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Abstract—Heap-manipulating programs allow flexible manip-
ulations over dynamically allocated, shared, and mutable heap
cells via pointers that point to not only linked data structures
but also their pointer fields. Therefore, memory leak detection
for these programs requires precise field-sensitive pointer alias
information, which make the problem more challenging. In this
paper, we present a field and context sensitive algorithm for
detecting memory leaks in heap-manipulating programs. First,
we propose a modular heap abstraction based on member-access
distances and alias bit-vector domain as the escape model of each
procedure; Then, based on procedural summaries characterized
by this modular heap abstraction, an efficient context-sensitive
memory leak detection is proposed in an on-demand way.
Experimental evaluation about a set of large C benchmark
programs shows that the proposed approach is scalable with
satisfied precision as expected.

Keywords—heap-manipulating programs, memory leak de-
tection, modular heap abstraction, field and context sensitive
analysis

I. INTRODUCTION

Heap-manipulating programs are those storing and process-
ing data with dynamic and shared data-structures, such as lists
and trees. These programs are common in various application
domains. For example:

• Operation systems, such as Linux and FreeRTOS, usually
manage tasks through priority queues or hash tables.

• Most device drivers manage various devices through
complex data structures composed of shared singly- and
doubly-linked lists.

• Web servers, such as Apache, receive and store requests
with various collections.

• Management information systems also denote views or
store data queried from the database with kinds of col-
lections.

Heap cells are allocated, aggregated, separated or deallo-
cated dynamically during a running of a heap-manipulating
program. Moreover, complex alias relations between these
cells may appear during the running. A cell may be referenced
by many pointer variables or other cells, due to the pointer
variables or the pointer fields used to operate these memory
cells directly or indirectly. Therefore, it is more challenging to
decide whether an allocated heap cell is correctly deallocated
in heap-manipulating programs than other programs. Memory
leak is one of the most common errors in software systems.

It can cause memory-intensive or long-time running programs
to crash.

A recent representative static memory leak detection tool
(called Fastcheck) is proposed by Cherem et al. [1] based on
Guarded Value-Flow. Fastcheck tracks the flow of memory
cells from all allocation points to all deallocation points
and can detect memory leaks by checking whether there is
exactly one source-sink pair along all paths. The analyzer
uses a unification-based points-to analysis, which partitions the
whole memory into disjoint regions with equivalence classes.
However, once an allocated cell is linked to another cell via a
pointer field assignment, theses two cells fall into an equivalent
region. In this case, Fastcheck cannot tell whether all cells in
the same region are eventually deallocated based on this kind
of pointer alias analysis. Hence, in order to detect this kind of
memory leak, we have to analyze heap-manipulating programs
in a field-sensitive way.

On the other hand, field-sensitive memory detection needs
to describe the memory layout [2], [3], [4], which will increase
the storage overhead of the analysis to store intermediate
memory states. Therefore, field-sensitive analysis may not
scale to large programs. Hence, we need to design heap
abstractions over field-sensitive memory models. Furthermore,
in large software systems, due to modular design, a large
number of procedures may be called many times and there
may be recursive procedures.

Furthermore, the modular, summary-based analysis [5], [6],
[7], [8] offers three key advantages over the whole program
analysis: such as reuse of analysis results, scalability and
parallelizability. Procedures in programs are analyzed in a
particular context, and thus, an additional caller to the same
procedure may require re-analysis of the whole procedure.
However, summary-based analysis allows reuse of analysis
results. Procedural summaries also describe precondition and
postcondition about the procedure based on big-step semantics,
abstracting away its internal details. So, we can spend less
memory to store only procedural summaries after analyzing
a procedure, which can scale to large programs easily. In
modular analysis, any two procedures that do not have a
caller/callee relationship can be analyzed independently. Thus,
such characteristic naturally enables decomposition of large
programs into many small pieces, and each of which can be
analyzed in parallel.



In this paper, we propose a modular heap abstraction based
on member-access distances and alias bit-vector domain that
abstracts memory model field-sensitively. Then, we present
procedural summaries based on this modular heap abstraction
and a filed and context sensitive interprocedural memory leak
detection algorithm. In the end, we implement a prototype tool
(Heapcheck) for detecting memory leaks of C programs. As
corroborated by our experiments, modular heap abstraction is
crucial for field and context sensitive memory leak detection
in heap-manipulating programs. In summary, this paper makes
the following contributions:

• A Modular Heap Abstraction based on Member-
access Distances and Alias Bit-vector Domain. We
present an extended pointer structure based on member-
access distances that distinguish different fields to ab-
stract the memory layout reachable from the pointer
variable in a field-sensitive way. Then, pointer alias for
each member field with certain distance is described
by bit vectors in a modular way, which are useful for
memory leak detection.

• A Field and Context Sensitive Memory Leak Detection
Algorithm. We present a field and context sensitive
memory detection based on fixpoint iteration algorithm in
an on-demand style. Procedural summaries are built for
each procedure based on this modular heap abstraction,
and a pair of mapping ⟨ᾱ, β̄⟩ is proposed to instantiate
procedural summary at each call and return site.

• Experimental Evaluations. Experimental evaluation for
a set of large C programs shows that our approach can
be scalable with satisfied precision in detecting memory
leaks for large heap-manipulating programs as expected.

The remainder of the paper is organized as follows. Section
II introduces the basic syntax of heap-manipulating programs.
Section III presents the modular heap abstraction based on
member-access distances and bit-vector domain. Section IV
details our interprocedural memory leak detection algorithm.
Section V shows experimental results. Section VI presents
related work. Section VII shows conclusions and future work.

II. HEAP-MANIPULATING PROGRAMS

The composite data structures (struct in C) are used to
represent aggregate cells in heap-manipulating programs, and
each pointer field is used to point to another cell. In this paper,
we omit data fields and their operations to get a minimal set
of syntax shown in Fig. 1, as they do not change the shape of
the heap.

