =

∣∣∣∣Derivative(fp(x), x) · ulp(x)

ulp(fp(x))

∣∣∣∣ (13)

After the conversion from Cfp to Appro(Cfp), the value
of f(x) is not needed, which means that we are free from the
high precision calculation at the step of calculating Cfp value
and save a lot of time.

Alg.1 shows our EAGT algorithm. The inputs of our al-
gorithm include fp, Cinit which represents the input domain
of the real function, and K that is used to trade off between
computer resources and search stability. The algorithm does
not directly output the max error that it find, but return an
error list. Apparently, an error list can supply more information
than just a single error. To produce the error list efficiently,
our algorithm includes three main steps: partitioning, global
search and fine search. We explain these three steps in detail
as follows:
• Partitioning: The single line 4 in Alg. 1 completes this

step. The function Partition(Cinit) tries to divide the
input domain Cinit into a set of intervals Confs. We
try to divide the input domain into a set of intervals
such that each interval contain the same numbers of
floating-point inputs to make sure the sampling rate is
equal for each c in Confs. However, the fact that the
interval [−1, 1] contains half number of all floating-points
numbers, which will desire massive tests and consume
much time when the considered interval contains [-1,1].
In the function Partition(Cinit), we consider [−1, 1]
as an independent interval to test and divide other part
of input domain according to the numbers of contained
floating-point numbers. In this way, we keep the sample



rate the same for every c ∈ Confs except [−1, 1] and
also save a lot of computer resources.

• Global Search: This step corresponds to lines 5-9 in Alg.
1. The function Cfp Eval(fp, c) samples inputs within
the small input domain c ∈ Confs and returns the list of
Appro(Cfp) with maximum first together with its corre-
sponding input list lx. The function Error Eval(fp, lx)
calculates the error for the one hundred inputs in lx
and returns the maximum error (erri) together with the
corresponding input (xi). After that, the tmp list saves
the (erri, xi) for the next fine search.

• Fine Search: The fine search correspond to line
11-16 in Alg. 1. Before the fine search, the
SortByError(tmp list)[0:k] function on line 10
would sort the tmp list according to the error value
of the element tuple (erri, xi) and return the first K
elements, where the K value is set for the trade-off
between stability and the consumption of computer
resources. The closer the K value to the length of
Confs, the more global information is saved, and
also more computer resources are consumed, and vice
verse. We set the K value according to the length of
Confs in experiments. The Reconf(xi) function in
line 12 would generate a small interval Confxi

around
xi. Next, the small interval is transferred to function
Error Eval(fp, Confi) which would return the max
error (max err) for Confxi and also return the input
xt that triggers the max error. At last, (max err, xt) is
saved in error list.

In our approach, we cope with the three challenges men-
tioned in Section I by studying backward and forward error
to achieve general heuristic rules, using the approximate
calculation of Cfp to reduce the time overhead, and global
search to deal with the large search space problem.

V. EXPERIMENTAL DESIGN

To check the performance of our EAGT method, we conduct
comparative experiments to compare EAGT with the existing
BGRT method and the random method. We select BGRT to
compare due to the fact that it is the only state-of-the-art
high inaccuracy detecting approach with (open source) tool
available. We can not compare with the LSGA method by
experiments because its corresponding tool is not publicly
available, and we do not know the detailed parameter setting
of the LSGA approach. We have conducted empirical study of
the LSGA approach in Section III and found that the LSGA
approach may not fit for general cases, especially for programs
involving precision-specific operations.

A. Research Questions

Our experimental evaluation seeks to address the following
research questions:
RQ1:Whether EAGT can find higher floating-point inaccura-
cies with limited resources, compared to BGRT?

The situation is complicated for testing floating-point pro-
grams, and many factors need to consider, such as testing time,

TABLE III
SUBJECT PROGRAMS

Program Detail

Po
ly

Bell x5 − (5/2) · x4 + (5/3) · x3 − (1/6) · x
Bernoulli x5 + 10x4 + 25x3 + 15x2 + x

Chebyshev 16x5 − 10x3 + 5x

G
SL

fu
nc

ito
ns

gsl sf airy ai Airy function Ai(z)
gsl sf Chi Hyperbolic cosine integral
gsl sf Ci Cosine integral
gsl sf bessel J0 0 order regular cylindrical Bessel function
gsl sf bessel J1 1 order regular cylindrical Bessel function
gsl sf bessel Y0 0 order irregular cylindrical Bessel function
gsl sf bessel Y1 1 order irregular cylindrical Bessel function
gsl sf eta Alternating zeta function
gsl sf gamma Gamma function
gsl sf legendre P2 Legendre polynomial of the 2nd order
gsl sf legendre P3 Legendre polynomial of the 3rd order
gsl sf lngamma Logarithm of the Gamma function

sampling rate and the size of input domain. EAGT is designed
with the ability of global and fast search. BGRT is also fast
but may easily get into a local maximum. It is hard to judge
which method can find higher floating-point inaccuracies. RQ1
asks whether EAGT can find higher floating-point inaccuracies
compared to BGRT under the same limitation.
RQ2:Which algorithm has better stability, BGRT or EAGT?