In Fig. 1, PVar denotes the set of pointer variables, and
e denotes a program expression. Basic pointer assignments
include: a pointer is set null, the value of one pointer (or
the pointer field) is copied to another pointer (or another
pointer field), a heap cell is allocated or deallocated. The
basic control statements (such as: If-Then-Else and While) can
be transformed into switch statement [9], herein: e denotes
test condition, ci is the constant condition of each branch,
ni denotes the corresponding successor. Heap-manipulating
programs also support the call and return of the procedure.

p, q ∈ PVar
f1, f2, ... fi ..., fm ∈ Fields
AsgnStmt := p = null| p→ fi = null| p = q|

p = q → fi| p→ fi = q| p = malloc()| p = free()
SwitchStmt := switch e {c1 : n1, ..., cj : cj , ..., ck : nk, ...}
CallStmt := e = g(e1, ..., ek)
ReturnStmt := return e
Stmt := AsgnStmt| SwitchStmt| CallStmt| ReturnStmt
SequenceStmt := Stmt;Stmt

Figure 1. Basic statements of heap-manipulating programs

For the sake of simplicity, we require that the assignment
statements satisfy a SSA (Static Single Assignment)-like form
shown in Fig. 1. And complex assignment statements can
be transformed into standard ones by instrumenting auxiliary
pointer variables shown in Table I.

Table I
TRANSFORMING FOR HEAP-MANIPULATING PROGRAMS

Pointer Statement Instrumental Statement

p→ fi = q → fj pt0 = q → fj ; p→ fi = pt0

p = p→ fi pt1 = p→ fi; p = pt1

p→ fi = malloc pt2 = malloc; p→ fi = pt2

p = q → fi → fj pt3 = q → fi; p = pt3 → fj

p→ fi = free() pt4 = p→ fi; pt4 = free()

A configuration for heap-manipulating programs is a valu-
ation of pointer variables with allocated heap addresses. The
constant null is represented by a distinguished symbol ⊥. We
can denote such a configuration through a heap state.
Definition 1 (Heap State). A heap state is the pair ⟨H,S⟩.
Herein, H = ⟨V,E⟩, where the node V denotes the set of all
the heap cells, and the edge E : V

F−→ V denotes the points-
to relations between cells via their fields F . S : PVar → V
describes that the values of pointer variables are the addresses
of heap cells.
Example 1. Fig. 2 shows a simple heap state with the formal
tuples and the shape graph respectively.

heap_0 heap_1 heap_2

x

y

PV ar = fx; y; zg

V = fheap 0; heap 1; heap 2; heap 3; heap 4g

S = fhx; heap 0i; hy; heap 1i; hz; heap 4ig

E = fheap 0
f1

¡! heap 3; heap 0
f2

¡! heap 1;

heap_3 heap_4

z

f1

f1

f2f2

heap 1
f2

¡! heap 2; heap 3
f1

¡! heap 4g

Figure 2. A simple heap state

III. MODULAR HEAP ABSTRACTION

In this section, we extend the basic pointer structure
based on member-access information to support field-sensitive
analysis, and then propose a modular heap abstraction by
combining member-access information and alias information.
Then, we show abstract semantics of basic statements for heap-
manipulating based on the modular heap abstraction.



A. Extended pointer structures

The basic structure of pointer variable can be denoted as
p : {f1, f2, ..., fn}, which describes that the pointer p points
to a cell with n pointer fields. In a field-sensitive analysis, the
distance away from the heap cell pointed to by current pointer
in the heap can be also said to be the times of dereferencing
member pointer field of the pointer. For example, the times of
dereferencing member pointer field fm of the pointer variable
p in the pointer expression p → fm is 1, which is also said
to be that the heap arrived at through dereferencing member
pointer field fm one times is 1 away from the heap pointed
to by p.

We know from the basic pointer statements in Fig. 1 that
the maximum distance away from the cell pointed to directly
by the pointer assignment is 1 (e.g., the distance of the
heap cell referenced by the field fm away from p is 1 in
p → fm = q ). Therefore, if we can obtain the precise alias
information of heap cells in the distance less than 2, then we
can decide whether the pointer assignment causes any memory
leak. So, in this sense, detecting memory leaks for the heap-
manipulating programs has local property.
Definition 2 (Member-access Distances D). The member-
access distances D is a pair ⟨{0, 1, 2}, {+,−}⟩, where 0 and
1 denote precise values of distances respectively — zero and
one, and 2 is an abstract value of distances denoting the values
equal to or greater than two. The operations +,− are shown
in Table II(a), II(b), where ⊥ denotes this operator cannot
be applied to these operands, and ⊤ denotes the whole set
{0, 1, 2}.

Table II
OPERATIONS OVER D

(a) Subtraction over D

– 0 1 2
0 ⊥ ⊥ ⊥
1 {1} {0} ⊥
2 {2} {1,2} ⊤

(b) Addition over D

+ 0 1 2
0 {0} {1} {2}
1 {1} {2} {2}
2 {2} {2} {2}

The expression d1 − d2 (or d1 + d2) denotes the distance
obtained by d2 steps backward (or forward) along a pointer
field from the heap cell with the distance d1 away from
the current pointer. In Table II(a), as 2 is an abstract value
denoting that cells (called summary node) can be arrived at
through exactly two or more than two times of pointer member
dereferencing, the expression 2− 1 describes 1 step backward
from the current distance greater than 1 away from the current
pointer. Hence, if the starting distance is exactly 2, then the
result is 1; otherwise (greater than 2), the result is the abstract
value i.e. 2. Similarly, 2− 2 = ⊤.
Definition 3 (Extended Pointer Structure). An extended
pointer structure of a pointer p is denoted as τ ♯p : {f1 :
⟨dist, 2PVar ⟩; f2 : ⟨dist, 2PVar ⟩; ...; fn : ⟨dist, 2PVar ⟩},
where dist ∈ D and the set 2PV ar is the set of other pointer
variables that also point to the cells that can be accessed in
the dist times of dereferencing the pointer member field fm

(1 ≤ m ≤ n).
There are two special elements in the alias pointer power set

2PVar : ∅ denotes there are no other pointer variables pointing
to the cell but which do exist in the heap; however, ⊥ denotes
that the value of pointer (or pointer field) is null and this cell
has not yet been allocated in the heap.