An approach with low stability needs more repetition of
experiments to get a useful result, which will waste more
resources. The stability should not be measured by just one
factor. We measure the stability from two aspects of exper-
imental results: the validity and the degree of dispersion.
The validity is to measure whether the results are worth to
do the comparison of stability. For example, if the floating
point inaccuracies that are found by a method are close to
zero, we consider the stability is not necessary to measure
in this situation. The degree of dispersion is to measure the
distribution of 100 trials data for each approach. We use
the coefficient of variation as the index for the degree of
dispersion. In this way, we measure the stability of EAGT
and BGRT from the two above aspects, to answer RQ2.

B. Subject Programs

Our subject programs include two parts: 3 basic polynomial
functions and 12 real-world GSL functions. Table III shows
our subject programs in details. We first investigate polynomial
functions because the polynomial approximate calculation has
been widely used in many real-world functions. For example,
we find that 210 special functions of GSL include about more
than 230 times calls of polynomial evaluation, which indicates
more than one polynomial function call for each GSL function
on average. Thus, conducting experiment on the polynomial
functions is essential and meaningful.

The GSL functions have received much attention in
acadamic [16][19][20], but most existing work mainly con-
cerns the stability or exceptions of GSL functions, rather than



TABLE IV
EXPERIMENTAL RESULTS OF POLYNOMIALS

Program Input Domain Algorithm
Mean of

Max. Error
Median of
Max. Error

Avg.
Time(s)

Ratio on RAND Ratio on Time

Bell

[-1.7e+10,1.7e+10]

EAGT 8.79E+18 8.79E+18 9.16 4395231165240180000.00 959743071030621000.00
BGRT 3.00E+00 3.00E+00 10.83 1.50 0.28
RAND 2.00E+00 2.00E+00 8.75 1.00 0.23

Bernoulli
EAGT 7.85E+18 8.73E+18 9.25 3926022478645970000.00 848657406067286000.00
BGRT 3.00E+00 3.00E+00 12.07 1.50 0.25
RAND 2.00E+00 2.00E+00 15.63 1.00 0.13

Chebyshev
EAGT 3.49E+18 4.36E+18 8.78 1745360127545860000.00 397693201029284000.00
BGRT 2.90E+00 3.00E+00 11.60 1.45 0.25
RAND 2.00E+00 2.00E+00 11.27 1.00 0.18

Bell

[-1.7e+2,1.7e+2]

EAGT 7.90E+18 8.79E+18 3.60 550595760539442.00 2198123333497370000.00
BGRT 4.40E+18 4.39E+18 26.44 306577332734652.00 166441622966288000.00
RAND 1.44E+04 3.59E+03 30.00 1.00 478.39

Bernoulli
EAGT 8.73E+18 8.73E+18 4.00 168963659934863.00 2183720295054170000.00
BGRT 8.73E+18 8.73E+18 30.14 168887691531787.00 289448904481964000.00
RAND 5.17E+04 1.09E+04 28.16 1.00 1834.79

Chebyshev
EAGT 4.36E+18 4.36E+18 3.34 861440548603637.00 1307560388529970000.00
BGRT 2.18E+18 2.18E+18 27.66 430902860576154.00 78906893937393700.00
RAND 5.06E+03 2.28E+03 24.83 1.00 203.95

the inaccuracy in GSL functions. The LSGA algorithm [7]
indeed takes the special functions of GSL as benchmarks to
detect inaccuracies, but its results may have high false alarm
rate according to our empirical analysis discussed in Section
III. For the sake of generality, we choose the GSL functions
randomly from each kind of functions.

C. Experimental Setup

To make the comparison more clear, we use the random
search algorithm as a baseline to measure BGRT and EAGT.
We implement the BGRT method basically on the top of its
tool2, but we strengthen the method by increasing the iteration
times. We do not limit the number of iterations. In other
words, the method is terminated only when the resources
are exhausted or the output is not changed by increasing
the number of iterations. The EAGT method is implemented
according to Alg.1. To be more clear, we change the K value
according to the size of input domain. If the size is small,
all items would be saved for fine search. Otherwise, we set a
fixed value to K. It is worth to note that K is a configurable
parameter for users.

All experiments are run on an Ubuntu 14.04 machine with
3.4 GHz Intel Core i7-4770 CPU and 8 GB of memory.
To avoid the possible extra errors, we use the corresponding
programs from mpmath [15] as implementation of the real
functions of the corresponding benchmarks. Because the ex-
ecution time is not the same for all programs, we assign the

2https://github.com/wfchiang/s3fp

corresponding execution time to each program. The number of
sample points is determined by the size of input domain, and
thus is adjusted for each iteration. Especially, we separately
perform 100 trials to test every GSL program for each method.
We only do 10 trials for each polynomial function, but we
change the size of the input domain to study the effect of the
search space size on test methods.

VI. EXPERIMENTAL RESULTS

Table IV and V show the experimental results3. The first
and second columns list the program names and input domains
of programs. We calculate error of program output according
to formula (4). Mean and median of maximum errors are
presented in the 4th and 5th column for each algorithm. The
6th column shows the average time of testing. The “Ratio on
RAND” column (i.e., the 7th column) is calculated by the
formula below:

Ratio on RAND =
Mean of Max Error

RAND′s Mean of Max Error

In the above formula, the mean of maximum error of RAND
is used as the baseline to measure the results of other two
methods. We obtain the value of ratio on time (i.e., the 8th
column) by using the ratio of the mean of maximum error (i.e.,
the 4th column) to the average time (i.e., the 6th column).

Next, we use our experimental results to answer the two
research questions posed in Section V-A.

3All our experimental data are online: http://github.com/yixin-
09/APSEC2017-EAGT-results



TABLE V
EXPERIMENTAL RESULTS OF GSL FUNCTIONS

Program Input Domain Algorithm
Mean of

Max. Error
Median of
Max. Error

Avg.
Time(s)

Ratio on RAND Ratio on Time

gsl sf airy ai [-823549,102]
EAGT 8.95E+18 8.95E+18 24.04 90348.33 372263878892634000.00
BGRT 8.68E+18 8.95E+18 76.76 87600.57 113050884847208000.00
RAND 9.91E+13 2.73E+13 76.28 1.00 1298555927826.22

gsl sf Chi [0,700]
EAGT 1.29E+15 1.56E+15 2.41 45291790879435.90 535278776903093.00
BGRT 1.08E+15 1.56E+15 5.71 37693909139754.50 188512902815526.00
RAND 2.85E+01 9.50E+00 5.32 1.00 5.36

gsl sf Ci [0,823549]
EAGT 3.15E+18 2.58E+14 3.55 165551244091756000.00 885034073176814000.00
BGRT 3.49E+17 3.00E+00 1.87 18393998265178700.00 186411196173681000.00
RAND 1.90E+01 3.00E+00 4.60 1.00 4.13

gsl sf bessel J0 [0,1.7e+100]
EAGT 1.35E+15 1.78E+15 34.63 67924474978.14 38908928842321.60
BGRT 7.70E+02 1.37E+02 64.61 0.04 11.91
RAND 1.98E+04 9.88E+03 66.25 1.00 299.41

gsl sf bessel J1 [0,1.7e+100]
EAGT 2.93E+18 4.37E+18 36.71 108942352709279.00 79729190418993000.00
BGRT 4.62E+02 1.73E+02 69.42 0.02 6.65
RAND 2.69E+04 9.54E+03 70.79 1.00 379.56

gsl sf bessel Y0 [0,1.7e+10]
EAGT 1.28E+15 2.22E+14 107.74 31035187712.44 11883117715957.80
BGRT 2.66E+06 2.75E+05 107.95 64.43 24622.17
RAND 4.13E+04 7.88E+03 112.61 1.00 366.33

gsl sf bessel Y1 [0,1.7e+10]
EAGT 2.20E+14 5.38E+13 106.22 6033080292.74 2072312643189.83
BGRT 2.83E+07 3.03E+05 127.28 776.93 222710.04
RAND 3.65E+04 5.37E+03 116.47 1.00 313.26

gsl sf eta [-168,100]
EAGT 1.42E+15 7.50E+14 22.37 15384764304.41 63275557061608.80
BGRT 2.38E+14 5.69E+13 28.46 2589851536.93 8373249684598.18
RAND 9.20E+04 2.54E+04 27.95 1.00 3291.66