The function FDτ♯
x
: Fields × D → 2PVar is defined to

obtain the set of alias pointers, when given a pointer field and
the distance away from the pointer variable x. For example,
FDτ♯

x
(f2, 1) = {y} in Fig. 2. Here, we can show the extended

structures of the pointer variables x, y and z in Fig. 2.

τ ♯x : {f1 : ⟨0, ∅⟩, ⟨1, ∅⟩, ⟨2, {z}⟩; f2 : ⟨0, ∅⟩, ⟨1, {y}⟩, ⟨2, ∅⟩}

τ ♯y : {f1 : ⟨0, ∅⟩, ⟨1,⊥⟩; f2 : ⟨0, ∅⟩, ⟨1, ∅⟩, ⟨2,⊥⟩}

τ ♯z : {f1 : ⟨0, ∅⟩, ⟨1,⊥⟩; f2 : ⟨0, ∅⟩, ⟨1,⊥⟩}

Definition 4 (Abstract Heap State). The abstract heap state
S♯ at any point of the heap program HP can be composed of
extended structures of all pointer variables, as: S♯ = {τ ♯pi

|pi ∈
PV ar(HP )}.

It is easy to see that the number of abstract heap states based
on extended pointer structures is finite. Assume the number of
pointer variables is pn and the maximum number of pointer
fields is fn. Then the maximum number of abstract states is
[fn× 3× (2pn + 1)]pn, where 2pn + 1 is the total number of
alias pointer power set 2PVar .

B. Modular heap abstraction

From the above section, we know that the number of
abstract heap states based on extended pointer structures is
mainly dominated by the factor— the number of pointer
variables in heap-manipulating programs. On the other hand,
large programs are composed of kinds of procedures with the
caller/callee relationships, and the number of pointers read or
written in a procedure is usually small. So, we can encode alias
pointer sets of heap states modularly to reduce the complexity.

The base pointer set in a procedure (called BPPS for
short) includes global pointers, formal parameter pointers,
local pointers and return pointers. The pointer variables read
or written in a procedure cannot exceed the scope of the base
procedural pointer set. We maintain a fixed variable ordering
for pointer variables in the BPPS of a procedure. Then, the
alias pointer sets of the extended pointer structure of a pointer
in a procedure can be denoted as a bit vector based on the
variable ordering.
Definition 5 (Alias Bit-Vector, ABV). If the base pointer set in
a procedure ranges over: BPPS = ⟨p0, p1, ..., pn−1⟩, we can
denote an alias pointer set in the extended pointer structure
τ ♯x with a bit-vector −→r ♯

x ∈ {0, 1}n. Given a field fm and a
distance d, −→r ♯

x(fm, d)[i] = 1 if and only if: pi ∈ FDτ♯
x
(fm, d).

Accordingly, we maintain two particular elements in −→r ♯
x:

⊥ and 0. −→r ♯
x(fm, d) = ⊥ means FDτ♯

x
(fm, d) = ⊥,

−→r ♯
x(fm, d) = 0 means FDτ♯

x
(fm, d) = ∅. As an example,

in Fig. 2, extended pointer structures of variables x, y and z



can be described by alias bit-vectors as follows:

BPPS = ⟨x, y, z⟩ with variable ordering: x ≺ y ≺ z

−→r ♯
x : {f1 : ⟨0, 0⟩, ⟨1, 0⟩, ⟨2, 001⟩; f2 : ⟨0, 0⟩, ⟨1, 010⟩, ⟨2, 0⟩}
−→r ♯

y : {f1 : ⟨0, 0⟩, ⟨1,⊥⟩; f2 : ⟨0, 0⟩, ⟨1, 0⟩, ⟨2,⊥⟩}
−→r ♯

z : {f1 : ⟨0, 0⟩, ⟨1,⊥⟩; f2 : ⟨0, 0⟩, ⟨1,⊥⟩}

In order to maintain the mapping between variables and
indices, we define a pair of bijective function ⟨ι, ι−1⟩, such
that ι(pi) = i and ι−1(i) = pi. For example, in the above
basic procedural pointer set BPPS, ι(x) = 0 and ι−1(0) = x.
Definition 6 (Alias Bit-Vector Domain). We define a so-called
alias bit-vector domain ABVD = ⟨ABV, {−→+ ,

−→−⟩}, whose
operations are defined in Table III(a), III(b).

Table III
OPERATIONS OVER ABVD

(a) Bitwise addition
−→
+ 0 1
0 0 1
1 1 1

(b) Bitwise subtraction
−→− 0 1
0 0 0
1 1 0

Definition 7 (Bitwise Less between Alias Bit-Vectors
−→≤ ).

Given two alias bit-vectors −→r ♯
1x and −→r ♯

2x of dimension n
in the same procedure, if it holds that ∀0 ≤ i < n. −→r ♯

1x[i] ≤−→r ♯
2x[i], then −→r ♯

1x

−→≤−→r ♯
2x.

So, we can denote the alias bit-vector as a lattice ABVL =
⟨ABV, {−→+ ,

−→−},−→≤⟩.
Definition 8 (Containment between two extended pointer
structures). If −→r ♯

1x and −→r ♯
2x for two extended structure τ ♯1x

and τ ♯2x in the same procedure hold ∀fm ∈ Fields ∀d ∈
D.−→r ♯

1x(fm, d)
−→≤−→r ♯

2x(fm, d), then τ ♯1x ⊆ τ ♯2x.
Obviously, τ ♯1x = τ ♯2x ≡ τ ♯1x ⊆ τ ♯2x ∧ τ ♯1x ⊇ τ ♯2x.