gsl sf gamma [-168,168]
EAGT 6.20E+02 6.24E+02 2.70 1.01 222.16
BGRT 5.56E+02 6.26E+02 3.10 0.91 179.24
RAND 6.12E+02 6.14E+02 2.56 1.00 238.85

gsl sf legendre P2 [-1.7e+10,1.7e+10]
EAGT 8.94E+14 9.47E+14 4.87 894415114308460.00 183581655766050.00
BGRT 1.02E+00 1.00E+00 0.98 1.02 1.04
RAND 1.00E+00 1.00E+00 5.56 1.00 0.18

gsl sf legendre P3 [-1.7e+10,1.7e+10]
EAGT 4.24E+18 4.37E+18 5.07 2117566448980710000.00 835611238470093000.00
BGRT 1.95E+00 2.00E+00 1.19 0.98 1.63
RAND 2.00E+00 2.00E+00 6.98 1.00 0.29

gsl sf lngamma [0,1000]
EAGT 2.90E+03 2.90E+03 1.82 44.23 1595.81
BGRT 3.03E+03 3.07E+03 2.09 46.21 1449.17
RAND 6.57E+01 4.55E+01 2.27 1.00 28.89

A. RQ1

RQ1 asks which algorithm can find the higher inaccuracy
with limited resources. To answer the question, we first discuss
the experimental results of polynomial functions.

In Table IV, we can discover that the input domain is a
main influence factor for the results: The values of “Mean of
Max. Error” of EAGT and BGRT are almost the same when
the input domains are of small size; The values of “Mean of
Max. Error” of EAGT are huge while that of BGRT is close
to zero when the input domains are of large size. However,
the values of “Ratio on Time” which indicate the number of
the errors found in each second is quite different for different
methods, when the input domain is small. Considering the

limited resources, EAGT has the larger value of “Ratio on
Time” than BGRT and thus can find higher inaccuracies faster.

Now, we discuss the experimental results on GSL functions.
In Fig. 6, we convert the value of “Mean of Max. Error” to bit
error according to the Formula (5) for intuitive comparison.
As shown in Fig. 6, EAGT can find higher errors than BGRT
in the 11 of 12 GSL functions, and the results for the other one
(i.e., the gsl sf lngamma function) are almost the same. We
can also see the strong connection between the effectiveness
of BGRT and the size of input domain. For the functions with
small input domain, such as gsl sf Chi, gsl sf eta and
gsl sf gamma, BGRT can also find the high inaccuracies.
However, for the functions with large input domain, BGRT
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does not work well, even worse than the RAND, such as
for gsl sf bessel J1 and gsl sf legendre P3, as shown in
Table V. It is worth to notice that for all functions, EAGT has
a larger value of “Ratio on Time” than the other two methods.

We also notice two exceptions in Table V. One is the
gsl sf airy ai function, for which the order of error values
given by EAGT and BGRT are almost the same. The reason
is that: for the function gsl sf airy ai, the high inaccuracies
occur averagely with inputs that are around the lower bound
of input domain as Fig. 7(a) shows. In this case, the high
inaccuracies can easily detect by BGRT given enough itera-
tions, but BGRT waste more time than EAGT (more than three
times: 76.76s vs. 24.04s). Another exception is the function
gsl sf lngamma. As shown in Fig. 7(b), the inputs that can
trigger the maximum error are few, which means more sample
points are needed to hit the few inputs. The second exception
can be dismissed by increasing the sampling rate of EAGT,
but which would destroy the consistency of parameter setting
of our experiment.
Answer for RQ1: In our experiment, for 11 of 12 GSL
functions, EAGT can find higher floating-point inaccuracies
than BGRT and RAND. And for the value of “Ratio on
Time”, EAGT is bigger than BGRT and RAND for all GSL
functions. This results show that comparing to BGRT and
RAND, EAGT can find higher floating-point inaccuracies
with limited resources, especially for large test space (input
domain).

TABLE VI
Cv OF MAX. ERROR

Program EAGT BGRT RAND

gsl sf airy ai 0.05% 17.58% 379.29%

gsl sf Chi 44.59% 67.03% 178.90%

gsl sf Ci 133.32% 489.89% 617.23%

gsl sf bessel J0 77.96% 350.60% 142.64%

gsl sf bessel J1 70.18% 221.44% 171.06%

gsl sf bessel Y0 110.27% 473.18% 308.75%

gsl sf bessel Y1 127.57% 857.70% 443.85%

gsl sf eta 74.26% 203.75% 214.93%

gsl sf gamma 4.93% 32.37% 1.57%

gsl sf legendre P2 23.58% 13.73% 0.00%

gsl sf legendre P3 17.59% 11.18% 0.00%

gsl sf lngamma 7.02% 10.10% 97.67%

B. RQ2

RQ2 asks which method has a better stability. To compare
the stability of methods, we use the coefficient of variation
[21] as the index, which is defined as the ratio of the standard
deviation σ to the mean µ:

Cv =
σ

µ
(14)

For every GSL function, we have done 100 trials for each
approach. We calculate the value of σ for the 100 results of
maximum error and then calculate the ratio of it to the mean
of maximum error to achieve the coefficient of variation. The
results of Cv are shown in Table VI. The value of Cv can
measure the dispersion of the distribution of maximum errors,
and the lower value means the lower dispersion. As shown
in Table VI, EAGT has lower value of Cv than BGRT for
most functions, except for functions gsl sf legendre P2 and
gsl sf legendre P3.

Combining with the validity, we find from Table V that
the value of “Ratio on RAND” of BGRT are close to 1
for gsl sf legendre P2 and gsl sf legendre P3, which
means BGRT is equivalent to RAND for these two functions.
Meanwhile, the value of “Ratio on RAND” of EAGT are huge
for these two functions. Based on this observation, we consider
it is meaningless to discuss the stability of an approach if it can
not found the high inaccuracy. For example, for the function
gsl sf legendre P2, the maximum error that BGRT can
found is less than 3.0, while the Cv value is small. Another
example that can illustrate the instability of BGRT is the
function gsl sf Ci, for which the value of the mean of
maximum error of BGRT is 3.49E+15, but its median of max
error is 3.0, which means that more than 50% maximum errors
found by BGRT less than 3.0 in 100 trials. The disparity shows
that the results of BGRT is of high instability for this function
(with Cv value 489.89%).
Answer for RQ2: Based on the analysis above, for 10 of 12
GSL functions (9 of 12 to RAND), EAGT has lower values of
Cv than BGRT, which means that EAGT can return the results
with lower dispersion. Combining with the validity and the



answer for RQ1 that EAGT can find higher inaccuracy than
BGRT in 11 of 12 GSL functions, we can conclude that EAGT
has better stability to detect high floating-point inaccuracies
than BGRT.

C. Threats to Vallidity:

Threats to internal validity are related to errors in our
implementation and experiments. We use the mpmath [15] to
simulate the real function. We also use the mpmath to avoid
the precision-specific operation problem [8]. We consider
the operations in mpmath as exact implementations in real
arithmetic. We can not ensure, but we try our best to avoid
the unexpected error, such as the extra errors in the LSGA ap-
proach (see Section III). Threats to external validity are related
to the generality of our findings. Currently, our experiment is
conducted only on functions with one input variable, which
is the basic situation for numerical programs. In the future,
we would extend our approach to adopt numerical program
with multiple input variables. Threats to construct validity
correspond to the suitability of our approach to measure the
stability of testing method. We use the coefficient of variation
to measure the stability of testing method because it is suitable
for the comparison between data sets with different means.
We also take into account the validity of the comparison.
We consider it is meaningless to discuss the stability of an
approach if it can not find the high floating-point inaccuracies.

VII. DISCUSSION

Our approach exploits the global search but not the ex-
haustive search, so our approach can not guarantee to trigger
the highest floating-point inaccuracy. In the future work, we
will establish benchmark that includes programs with known
maximum floating-point inaccuracy through exhaustive search,
and evaluate our approach on this benchmark.

In our experiment, our approach consumes less time than
BGRT and RAND in most cases under sequential execution.
It is easy to adapt our approach to parallel execution, because
comparison only happens after the global and fine search, and
the calculation in each conf is independent. In the future work,
we will try to implement our approach in parallel, which will
significantly reduce the time consumption.

It would be interesting to study the relationship between Bi

and Cfp. However, it is hard to calculate the value of Bi and
the exact value of Cfp. In the future work, we will consider
approaches that can calculate the exact value of Cfp and study
the relationship between Bi and Cfp to develop possibly more
general heuristic rules.

VIII. CONCLUSION

In this paper, we propose a so-called EAGT approach to
efficiently trigger high floating-point inaccuracies in numerical
code. Our method uses general heuristic rules that are drawn
from error analysis. Under the guidance of those heuristic
rules, our method performs an effective global search by
approximately computing heuristic values and generate ap-
propriate partitions of the search space. Our experimental

results demonstrate that our approach can efficiently find
higher floating-point inaccuracies than BGRT and RAND for
11 of 12 real-world GSL functions, and especially effective
for programs that have large search space (i.e., input domain).
And the results also show that our approach has better stability
than BGRT and RAND.
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