Definition 9 (Compatibility between two extended pointer
structures). For two extended structures τ ♯1x and τ ♯2x in the
same procedure, if it holds that τ ♯1x ⊆ τ ♯2x ∨ τ ♯1x ⊇ τ ♯2x, then
we say they are compatible.
Definition 10 (Containment between two abstract heap states).
If for two abstract states S♯1 and S♯2 in the same procedure holds
∀τ ♯x ∈ S♯1 ∃τ ′♯x ∈ S♯2. τ ♯x ⊆ τ ′♯x , then S♯1 ⊆ S♯2.

An abstract heap state may be various forms, due to the alias
relations between pointers. In order to compare abstract states,
we should denote an abstract heap state with a canonical form
(called a saturated abstract state).
Definition 11 (Saturated abstract state). An abstract state S♯
is saturated in a procedure with BPPS = ⟨p0, p1, ..., pn−1⟩,
if and only if it satisfies the following three properties:

1) Anti-reflexivity. ∀pi ∈ BPPS.−→r ♯
pi
(fm, 0)[i] = 0.

2) Symmetry. ∀pi, pj ∈ BPPS. −→r ♯
pi
(fm, 0)[j] = 1 →

−→r ♯
pj
(fm, 0)[i] = 1.

3) Transitivity. ∀pi, pj , pt ∈ BPPS. −→r ♯
pi
(fm, d1)[j] =

1 ∧ −→r ♯
pj
(fm, d2)[t] = 1→ −→r ♯

pi
(fm, d1 + d2)[t] = 1.

Any abstract state can become saturated by the Saturate
operation, shown in Alg. 1.

Algorithm 1 Saturate(S♯,BPPS = ⟨p1, p2, ..., pn−1⟩)
1: modified ← true;
2: while modified do
3: modified ← false;
4: for each pi in BPPS do
5: for each fm in Field do
6: //Anti-reflexivity
7: −→r ♯

pi
(fm, 0)[i]← 0;

8: for each j in {j|−→r ♯
pi
(fm, 0)[j] = 1} do

9: //Symmetry
10: if −→r ♯

pj
(fm, 0)[i] = 0 then

11: modified ← true;
12: −→r ♯

pj
(fm, 0)[i]← 1;

13: end if
14: end for
15: for each j in {j|−→r ♯

pi
(fm, d1)[j] = 1} do

16: //Transitivity
17: if −→r ♯

pj
(fm, d2)[t] = 1∧−→r ♯

pi
(fm, d1+d2)[t] = 0

then
18: modified ← true;
19: −→r pi(fm, d1 + d2)[t]← 1;
20: end if
21: end for
22: end for
23: end for
24: end while

Join Operation. We explore an operation Join that merges
two abstract states into one shown in Fig. 3. The Join
operation can reduce the number of states at program point
to speed up the termination of iteration.

Join(S]
1
; S

]
2
) =

S
]
1

S
]
1
 S

]
2

if

ifS
]
2

S
]
1
¶ S

]
2

S
]
1
[ S

]
2 otherwise

Figure 3. Join operator

Note that the Join operation may cause the loss of precision.
However, any memory leaks are guaranteed not to be missed
after Join operation. For S♯1 ⊆ S♯2, according to Definition 10,
S♯2 has more alias pointers information about every heap cell
pointed to or referenced via some pointer field by each pointer
than S♯1. Therefore, if some statement causes a memory leak in
the abstract state S♯2, it will also cause the same memory leak in
the abstract state S♯1. On the contrary, if some statement causes
a memory leak in the abstract state S♯1, the same memory leak
is not necessary to occur in the abstract state S♯2, because the
leaked cell in S♯1 may also be referenced by some pointer in
S♯2. Hence, if we get two abstract states S♯1 and S♯2 at the same
program point, to be sound, we should preserve the smaller



abstract state S♯1 when joining these two states, as shown in
Fig. 3.

C. Abstract semantics of basic statements

Only the pointer assignments may directly cause memory
leaks, owing to modifying points-to relations among the heaps
in heap-manipulating programs. So, we give operational se-
mantics about pointer assignments based on the above modular
heap abstraction, shown in Fig. 4.

We write S♯ to denote an environment mapping each live
pointer pt to an extended structure τ ♯pt

. The subscripts u, v, w
and t range over {0, 1, ..., n−1}, the field variable fm ranges
over Fields, and the distance variable d ranges over D. We
define −→r ♯

pt
(fm, d) , {−→r ♯

pt
(fm, d)|∀fm ∈ Fields∧ ∀d ∈ D}.

Detecting memory leaks is fairly straightforward in Fig. 4:
(a) We should check whether there are other pointers derefer-

encing this cell pointed to by the current pointer through
the member access of pointer fields, such as Rule 1, 3,
4, 6;

(b) We should check whether there are other pointers point-
ing to this cell referenced by the pointer field of the
current pointer, such as Rule 2, 5;

(c) We should check whether all pointer fields of the current
pointer are null or pointed to by other pointers, like Rule
7.

The semantics of the Return statement can be described by
a sequence of basic pointer assignments. Firstly, all pointers
in the set of local pointers LV arf should be assigned to null,
and then the return variable retf of the function be assigned
with the expression e of the Return statement if the function
has a return pointer variable.

[[return e]](S♯) = [[lk = null; retf = e]](S♯) lk ∈ LV arf

Fig. 5 gives the semantics of compositional statements. We
analyze each statement sequentially according to the basic
operational semantics. In switch statement, the choice of
branch is made according to the truth of test condition e
under the initial abstract state S♯0. Note that if the truth of
test condition is non-deterministic, every branch should be
chosen to analyze. So, our memory detection is partially path-
sensitive.

S♯
1 = [[Stmnt1]](S

♯
0) S♯

2 = [[Stmnt2]](S
♯
1)

S♯
2 = [[Stmnt1;Stmnt2]](S

♯
0)

[[e]](S♯
0) = [[ck]](S♯

0)

[[switch e {c1 : n1, ..., cj : nj , ..., ck : nk, ...}]](S♯
0) [[nk]](S♯

0)

Figure 5. Abstract semantics for compositional statements

IV. INTERPROCEDURAL MEMORY LEAK DETECTION

The transformation of the procedure based on modular heap
abstraction can be described with the big-step abstract seman-
tics. If the procedure is: f(p0, p1, ..., pk−1) with the return
pointer variable retf , we can give its abstract semantics

as: S♯Of = [[f(p0, p1, ..., pk−1)]](S♯If ), wherein: S♯Of is the
postcondition after the running of the callee f under the
precondition S♯If .

In this section, procedural summary based on modular
heap abstraction is firstly described. Then the instantiation of
procedural summary is given at the call and return site. In
the end, we present a fixpoint iteration algorithm to calculate
procedural summary in an on-demand manner.

A. Procedural summary

Procedural summary related to memory leaks describes
the transformation of the heap layout about cells before and
after procedure, which are reachable from global pointer
variables, formal pointer arguments and the return value of
the procedure.

Table IV
SIX CATEGORIES OF ALIAS IN OUR PROCEDURAL SUMMARY

Argument Global Return

Argument Arg&Arg Arg&Glob
Global Glob&Arg Glob&Glob Glob&Ret
Return Ret&Glob

The kinds of alias information in procedural summary
can be divided into 6 categories according to modular heap
abstraction shown in Table IV. To be more clear, we need
to know extended pointer structures over formal arguments,
global pointers, and the return pointer at call and return sites
of the procedure.

• Argument. In heap-manipulating programs, heap cells
which the caller passes to the callee are reachable via
only global pointers or pointer arguments. Heap cells
reached by a pointer argument may be pointed to by
another pointer argument or a global pointer variable.
Thus, we record alias relationships between pointer ar-
guments (called Arg&Arg), as well as between pointer
arguments and global pointers (called Arg&Glob) in the
precondition of the procedure.

• Global. Global pointers destroy the modularity in heap-
manipulating programs: they can be passed into the callee
at the call site, and can also be escaped from the callee at
the return site. So, we record alias relationships between
global pointers and pointer arguments (called Glob&Arg),
as well as among global pointers (called Glob&Glob)
in the precondition of the procedure. And, we record
alias relationships between global pointers and the return
variable (called Glob&Ret), as well as between global
pointers (called Glob&Glob) in the postcondition of the
procedure.

• Return. In heap-manipulating programs, heap cells
reached by the return variable may be also pointed
to by global pointers. So, when the procedure returns,
we should record alias relationships between the return
variable and global pointers (called Ret&Glob) in the
postcondition of the procedure.



1) [[pu = null]](S♯) = {S♯[−→r ♯
pv (fm, d)[u]← 0,−→r ♯

pu(fm, d)← ⊥]|v ̸= u} if ∃w ̸= u∧l ∈ D. −→r ♯
pw (fm, l)[u] ̸= 0∨−→r ♯

pu(fm, 0) = ⊥
{memory leak} otherwise

2) [[pu → fi = null]](S♯) = {S♯[−→r ♯
pv (fm, 2) ← −→r ♯

pv (fm, 2)
−→−−→r ♯

pu(fi, l)
−→
+−→r ♯

pu(fj , l)|v ∈ {v|
−→r ♯

pv (fm, 1)[u] = 1 ∨
−→r ♯

pv (fm, 2)[u] = 1} ∧ l ∈ {1, 2} ∧ fj ∈ Fields − {fi},−→r ♯
pu(fi, l) ← ⊥|l ∈ {1, 2},−→r ♯

pw (fi, l) ← ⊥|l ∈ {1, 2} ∧ w ∈
{w|−→r ♯

pu(fm, 0)[w] = 1]}} if −→r ♯
pu(fi, 1) ̸= 0

{memory leak} otherwise
3) [[pu = pv]](S♯) = {S♯

1[
−→r ♯

pu(fm, d)← −→r ♯
pv (fm, d)]|S♯

1 ∈ [[pu = null]]S♯} if ∃w ̸= u∧l ∈ D.−→r ♯
pw (fm, l)[u] ̸= 0∨−→r ♯

pu(fm, 0) = ⊥
{memory leak} otherwise

4) [[pu = pv → fi]](S♯) = {S♯
1[
−→r ♯

pu(fm, 0)← −→r ♯
pv (fm, 1),−→r ♯

pv (fm, 1)[u]← 1]|S♯
1 ∈ [[pu = null]]S♯}

if ∃w ̸= u ∧ l ∈ D.−→r ♯
pw (fm, l)[u] ̸= 0 ∨ −→r ♯

pu(fm, 0) = ⊥
{memory leak} otherwise

5) [[pu → fi = pv]](S♯) = {S♯
1[(
−→r ♯

pw (fi, 1)←
−→r ♯

pv (fm, 0))[v]← 1,−→r ♯
pw (fm, 2)← −→r ♯

pv (fm, 1)
−→
+−→r ♯

pv (fm, 2),

(−→r ♯
pt(fm, 2) ← −→r ♯

pt(fm, 2)
−→
+−→r ♯

pv (fm, 0)
−→
+−→r ♯

pv (fm, 1)
−→
+−→r ♯

pv (fm, 2))[v] ← 1]|t ∈ {t|−→r ♯
pt(fm, 1)[u] = 1 ∨ −→r ♯

pt(fm, 2)[u] =
1} ∧ w ∈ {w|−→r ♯

pu(fm, 0)[w] = 1} ∪ {u} ∧ S♯
1 ∈ [[pu → fi = null]](S♯)} if −→r ♯

pu(fi, 1) ̸= 0
{memory leak} otherwise

6) [[pu = malloc]](S♯) = {S♯
1[
−→r ♯

pu(fm, d)← 0]|S♯
1 ∈ [[pu = null]]S♯} if ∃w ̸= u ∧ l ∈ D. −→r ♯

pw (fm, l)[u] ̸= 0 ∨ −→r ♯
pu(fm, 0) = ⊥

{memory leak} otherwise
7) [[pu = free()]](S♯) = {S♯[−→r ♯

pw (fm, d)[t]← 0,−→r ♯
pw (fm, d)[u]← 0,−→r ♯

pt(fm, d)← ⊥,−→r ♯
pu(fm, d)← ⊥]|t ∈ {t|−→r ♯

pu(fm, 0)[t] =
1} ∧ w ∈ {w|−→r ♯

pu(fm, 0)[w] = 0 ∧ w ̸= u}} if −→r ♯
pu(fm, 1) ̸= 0 ∨ −→r ♯

pu(fm, 1) = ⊥
{memory leak} otherwise

Figure 4. Abstract semantics of basic pointer assignments

B. Interprocedural summary instantiation

We should instantiate the callee’s summary with the caller’s
heap abstraction at a call site for detecting memory leaks. The
instantiation consists of mapping extended structures of the
heap abstraction at the call site into parameterized ones in
the summary of the callee. Alias information captured at the
call site should be also reflected in instantiation. The output
of the instantiation consists of extended structures over global
pointers and the return variable after the call.

Given the caller with the alias bit-vector domain ABVDR
based on BPPSR = ⟨r0, r1, ..., rm−1⟩ and variable ordering
r0 ≺ r1 ≺ ... ≺ rm−1, and the callee f(p0, p1, ..., pk−1)
with the alias bit-vector domain ABVDE based on BPPSE =
⟨e0, e1, ..., en−1⟩ and variable ordering e0 ≺ e1 ≺ ... ≺
en−1, assume the call statement is: ret = f(t0, t1, ..., tk−1);
p0, p1, ..., pk−1 are formals, t0, t1, ..., tk−1 are actuals;
retf is the formal return pointer variable of the procedure
f ; g0, g1, ..., gh−1 are the global pointers. We can denote
the mapping between two environments by two pairs ⟨α, β⟩ :

BPPSR

β

�
α

BPPSE and ⟨ᾱ, β̄⟩ : ABVDR
β̄

�
ᾱ

ABVDE.

• BPPSR
α−→ BPPSE α(ti) = pi : ti is an actual parameter

α(gi) = gi : gi is a global variable
α(ri) = ⊥ : other

• ABVDR
ᾱ−→ ABVDE

ᾱ(−→r ♯
ri [j]) =

−→r ♯
α(ri)

[ιE(α(ι
−1
R (j)))], ∀j. 0 ≤ j < m

ᾱ(−→r ♯
r1

−→
+−→r ♯

r2) =
−→r ♯

α(r1)

−→
+−→r ♯

α(r2)

ᾱ(−→r ♯
r1

−→−−→r ♯
r2) =

−→r ♯
α(r1)

−→−−→r ♯
α(r2)

• BPPSE
β−→ BPPSR β(retf ) = ret : retf is a return variable

β(gj) = gj : gj is a global variable
β(ej) = ⊥ : other

• ABVDE
β̄−→ ABVDR

β̄(−→r ♯
ei [j]) =

−→r ♯
β(ei)

[ιR(β(ι
−1
E (j)))], ∀j. 0 ≤ j < n

β̄(−→r ♯
r1

−→
+−→r ♯

r2) =
−→r ♯

β(r1)

−→
+−→r ♯

β(r2)

β̄(−→r ♯
e1

−→−−→r ♯
e2) =

−→r ♯
β(e1)

−→−−→r ♯
β(e2)

The relations between ⟨α, β⟩ and ⟨ᾱ, β̄⟩ could also be
denoted with the following diagram, saying that:{

ᾱ ◦ −→r ♯ = −→r ♯ ◦ α
β̄ ◦ −→r ♯ = −→r ♯ ◦ β

BPPSR

BPPSE

ABVDR

ABVDE

¡!r ]

¡!r ]

¹® ¹̄¯®

Figure 6. Relation between ⟨α, β⟩ and ⟨ᾱ, β̄⟩

So, we can represent this heap relations between the caller
and the callee like Fig. 7.

C. Summarizing procedures via fixpoint iterations

To summarize a procedure, we must know what postcondi-
tions the procedure outputs under various preconditions. After
the few calls of the same function, we summarize a procedure
from top to down in the call flow graph in an on-demand way.



¹® ¹̄
Figure 7. Relation between the caller and callee about abstract heaps

We use a fixpoint iteration algorithm to find heap abstract
states at the exits of the procedure, shown in Alg. 2. The input
of the fixpoint iteration algorithm includes the procedure and
optional heap abstraction. The initial state of the procedure is
that:

• If it is on the top of the call graph, all the pointers, such
as the local pointers, the global pointers and formals, are
set ⊥.

• Otherwise, it could be obtained according to the heap
state of its caller.

A data structure—stack with two operations is defined as:

• pop(): pop a element from the top of the stack.
• push(): push a element into the stack.

We maintain two stacks during fixpoint iteration:

• Mf with the basic element ⟨Pre, Post⟩, where each
precondition Pre has one postcondition Post, is used
to store the summary for the procedure f .

• W with the basic element ⟨s, S♯⟩ is used to store the
statement s which needs to be analyzed and the heap
abstract states at the program point before this statement.

The function callee(s) returns the callee of the call state-
ment s, and the function Abs(s) returns the heap abstract state
before the program point of the current statement s. Succ(s)
contains all the statements which succeed s in the control flow
graph. Furthermore, the operations Join and Saturate are
applied over the nearly computed abstract states after each
transfer function.

Given the number of global pointers is g, the number of
formals is f , and the maximum number of pointer fields is
fn, then the maximum number of heap abstract states during
fixpoint iteration is finite — [fn × 3 × (2(g+f) + 1)](g+f).
Therefore, the termination of our memory leak detection is
guaranteed.

Algorithm 2 Fixpoint Iteration Algorithm fix(f, Pre)

Require: A procedure f , optional modular heap abstraction
Pre;

Ensure: Mf ;
1: Abs(n) = ⊥, ∀ n ∈ CFGf ;
2: W.push(⟨entryNode, Pre⟩);
3: while W ̸= ∅ do
4: ⟨s,S♯⟩ = W.pop();
5: if s instanceof AsgnStmt, SwitchStmt, ReturnStmt then
6: S♯1 = [[s]]S♯;
7: else if s instanceof CallStmt then
8: if ᾱ(S♯) ∈ (Mcallee(s)).P re then
9: S♯1 = β̄(Mcallee(s)(ᾱ(S♯)));

10: else
11: M ′ = fix(callee(s), ᾱ(S♯));
12: S♯1 = β̄(M ′(ᾱ(S♯))) ;
13: end if
14: else
15: //other statements
16: S♯1 = S♯;
17: end if
18: for all s′ ∈ Succ(s) do
19: S♯new = Saturate(Join(S♯1, Abs(s′)));
20: if S♯new! = Abs(s′) then
21: Abs(s′) = S♯new;
22: W.push(⟨s′, Abs(s′)⟩);
23: end if
24: end for
25: end while
26: Mf .push(Pre,Abs(exitNode));
27: return Mf ;

V. EVALUATIONS

We have implemented our field and context sensitive in-
terprocedural memory leak detector (Heapcheck) for heap-
manipulating programs based on the Crystal [9] compiler
framework. We have tested our prototype implementation
Heapcheck on a few large C programs. The experiments are
conducted on a 3.0 G java virtual machine on top of a 2.67
GHz Intel Core i5 PC.

A. Precision

We have used both our context-sensitive interprocedural
analysis with and without summary to detect memory leaks
in some programs from SPEC2000 benchmarks [10] and
three open-source applications: Tar, OpenSSH and OpenSSL.
The one without summary re-analyzes the procedure at each
call site. In Table V, the first column shows the names of
programs and the second column total lines of codes. The
third column shows the pre-process time, including parsing
files, building the control flow graphs and call graph, slicing
and transforming. The forth column shows the time of the
context-sensitive memory leak detection without summary, and
fifth column shows the time of summary-based analysis. The



Table V
RESULTS FOR BENCHMARK PROGRAMS

Programs Size
(Kloc)

Preprocess
Time (Sec)

Analysis Time (Sec) Memory (MB) Reported
bugs

Without summary Summary-based Without summary Summary-based

164.gzip 7.7 1.19 0.31 0.33 27 6 0
175.vpr 17 1.84 2.83 1.11 194 86.7 1/1
179.art 1.2 0.32 0.1 0.1 34.4 33 0
186.crafty 21.7 3.13 7.56 6.98 295 258 0
188.ammp 13.2 1.88 1.22 0.21 135 60.2 0
300.twolf 19.9 3.05 7.38 4.31 442 195 0/3
176.gcc 210 8.35 106.62 61.04 4596 920 2/17

tar-1.12 11.7 1.08 18.98 9.09 239 178 0/5
openssh 58.3 20.55 2.61 1.44 186 144.3 2/14
openssl 36 8.47 0.46 0.44 73.5 40.7 6/11

sixth column shows the total used memory without summary
and the seventh column shows the memory with summary. The
last column shows false positives and alarms in the form of
“false positives/total alarms”.

The results of these experiments are shown in Table V. We
know that the summary-based context-sensitive interprocedu-
ral memory leak detection is often better than the analysis
without summary both in the used time and memory, because
the procedural summary about heap abstract state can be
reused in the summary-based analysis. When analyzing the
benchmark 176.gcc, our memory detection without summary
runs out the memory under the current machine. Hence, we
divide the whole source code into two parts and analyze each
part separately. However, we can analyze the whole source
code using our summary-based memory leak detection under
the current machine. We also see that our summary-based
interprocedural memory detection is more efficient in both
time and memory when analyzing larger programs, because
the same procedures are often called more times in larger
programs.

The tool produces 51 warnings, 11 of which are false
positives. Hence, about one warning out of five is a false
positive alarm. Compared with the existing work of [11],
which analyzed parts of OpenSSH and OpenSSL with 45 and
22 second respectively under a 1.2GHz Athlon machine with
256MB of memory running Linux RedHat 9 and got 39 total
memory leak alarms (25 of which were false positives) with
a false positive rate of 64%, we get a lower rate of false
positives.

Our bug reporting is based on abstract states, which, as
mentioned above, are denoted with extended pointer structures.
An alarm reports a pointer assignment which may lead to
memory leaks with the current extended pointer structures.
Heapcheck produces these error abstract states and statements
during the forward iterative analysis. We find this technique
very useful in identifying true alarms.

Most of true memory leaks in heap-manipulating programs
are caused by ignoring judging whether all the sub-level
pointer fields are null when deallocating the heap cell pointed

to by a pointer. In a few cases, the heap cell pointed to by
a local pointer variable fails to be released at the return site.
The examination of false positives indicates that they are due
to three sources of imprecision:

• One source is due to lack of path information, such as
numerical test, that could rule out the infeasible pointer
assignments.

• Our abstraction may cause loss of precision and thus
result in false positives. For instance, we are unable to
identify the precise points-to relations more than two
distances away from the current pointer variable. This
imprecision might impact the precision of memory de-
tection.

• Another source is that the heap cell might be escaped
through parameters with complex pointer types, such as
a parameter with a type pointer of pointer, during the
interprocedural analysis. Currently, our tool do not deal
with this case.

Our field and context-sensitive analysis has no false neg-
atives when detecting heap-manipulating programs defined
in Fig. 1. However, it also has some false negatives when
analyzing C programs, due to ignoring some syntax of C
programs. For example, we cannot consider the operator &,
the complex pointer types (such as a pointer to a pointer), or
the record type in C programs. So, we should analyze these
syntax to improve the precision when analyzing C programs
in the future.

B. Scalability

In this section, we measure the scalability of our on-demand
modular memory detection for three large open-source projects
(Apache, Python, and PostgreSQL). We show the time and
memory used to detect memory leaks in Table VI. We also
collect the total number of procedures and the max pointer
number of each procedure, the mean and max number of the
analysis per procedure. In the last column, the number of
false positives and alarms are shown. We also got about a
false positive rate of 20% when analyzing these three large
programs.



Table VI
STATISTICS FOR LARGE PROGRAMS

Programs Size
(Kloc)

Preprocess
Time
(Sec)

Analysis
Time
(Sec)

Memory
(MB)

Procedures Max Pointer
Number per
Procedure

Mean Analysis
Number per
Procedure

Max Analysis
Number of
Procedures

Reported
bugs

Apache 290 31.11 85.09 1148 3312 159 0.28 27 0/5
Python 320 70.22 314.34 2415 5810 260 0.49 17 5/17
PostgreSQL 880 89.05 265.81 1790 9726 199 21.57 225 19/111

The reason why the mean number of the analysis per
procedure is very small when analyzing Apache and Python
is that we skip analyzing the procedure whose scope does not
have any read and write pointer operations, and in fact there
are many of this kind of these procedures in these two projects.
From Table VI, we know that the time and the memory used
during the analysis are usually not related directly to the size
of source code and the mean number of analysis per procedure.
The reason is that the complexity of the fixpoint iteration
algorithm is also dominated by the number of pointer variables
and basic pointer assignments in the procedure.

Another phenomenon is that the mean number of the
analysis per procedure usually increases with the size of the
source code. We discover that the same procedure is possibly
called more times in larger programs, and the procedure is
encountered more times by our modular memory detection
algorithm.

Overall, we believe that these results are encouraging. They
suggest that modular heap abstraction for detecting memory
leaks is both sufficiently precise to yield a low false positive
rate, and sufficiently lightweight to scale to larger programs.

VI. RELATED WORK

In recent years, there has been a large body of research about
detecting memory leak errors. We classify the related work
mainly into field-insensitive and field-sensitive approaches.

A standard field-insensitive analysis detects whether every
allocated cell is deallocated eventually based on a pointer
alias analysis. It can be divided into flow-, path-, and context-
sensitive and insensitive algorithm. For example, Cherem et
al. [1] track the flow of values from allocation points to
deallocation points using a guarded value-flow according to
source-sink property and presents a practical interprocedural
analyzer FastCheck for detecting memory leaks in C programs.
Xu and Zhang [12] present a path-sensitive analysis to detect
memory leaks based on the constraint solver CVC3. Recently,
Xu and Zhang [13] present a more precise path-sensitive
interprocedural memory leak detection based on memory state
transition graph. Clouseau [14], [4] is a tool to describe those
pointer variables responsible for deallocating heap cells based
on pointer ownership, and constructs an ownership constraint
system to detect memory leaks. But, none of these techniques
can detect memory leaks efficiently for heap-manipulating
programs, due to lack of field-sensitivity.

Jung and Yi [15] propose parameterized procedural sum-
maries based an escape model in a practical, fully automatic

static analyzer (called SPARROW). In addition, Saturn [16]
reduces the condition of memory leak to a Boolean satisfiabil-
ity problem, and then a SAT-solver is used to detect potential
errors. Although these two approaches can distinguish differ-
ent pointer fields when modeling the memory, they cannot
represent the reachability relations between pointers.

Field-sensitive analysis involves both the reachability be-
tween heap cells and alias between pointer variables and fields.
Sagiv et al. [2] propose Three-Valued logic (called TVLA) to
divide all memory cells into finite equivalence classes by defin-
ing various core and instrumental predicates, and have proven
the absence of memory leaks in various list-manipulating
programs. However, it has not been used for detecting memory
leaks for large programs. Hackett and Rugina [11] propose
a region-based shape analysis with tracked locations based
on reference counts to reason about individual heap locations
and detect memory leaks in a set of three popular open-
source C programs efficiently, but have high false positives.
Wang et al. [3] have proposed a demand-driven memory leak
detection algorithm based on the abstraction of points-to graph,
and achieved relatively better balance between scalability and
precision. Recently, separation logic [17] is used for reason-
ing locally about the memory errors, such as SpaceInvader
[18] and Xisa [19]. SpaceInvader defines lists recursively in
formulae of separation logic, and reasons heap states at each
program pointer based on various operational and rewrite
rules. It has been used for verifying the memory correctness
in various device drivers. Xisa supports user-defined shape
invariants about recursively-defined data structures to reason
the property of programs under the abstraction interpretation
framework [20]. These tools can also verify some other
functional properties besides memory leaks. However, these
analysis tools need users to give definitions and rules about
various data structures in programs, and cannot achieve high
scalability.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a field and context sensitive algorithm
for detecting memory leaks in heap-manipulating programs
and implemented a prototype tool (Heapcheck). Heapcheck
analyzes heap-manipulating programs modularly: it analyzes
each procedure from top to bottom among the procedure call
graph and produces a partial summary for each procedure
under some abstract heap state in an on-demand way. The
summary is parameterized by the abstract heap state based
on member-access distances and alias bit-vector domain at



its entry, so it can be instantiated at different call sites. We
have used Heapcheck to analyze a set of the C benchmark
programs, and got better precision compared with the existing
work [11]. We have also used our approach to analyze three
large open-sources and got satisfied scalability as expected.

In the future, we would like to adapt our modular heap
abstraction to analyzing other memory-related program errors,
such as null dereferencing, dangle pointer dereferencing and
double frees. In order to improve the analysis precision, we
would like to extend our modular heap abstraction to k-limited
abstraction of distances. We also expect that our procedural
summary about heap abstraction is able to be reused by other
memory leak detectors or other static analysis tools.
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